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Abstract. We define a generalized class of modified zeta series transformations gener-
ating the partial sums of the Hurwitz zeta function and series expansions of the Lerch
transcendent function. The new transformation coefficients we define within the article
satisfy expansions by generalized harmonic number sequences as the partial sums of
the Hurwitz zeta function. These transformation coefficients satisfy many properties
which are analogous to known identities and expansions of the Stirling numbers of the
first kind and to the known transformation coefficients employed to enumerate variants
of the polylogarithm function series. Applications of the new results we prove in the
article include new series expansions of the Dirichlet beta function, the Legendre chi
function, BBP-type series identities for special constants, alternating and exotic Euler
sum variants, alternating zeta functions with powers of quadratic denominators, and
particular series defining special cases of the Riemann zeta function constants at the
positive integers s ≥ 3.

1. Introduction

1.1. Definitions. The generalized r–order harmonic numbers, H(r)
n (α, β), are defined as

the partial sums of the modified Hurwitz zeta function, ζ(s, α, β), defined by the series

ζ(s, α, β) = ∑
k≥1

1
(αk + β)s .(1)

That is, we define these generalized sequences as the sums

H(r)
n (α, β) = ∑

1≤k≤n

1
(αk + β)r ,(2)

where the definition of the “ordinary” r–order harmonic numbers, H(r)
n , is given by the

special cases of (2) where H(r)
n ≡ H(r)

n (1, 0) [11, §6.3]. Additionally, we define the
analogous “modified” Lerch transcendent function, Φ(z, s, α, β) ≡ α−s · Φ(z, s, β/α), for
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|z| < 1 or when z ≡ −1 by the series

Φ(z, s, α, β) = ∑
n≥0

zn

(αn + β)s .(3)

We notice the particular important interpretation that the Lerch transcendent func-
tion acts as an ordinary generating function that enumerates the generalized harmonic
numbers in (2) according to the coefficient identity

H(r)
n (α, β) = [zn]

Φ(z, s, α, β)− β−s

1− z
, |z| < 1∨ z = −1, n ≥ 0.

1.2. Approach to generating the modified zeta function series.

1.2.1. Organization of the new results in the article. The approach to enumerating the har-
monic number sequences and series for special constants within this article begins in
Section 2 with a brief overview of the properties of the harmonic number expansions in
(2) obtained through the definition of a generalized Stirling number triangle extending
the results in [19, 21]. We can also employ transformations of the generating functions
of many sequences, though primarily of the geometric series, to enumerate and ap-
proximate the generalized harmonic number sequences in (2) which form the partial
sums of the modified Hurwitz zeta function in (1).

In Section 3 we continue to relate the identities given for these Stirling number vari-
ants given by elementary symmetric polynomials in Section 2 by forming new trans-
formation coefficients which are defined recursively and formally generated by the
complete homogeneous symmetric polynomials over the same sequences. In Section
3.3.2, we prove a generalization of our new zeta series generating function transforma-
tions which covers (at least formally) a wider range of zeta function cases that those
special functions which we restrict our attention to within this article. The last sections
of the article are devoted to providing many new examples and special case series
applications which showcase our new combinatorially motivated definitions of these
classically analytic series and functions. The next subsections of this introduction be-
low compare and contrast existing methods for transforming a zeta-related sequence
via its generating function.

1.2.2. Related integral transformations and formulas. Given the ordinary generating func-
tion, A(t), of the sequence 〈an〉n≥0, we can employ a known integral transformation
involving A(t) termwise to enumerate the following modified forms of an when r ≥ 2
is integer-valued as in [3]:

∑
n≥0

an

(n + 1)r zn =
(−1)r−1

(r− 1)!

∫ 1

0
logr−1(t)A(tz)dt.
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Additionally, many zeta function identities correspond to the bilateral series given by
Lindelöf in [16, §2] of the form

∞

∑
n=−∞

f (n) = − 1
2πı

∮
γ

π cot(πz) f (z)dz,

where γ is any closed contour in C which contains all of the singular points of f in its
interior. For integers α ≥ 2 and 0 ≤ β < α, we can similarly transform the ordinary
generating function, A(t), through the previous integral transformation and the αth

primitive root of unity, ωα = exp(2πı/α), to reach an integral transformation for the
modified Lerch transcendent function in (3) in the form of the next equation [22].

∑
n≥0

aαn+β

(αn + β + 1)r zαn+β =
(−1)r−1

α · (r− 1)!

∫ 1

0
logr−1(t)

(
∑

0≤m<α

ω
−mβ
α A (ωm

α tz)

)
dt

1.2.3. Enumerating the Lerch and Hurwitz zeta functions by generating functions. In contrast
with the approach in the preceeding section to enumerating these special zeta functions
by their associated integral formulas, we choose a more general and combinatorially
motivated method involving derivatives of a sequence’s ordinary generating function.
Our new series transformations defined and proved in this article provide new, purely
series-based transformations related to a binomial transformation of generating func-
tions and arbitrary harmonic-number-related coefficients defined exactly by symmetric
polynomials. In particular, in Section 3.3.2 we prove that for any sequence { fn}n≥0
whose ordinary generating function, F(z) ∈ C∞([0, σF)), is analytic in some disc, we
have exact and formally well-defined series transformations of the modified zeta func-
tion series associated with some non-zero arithmetic function g : N → C \ {0} of the
form

∑
n≥0

fn

g(n)s zn = ∑
j≥1

{
s + 2

j

}
g∗
· zjF(j)(z),

where here by assumption s ∈ Z+ and where the series multiplier coefficients {s+2
j }g∗

are defined precisely by complete homogeneous symmetric polynomials in g. More
precisely, we have that [15, §I.2]{

s + 2
j

}
g∗

= ∑
0≤i1≤i2≤···≤is≤j

1
g(i1)g(i2) · · · g(is)

= [zs]
j

∏
i=0

(
1− z

g(j)

)−1

.

In many respects, our new identities are similar to known Newton series variants which
provide expansions of a sequence and it’s generating function, and a zeta function term
{g(n)}n≥0, in terms of the forward difference operator, ∆n[ f ](x0) := ∑1≤i≤n (

n
i )(−1)n−i f (i+

x0), shifted by any integer constant 0 ≤ x0 ≤ x in the form of

∑
n≥0

zn

f (n)s = ∑
n≥0

n

∑
k=0

k

∑
i=0

(
n
k

)(
k
i

)
(−1)k−i

(ai + b)s zn

Online Journal of Analytic Combinatorics, Issue 13 (2018), #03



4 MAXIE D. SCHMIDT

=
1

1− z
· ∑

n≥0

[
n

∑
i=0

(
n
i

)
(−1)i

f (i)s

](
z

1− z

)n
, b > 0,

b
a
6= 0,−1,−2, · · · .

While some of the resulting transformed generating function formulas we obtain here
as in

(1− z) ·Φ(z, s, a) = ∑
n≥0

(
−z

1− z

)n n

∑
k=0

(
n
k

)
(−1)n−k

(k + a)s ,

cited originally by [20] are not necessarily new in the literature, our approach to these
series is much more combinatorial than the traditionally analytic techniques needed to
approximate or exactly evaluate integral representations for these functions or to sum
variants of their Newton series expansions (cf. [12]). In this sense our new results are
significant because they provide a distinctly combinatorial twist on many classically
treated analytic methods, integrals, and infinite series.

1.3. Examples of the new results. The main focus of this article is on the applications
and expansions of generating function transformations introduced in Section 3 that
generalize the forms of the coefficients defined in [20]. The generalizations we employ
here to transform geometric–series–based generating functions into series in the form of
(3) are primarily corollaries to the results in the first article. The next examples illustrate
the new series we are able to obtain using these generalized forms of the generating
function transformations proved in the reference and using our new harmonic-number-
based expansions developed in the sections of this article below.

1.3.1. BBP-Type formulas and identities. Many special constants such as those given as
examples in the next sections satisfy series expansions given by BBP–type formulas of
the form [2]

(BBP-Type Series Formula) P(s, b, m, A) = ∑
k≥0

b−k ∑
1≤j≤m

aj

(mk + j)s

where A = (a1, a2, . . . , am) is a vector of constants and m, b, s ∈ Z+. The term BBP
formula is used to describe the general structure of series expansions in the previous
forms which were studied by the authors Bailey, Borwein and Plouffe in 1997 in their
search for rapidly convergent series for certain constants, including the next formula
for π given by

π = ∑
k≥0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

In this original paper and in [2] algorithms for computing BBP-type formulas for
suitable constants using the PLSQ algorithm which relates the necessarily integer co-
efficients in such expansions of a typically polylogarithmically-related series. We re-
mark that the BBP-type formula expansions defined above are equivalent to the class
of infinite series whose terms can be written as rational functions of k with respect
to an integer base parameter b ≥ 2, i.e., convergent sums for constants of the form
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α = ∑k≥0 P(k)/Q(k) 1
bk for fixed polynomials P, Q satisfying deg(P) < deg(Q) with

Q(k) 6= 0 for all k ∈ N. For example, out last formula for π is represented by the
equivalent expansion of

π = ∑
k≥0

120k2 + 151k + 47
16k (512k4 + 1024k3 + 712k2 + 194k + 15)

.

Example 1.1. A pair of particular examples of first-order BBP-type formulas which we list in
this section to demonstrate the new forms of the generalized coefficients listed in Table 3 and
Table 4 of the article below provide series representations for a real–valued multiple of π and a
special expansion of the natural logarithm function [2, §11] [14, §3].

4
√

3π

9
= ∑

k≥0

(
−1

8

)k ( 2
(3k + 1)

+
1

(3k + 2)

)

= ∑
j≥0

8
9j+1

2
(

j + 1
3

1
3

)−1

+
1
2

(
j + 2

3
2
3

)−1


Log
(

n2 − n + 1
n2

)
= ∑

k≥0

(
− 1

n3

)k+1 [ n2

3k + 1
− n

3k + 2
− 2

3k + 3

]

= −∑
j≥0

1
(n3 + 1)j+1

n2
(

j + 1
3

1
3

)−1

− n
2

(
j + 2

3
2
3

)−1

− 2
3(j + 1)


1.3.2. New series for special zeta functions. The next two representative examples of spe-
cial zeta functions serve to demonstrate the style of the new series representations we
are able to obtain from the generalized generating function transformations established
by this article.

Example 1.2 (Dirichlet’s Beta Function). The Dirichlet beta function, β(s), is defined for
<(s) > 0 by the series

β(s) = ∑
n≥0

(−1)n

(2n + 1)s = 2−sΦ(−1, s, 1/2).

The series in the previous equation is expanded through the generalized coefficients when (α, β) =
(2, 1) as in the listings in Table 2. The first few special cases of s over the positive integers are
expanded by the following new series [7, cf. §8]:

β(1) = ∑
j≥0

1
2j+1

(
j + 1

2
1
2

)−1

β(2) = ∑
j≥0

1
2j+1

(
j + 1

2
1
2

)−1

·
(

1 + H(1)
j (2, 1)

)
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β(3) = ∑
j≥0

1
2j+1

(
j + 1

2
1
2

)−1

·
(

1 + H(1)
j (2, 1) +

1
2

(
H(1)

j (2, 1)2 + H(2)
j (2, 1)

))
.

Example 1.3 (Legendre’s Chi Function). For |z| < 1, the Legendre chi function, χν(z), is
defined by the series

χν(z) = ∑
k≥0

z2k+1

(2k + 1)ν
= 2−νz×Φ(z2, ν, 1/2).

The first few positive integer cases of ν ≥ 1 are similarly expanded by the forms of the next
series given by

χ1(z) = ∑
j≥0

(
j + 1

2
1
2

)−1
z · (−z2)j

(1− z2)j+1

χ2(z) = ∑
j≥0

(
j + 1

2
1
2

)−1

·
(

1 + H(1)
j (2, 1)

) z · (−z2)j

(1− z2)j+1

χ3(z) = ∑
j≥0

(
j + 1

2
1
2

)−1

·
(

1 + H(1)
j (2, 1) +

1
2

(
H(1)

j (2, 1)2 + H(2)
j (2, 1)

)) z · (−z2)j

(1− z2)j+1 .

Other special function series and motivating examples of these generalized generat-
ing function transformations we consider within the examples in Section 4 of the article
include special cases of the Hurwitz zeta and Lerch transcendent function series in (1)
and (3). In particular, we consider concrete new series expansions of BBP-like series for
special constants, alternating and exotic Euler sums with cubic denominators, alternat-
ing zeta function sums with quadratic denominators, polygamma functions, and several
particular series defining the Riemann zeta function, ζ(2k + 1), over the odd positive
integers.

2. Generalized Stirling numbers of the first kind

2.1. Definition and generating functions. We first define a generalized set of coeffi-
cients in the symbolic polynomial expansions of the next products over x as an exten-
sion of the results first given in [19, 21]1.[

n
k

]
(α,β)

= [xk−1]x(x + α + β)(x + 2α + β) · · · (x + (n− 1)α + β) [n ≥ 1]δ(4)

The polynomial coefficients of the powers of x in (4) are then defined by the following
triangular recurrence for natural numbers n, k ≥ 0:[

n
k

]
(α,β)

= (αn + β− α)

[
n− 1

k

]
(α,β)

+

[
n− 1
k− 1

]
(α,β)

+ [n = k = 0]δ .(5)

1 The notation for Iverson’s convention, [n = k]δ = δn,k, is consistent with its usage in [11].
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j
k

0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 3 1 0 0 0 0 0 0
3 0 15 8 1 0 0 0 0 0
4 0 105 71 15 1 0 0 0 0
5 0 945 744 206 24 1 0 0 0
6 0 10395 9129 3010 470 35 1 0 0
7 0 135135 129072 48259 9120 925 48 1 0
8 0 2027025 2071215 852957 185059 22995 1645 63 1

Table 1. The Generalized Stirling Numbers of the First Kind, [kj](2,1)

We also easily arrive at generating functions for the column sequences and for the
generalized analogs to the Stirling convolution polynomials, σn(x) and σ

(α)
n (x), defined

by

σ
(α,β)
n (x) =

[
x

x− n

]
(α,β)

(x− n− 1)!
x!

.

The series enumerating these coefficients are expanded as the following closed–form
generating functions [11, §6.2] [13] (see the remark below):

∑
n≥0

[
n
k

]
(α,β)

zn

n!
=

(1− αz)−β/α

k!αk Log(1− αz)k(6)

∑
n≥0

xσ
(α,β)
n (x)zn = eβz

(
αzeαz

eαz − 1

)x
.

When (α, β) = (1, 0), (α, 1− α) we arrive at the definitions of the respective triangular
recurrences defining the Stirling numbers of the first kind, [nk], and the generalized α–
factorial functions, n!(α), from the references [1, 11, 19]. Table 1 lists the first several rows
of the triangle in (5) corresponding to the special case of (α, β) = (2, 1) as considered
in the special case expansions from [21].

Remark. For fixed x, α, β, we have a known identity for the following exponential generating
functions, which then implies the first result in (6) by considering powers of xk as functions of
z where (x)n denotes the Pochhammer symbol [13] [17, §5.2(iii)]:

∑
n≥0

(
x + β

α

)
n

(αz)n

n!
= (1− αz)−(x+β)/α.
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We can then apply a double integral transformation for the (ordinary) beta function, B(a, b), in
the form of [17, §5.12]

B(a, b)2 =

(
a + b

a

)−2

· (a + b)2

a2b2 =
∫ ∞

0

∫ ∞

0

(ts)a−1

[(1 + t)(1 + s)]a+b dt ds,

for real numbers a, b > 0 such that b ∈ Q \Z to these generating functions to obtain partially
complete integral representations for the transformed series over the modified coefficients in (10)
and (12) through (13) of Section 3.

2.2. Expansions by the generalized harmonic number sequences. We find, as in the
references [1, 20], that this generalized form of a Stirling–number–like triangle satisfies
a number of analogous harmonic number expansions to the Stirling numbers of the first
kind given in terms of the partial sums, H(r)

n (α, β) = ∑n
k=1(αk + β)−r, of the modified

Hurwitz zeta function, ζ(s, α, β) = ∑n≥1 1/(αn + β)s. For example, we may expand
special case formulas for the triangle columns at k = 2, 3, 4 in the following forms2:[

n + 1
2

]
(α,β)

= n!(α,β) × H(1)
n (α, β)(7) [

n + 1
3

]
(α,β)

=
n!(α,β)

2
×
((

H(1)
n (α, β)

)2
− H(2)

n (α, β)

)
[

n + 1
4

]
(α,β)

=
n!(α,β)

6
×
((

H(1)
n (α, β)

)3
− 3H(1)

n (α, β) H(2)
n (α, β) + 2H(3)

n (α, β)

)
.

Similarly, we invert to expand the first few cases of the generalized r–order harmonic
numbers through products of the coefficients in (5) as [19, cf. §4.3]

H(2)
n (α, β) =

1(
n!(α,β)

)2

([
n + 1

2

]2

(α,β)
− 2
[

n + 1
1

]
(α,β)

[
n + 1

3

]
(α,β)

)

H(3)
n (α, β) =

1(
n!(α,β)

)3

([
n + 1

2

]3

(α,β)
− 3
[

n + 1
1

]
(α,β)

[
n + 1

2

]
(α,β)

[
n + 1

3

]
(α,β)

+ 3
[

n + 1
1

]2

(α,β)

[
n + 1

4

]
(α,β)

)

H(4)
n (α, β) =

1(
n!(α,β)

)4

([
n + 1

2

]4

(α,β)
− 4
[

n + 1
1

]
(α,β)

[
n + 1

2

]2

(α,β)

[
n + 1

3

]
(α,β)

2 We define the shorthand factorial function notation for the products as n!(α,β) = ∏n
j=1(αj + β).
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+ 2
[

n + 1
1

]2

(α,β)

[
n + 1

3

]2

(α,β)
− 4
[

n + 1
1

]3

(α,β)

[
n + 1

5

]
(α,β)

+ 4
[

n + 1
1

]2

(α,β)

[
n + 1

2

]
(α,β)

[
n + 1

4

]
(α,β)

)
.

In general, we can use the elementary symmetric polynomials implicit to the product-based
definition of these generalized Stirling numbers in (4) to show that [15, cf. §I.2; p. 31][

n + 1
k

]
(α,β)

= (−1)k · n!(α,β) ×Yk

(
−H(1)

n (α, β) , . . . , (−1)kH(k)
n (α, β) · (k− 1)!

)
H(k)

n (α, β) = (−1)k(k + 1)
[

n + 1
1

]k+1

(α,β)
[tk+1]Log

([
n + 1

1

]
(α,β)

+ ∑
j≥1

[
n + 1
j + 1

]
(α,β)

tj

)
,

where Yn(x1, x2, . . . , xn) denotes the exponential, or complete, Bell polynomial whose ex-
ponential generating function is given by Φ(t, 1) ≡ exp

(
∑j≥1 xjtj/j!

)
[18, §4.1.8].

Additionally, the next recurrences are obtained for the generalized harmonic num-
bers in terms of these coefficients corresponding to the partial sums in our definition
of the “modified” Hurwitz zeta function, ζ(s, α, β) = α−s × ζ(s, β/α).

H(p)
n (α, β) = ∑

1≤j<p

[
n + 1

p + 1− j

]
(α,β)

(−1)p+1−jH(j)
n (α, β)

n!(α,β)
+

[
n + 1
p + 1

]
(α,β)

p(−1)p+1

n!(α,β)

H(p)
n+1 (α, β) = H(p)

n (α, β) +

[
n + 1

p

]
(α,β)

(−1)p+1

(n + 1)!(α,β)

+ ∑
1≤j<p

[
n + 2

p + 1− j

]
(α,β)

(−1)p+1−j

(αn + α + β)j(n + 1)!(α,β)

H(p)
n+1 (α, β) = H(p)

n (α, β) +
1

(αn + α + β)p−1

+
(−1)p−1

(n + 1)!(α,β)

([
n + 1

p

]
(α,β)

+

[
n + 1
p− 1

]
(α,β)

)

+

[
n + 2

p

]
(α,β)

(−1)p

(αn + α + β)(n + 1)!(α,β)

+
p−3

∑
j=0

[
n + 2
j + 2

]
(α,β)

(−1)j+1(αn + α + β− 1)
(αn + α + β)p−1−j(n + 1)!(α,β)

The last equation provides an implicit functional equation between our modified Hur-
witz zeta function involving the generalized Stirling numbers of the first kind in (5)

Online Journal of Analytic Combinatorics, Issue 13 (2018), #03
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[21]. For (α, β) := (1, 0), the previous equation implies new functional equations relat-
ing the p-order and (p− 1)-order polylogarithm functions, Lis(z) ≡ Φ(z, s, 1, 0).

3. Transformations of ordinary power series by generalized Stirling numbers

of the second kind

3.1. Definitions and preliminary examples. Another approach to the relations of the
generalized harmonic number sequences to the forms of the triangles defined by (5)
proceeds as in [20]. In particular, the next definitions lead to new expansions of many
series and BBP–type formulas for special functions and constants from the introduc-
tion and in Section 4 which are implied by the new identities we prove for the series
expansions of the modified Lerch transcendent function, Φ(z, s, α, β) = α−sΦ(z, s, β/α).{

k
j

}
(α,β)∗

=
1
j! ∑

0≤m≤j

(
j

m

)
(−1)j−m

(αm + β)k−2(8)

Φ(z, s, α, β) = β−s + ∑
j≥0

{
s + 2

j

}
(α,β)∗

j!zj

(1− z)j+1

The definition of the generalized Stirling numbers of the second kind3 provided by (8), is
given recursively by{

k
j

}
(α,β)∗

= (αj + β)

{
k + 1

j

}
(α,β)∗

+ α ·
{

k + 1
j− 1

}
(α,β)∗

.

Example 3.1 (Formal Series Identities). The definition of the generalized Stirling numbers
of the second kind given in both forms above implies the next new truncated partial power
series identities for the “modified” Lerch transcendent function over some sequence, 〈gn〉, whose
ordinary generating function, G(z), has derivatives of all orders, for α ≥ 1 and 0 ≤ β < α,
and for any fixed u ≥ 1, u0 ≥ 0 (cf. [20]).

u

∑
n=1

gn

(αn + β)k zn = [wu]

(
u+u0

∑
j=1

{
k + 2

j

}
(α,β)∗

(wz)jG(j)(wz)
(1− w)

)
(9)

∑
1≤n≤u

H(k)
n (α, β) zn = [wu]

(
∑

1≤j≤u+u0

{
k + 2

j

}
(α,β)∗

(wz)j · j!
(1− w)(1− wz)j+2

)

∑
1≤n≤u

H(k)
n (α, β)

zn

n!
= [wu]

(
∑

1≤j≤u+u0

{
k + 2

j

}
(α,β)∗

(wz)j · ewz (j + 1 + wz)
(j + 1)(1− w)

)

∑
1≤n≤u

(
n

∑
k=1

tk

(αk + β)r

)
zn = [wu]

(
∑

1≤j≤u

{
r + 2

j

}
(α,β)∗

(twz)j · j!
(1− w)(1− wz)(1− twz)j+1

)
3 See the conclusions in Section 5.2 for a short discussion of why we consider these transformation

coefficients to be generalized Stirling numbers of the second kind.
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j
k

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 9 3 1 1

3
1
9

1
27

1
81

2 7 1 1 7
15

41
225

223
3375

1169
50625

3 1 1 1 19
35

859
3675

34739
385875

1323019
40516875

4 1 1 1 187
315

27161
99225

3451843
31255875

406586609
9845600625

5 1 1 1 437
693

735197
2401245

1066933061
8320313925

1418417467373
28829887750125

6 1 1 1 1979
3003

45087479
135270135

877474863971
6093243231075

15505503106933439
274470141343773375

7 1 1 1 4387
6435

103349119
289864575

2065307132299
13056949780875

1488524941286431
23526012115180575

8 1 1 1 76627
109395

31562623583
83770862175

10971718559046811
64148794273438875

683894055421671560539
9824580289359984022875

Table 2. A Table of the Generalized Coefficients {k
j}(2,1)∗

× j!(−1)j−1

The generalized harmonic number expansions of the coefficients in (8) are considered
next in Section 3.2. An even more general proof of the formal power series transforma-
tion suggested in the concluding remarks from [20] is given below in Section 3.3. Table
2, Table 3, and Table 4 each provide listings of useful particular special cases of the gen-
eralized transformation coefficients, or alternately, generalized Stirling numbers of the sec-
ond kind within the context of this article, corresponding to (α, β) := (2, 1), (3, 1), (3, 2),
respectively.

3.2. Harmonic number expansions of the generalized transformation coefficients.
For integers α ≥ 1 and 0 ≤ β < α, let the first few special cases of the functions,
R̃k(α, β; j), be defined for natural numbers j ≥ 1 by

R̃k(α, β; j) :=
(

j + β
α

j

) j

∑
m=1

(
j

m

)
(−1)m+1

(αm + β)k [k ≥ 2]δ + [k = 1]δ + [k = 0]δ .

These partial functions are expanded in explicit formulas by the next equations.

R̃1(α, β; j) = 1(10)

R̃2(α, β; j) = H(1)
j (α, β)

R̃3(α, β; j) =
1
2

(
H(1)

j (α, β)2 + H(2)
j (α, β)

)
R̃4(α, β; j) =

1
6

(
H(1)

j (α, β)3 + 3H(1)
j (α, β)H(2)

j (α, β) + 2H(3)
j (α, β)

)
R̃5(α, β; j) =

1
24

(
H(1)

j (α, β)4 + 6H(1)
j (α, β)2H(2)

j (α, β) + 3H(2)
j (α, β)2

Online Journal of Analytic Combinatorics, Issue 13 (2018), #03
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j
k

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 16 4 1 1

4
1
16

1
64

1
256

2 −17 1 1 5
14

41
392

311
10976

2273
307328

3 1 1 1 59
140

2671
19600

107369
2744000

4060291
384160000

4 1 1 1 212
455

133849
828100

73174943
1507142000

37005870001
2742998440000

5 1 1 1 727
1456

1936973
10599680

4393719979
77165670400

9104269630637
561766080512000

6 1 1 1 7271
13832

384155263
1913242240

17071846526411
264639666636800

686298711281124727
36604958689202176000

7 1 1 1 23789
43472

14322370919
66143517440

7187615461845233
100638684655308800

3237486239486747349191
153123771476745445376000

8 1 1 1 76801
135850

238206415289
1033492460000

611558324636496331
7862397238696000000

1400156984227714635455249
59813973233103689600000000

Table 3. A Table of the Generalized Coefficients {k
j}(3,1)∗

× j!(−1)j−1

j
k

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 25 5 1 1

5
1
25

1
125

1
625

2 −14 2 1 11
40

103
1600

899
64000

7567
2560000

3 4 2 1 139
440

15757
193600

1609291
85184000

155016733
37480960000

4 4 2 1 527
1540

446837
4743200

334869917
14609056000

233183599997
44995892480000

5 4 2 1 1889
5236

28606807
274156960

378441183599
14354858425600

4602491925840703
751620387164416000

6 4 2 1 19619
52360

61764761
548313920

4214471373881
143548584256000

10491182677877357
1503240774328832000

7 4 2 1 66337
172040

4956449573
41436866240

7985964568560547
249507946377536000

466567679887167456041
60095485932707810816000

8 4 2 1 110258
279565

43971566839
350141519728

4710810017671083829
137042239547861648000

3642461006944413986125043
429096793431016946178944000

Table 4. A Table of the Generalized Coefficients {k
j}(3,2)∗

× j!(−1)j−1

+ 8H(1)
j (α, β)H(3)

j (α, β) + 6H(4)
j (α, β)

)
.
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For larger cases of k > 5, we employ the following heuristic to generate the harmonic
number expansions of these functions, which for concrete special cases are easily ob-
tained from Mathematica’s Sigma package:

(11) R̃m(α, β; j) =
m−2

∑
i=0

R̃m−2−i(α, β; j)
(m− 1)

· H(i+1)
j (α, β) + [m = 1]δ .

In general, these harmonic-number-based expansions are enumerated by the generat-
ing function products for the complete homogeneous symmetric functions, hk ≡ hk(x1, x2, · · · , xn),
in the special case where xj := (αj + β)−1 [15, §I.2]:

R̃m(α, β; j) = [zm]

{
j

∏
i=1

1
1− xi · z

}

= ∑
1≤i1≤i2≤···≤ik≤j

1
(αi1 + β)(αi2 + β) · · · (αik + β)

.

We then define a close analog to the harmonic number expansions in [20] through the
expansions of these composite functions as{

k + 2
j

}
(α,β)∗

=

{
k + 1

j

}
(α,β)∗

· 1
β
+

(
j + β/α

β/α

)−1 (−1)j

β · j! · R̃k(α, β; j)(12)

=
(−1)j−1

βk · j!
+

k−1

∑
m=0

(
j + β/α

β/α

)−1 (−1)j

j!
· R̃m+1(α, β; j)

βk−m .(13)

Notice that the heuristic we used to generate more involved cases of the expansions
for the functions, R̃k(α, β; j), imply recurrences for the k-order generalized harmonic
number sequences in the following forms when k ≥ 3:

H(k)
n (α, β) =

H(k−1)
n (α, β)

β
+

n

∑
j=0

(
n + 1
j + 1

)(
j + β/α

β/α

)−1( (−1)j

β
· R̃k(α, β; j)

)

H(k)
n (α, β) =

H(k−2)
n (α, β)

β2

+
n

∑
j=0

(
n + 1
j + 1

)(
j + β/α

β/α

)−1

(−1)j ·
(

R̃k(α, β; j)
β

+
R̃k−1(α, β; j)

β2

)
.

A pair of harmonic and Hurwitz zeta function related identities that follow from the
generalized coefficient definitions in (8) are obtained by similar methods from [20, 21]
for n ≥ 1 as follows:

1
(αn + β)k = ∑

0≤j≤n

(
n
j

){
k + 2

j

}
(α,β)∗

· j!

Online Journal of Analytic Combinatorics, Issue 13 (2018), #03
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= ∑
1≤m≤n

(
∑

m≤j≤n

[
j

m

]{
k + 2

j

}
(α,β)∗

(−1)j

)
(−1)mnm

H(k)
n (α, β) = ∑

0≤j≤n

(
n + 1
j + 1

){
k + 2

j

}
(α,β)∗

· j!

= ∑
0≤p≤n+1

(
∑

0≤j≤n

[
j + 1

p

]{
k + 2

j

}
(α,β)∗

(−1)j+1

(j + 1)

)
(−1)p · (n + 1)p.

3.3. Proofs of the zeta series transformations of formal power series.

3.3.1. Proofs of the Geometric and Exponential Series Transformations. We claim that for any
sequence, 〈 f (n)〉, which is not identically zero for n ≥ 0, any natural numbers k ≥ 1,
and a sequence, 〈gn〉, whose ordinary generating function, G(z), has derivatives of all
orders, we have the (formal) series transformation

∑
n≥1

gn

f (n)k zn = ∑
j≥1

{
k + 2

j

}
f ∗

zjG(j)(z),(14)

where the coefficients implicit to the right–hand–side series are defined by{
k + 2

j

}
f ∗
=

1
j! ∑

1≤m≤j

(
j

m

)
(−1)j−m

f (m)k .(15)

As in [20], we primarily only work with these generalized series when the sequence
generating function of gn is some variation of the geometric or exponential series.
Therefore, for the content of our article it suffices to prove the next two cases.

Proof of the Geometric Series Case. Let gn ≡ 1 so that its corresponding jth derivative is
given by G(j)(z) = j!/(1− z)j+1. We proceed to expand the right–hand–side of (14) as
follows:

∑
j≥1

{
k + 2

j

}
f ∗

j!zj

(1− z)j+1 = ∑
j≥1

(
∑

1≤m≤j

(
j

m

)
(−1)m

f (m)k

)
(−z)j

(1− z)j+1

= ∑
m≥1

(
∑
j≥m

(
j

m

)
(−z)j

(1− z)j+1

)
(−1)m

m! f (m)k .

For a fixed c 6= 1, a known binomial sum identity gives that

∑
j≥m

(
j

m

)
cj =

cm

(1− c)m+1 ,

which then implies that when c 7→ −z/(1− z) we have

∑
m≥1

(
∑
j≥m

(
j

m

)
(−z)j

(1− z)j+1

)
(−1)m

m! f (m)k = ∑
m≥1

(−z)m × (−1)m

m! f (m)k �
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Proof of the Exponential Series Case. Let gn ≡ rn/n! so that its corresponding jth deriv-
ative is given by G(j)(z) = rjerz for all j. In this case, we proceed to expand the
right–hand–side of (14) as

∑
j≥1

{
k + 2

j

}
f ∗
(rz)jerz = ∑

j≥1

(
∑

1≤m≤j

(−1)m

m!(j−m)! f (m)k

)
(−rz)jerz

= ∑
m≥1

(
∑
j≥m

(−rz)j

(j−m)!

)
(−1)m

m! f (m)k erz

= ∑
m≥1

(
e−rz(−rz)m) (−1)m

m! f (m)k erz

= ∑
m≥1

rmzm

m! f (m)k . �

3.3.2. A proof of the generalization to arbitrary zeta function series.

Theorem 3.2 (Generalized Zeta Series Generating Function Expansions). Fix any se-
quence { fn}n≥0 whose ordinary generating function F(z) is analytic on the disc {z : |z| < σF}
and suppose that some arithmetic function g is given to be non-zero at all integers n ≥ 0. Let

Zg,s(z) :=
∞

∑
m=0

zm

g(m)s ,

suppose that σg,s denotes the largest radius with respect to z such that the function Zg,s(z) is
absolutely convergent on the disk of radius σg,s centered about the origin, and define a non-trivial

σG := inf
{s:Re(s)>1 and σg,s>0}

σg,s.

Moreover, we set σ′F := min(1, σF) and σ′G := min(1, σG) and let the region

R f ,g :=
{

z ∈ C : max
(

σ′F
1 + σ′F

,
σ′G

1 + σ′G

)
≤ |z| < min

(
σ′F

1− σ′F
,

σ′G
1− σ′G

)}
.

Then for all z ∈ ∆ f ,g ⊆ R f ,g where ∆ f ,g is some non-empty subset of the initial region we have
that

∑
n≥0

fnzn

g(n)s = ∑
j≥1

{
s + 2

j

}
g∗

zj · F(j)(z).

Proof of the Generalized Series Case. We use the binomial transform applied to the ordinary
generating function F(z) in the following form:

(Binomial Transform) ∑
n≥0

n

∑
k=0

(
n
k

)
fkzn =

1
1− z

F
(
− z

1− z

)
.

Online Journal of Analytic Combinatorics, Issue 13 (2018), #03
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For |z| ∈ [0, σF) we sum directly by applying the derivative for an analytic function
termwise as

S f ,g(s, z) := ∑
j≥1

{
s + 2

j

}
g∗

zj · F(j)(z)

= ∑
j≥1

(
j

∑
m=1

(
j

m

)
(−1)j−m

g(m)s

)
· ∑

n≥0

(
n
j

)
fnzn

= ∑
j≥1

(
∑

m≥1

(
j

m

)
(−1)j−m

g(m)s

)
· [zj]F

(
− z

1− z

)
= ∑

j≥1
[zj]

1
1 + z

Zg,s

(
z

1 + z

)
· [zj]F

(
− z

1− z

)
, z ∈ ∆ f ,g ⊆ R f ,g.

Next, we can expand the right-hand-side of the last equation as follows for z ∈ R f ,g
such that both functions in this Hadamard product of generating functions are conver-
gent which is guaranteed in some annulus with non-empty interior cenetered about
the origin, a subset in fact, of the region R f ,g as in [9, §VI.10.2; pp. 422–427]. Now that
we have verified the region of convergence of this modified zeta series, it is simplest to
consider the previous equations again from the perspective of performing a binomial
transform on the respective generating functions involved. In particular, we have that
for all n ≥ 0

[ fnzn]S f ,g(s, z) =
n

∑
j=0

j

∑
m=0

(
n
j

)(
j

m

)
(−1)j−m

g(m)s

= [wn]

{
1

(1 + w)(1− z)
Zg

(
z

1 + z

)}∣∣∣∣∣
z 7→w/(1+w)

= [wn]Zg(w)

=
1

g(n)s .

We remark that the construction above actually works formally with respect to z using
operations on formal power series. However, we have carefully defined a region us-
ing the triangle inequality for which the transformed zeta series is always an analytic
function of z ∈ ∆ f ,g ⊆ R f ,g. �

3.3.3. Remarks on symbolic transformation coefficient identities. We observe that most of
the identities formulated in [20, §3] are easily restated as symbolic identities for the
coefficients in (15). If f (m) is polynomial in m, by expanding 1/ f (m) in partial fractions
over linear factors of m, we arrive at sums over the coefficient forms in (10) of Section 3.2
above. If 1/ f (z) is a meromorphic function, we may alternately compute the symbolic
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coefficients in (15) by the next Nörlund–Rice integral over a suitable contour given by [8]{
k
j

}
f ∗
· j! := ∑

1≤m≤j

(
j

m

)
(−1)j−m

f (m)k

=
j!

2πı

∮ f (z)−k

z(z− 1)(z− 2) · · · (z− j)
dz.

We provide a brief overview of examples of several finite sum expansions which are
also easily proved along the lines given in the reference, and then quickly move on to
the particular cases of the series transformations at hand in this article.

Example 3.3 (Identities for the More General Coefficient Cases). If we let the r-order f -
harmonic numbers, F(r)

n ( f ) := ∑n
k=1 f (k)−r, be defined for a non-zero-valued function, f (n),

we may expand the coefficients in (15) as (cf. [21]){
k
j

}
f ∗
= ∑

0≤i<j

(j + 1)(−1)j−1−i

(j− 1− i)!(i + 2)!
× F(k)

i+1( f )

= ∑
0≤i<j

(j + 1)(−1)j−1−i

(j− 1− i)!(i + 2)!

(
F(k)

i+2( f )− 1
f (i + 2)k

)

= ∑
0≤i<j

(−1)j−1−iF(k−r)
i+1 ( f )

(j− 1− i)!(i + 2)!

(
(i + 2)

f (i + 1)r +
(j− 1− i)
f (i + 2)r

)
{

k
j

}
f ∗
=

k

∑
m=0

k

∑
i=1

j

∑
r=1

[
k
i

]{
i− 1

m

}(
j
r

)
(−1)j−r+mm!( f (r)− 1)m

j!(k− 1)! f (r)m+1 ,

for any integers j, k ≥ 1 and real-valued r ∈ (0, k). When r /∈ Z, the previous formulas can
be used to generalize the explicit harmonic-number-based expansions given in Section 3.2 to
non-integral weights of the zeta series parameters.

Notice that we can also similarly define the symbolic generalized Stirling numbers
of the first kind by [

n
k

]
f

:= [xk]∏
j
(x + f (j)) ,

and then proceed to derive a whole new related set of even more general symbolic
combinatorial identities and properties for these coefficients involving the f -harmonic-
numbers, F(r)

n ( f ).

4. Examples of new series expansions for modified zeta function series

4.1. A special class of alternating Euler sums. A first pair of alternating Euler sums
related to the Dirichlet beta function constants are expanded in the following forms [7,

Online Journal of Analytic Combinatorics, Issue 13 (2018), #03
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§8] 4:

∑
n≥0

(−1)n

(2n + 1)
Hn = ∑

n≥0

(−1)n

(2n + 1)2 −
π

2
Log(2)

= ∑
j≥0

(
j + 1

2
1
2

)−1 (Hj − Log(2)
)

2j+1

∑
n≥0

(−1)n

(2n + 1)3 Hn = 3 ∑
n≥0

(−1)n

(2n + 1)4 −
7π

16
ζ(3)− π3

16
Log(2)

= ∑
j≥0

(
j + 1

2
1
2

)−1 (Hj − Log(2)
)

2j+1 ×

×
(

1 + H(1)
j (2, 1) +

1
2

(
H(1)

j (2, 1)2 + H(2)
j (2, 1)

))
.

The second and fourth series on the right–hand–side of the previous equations follow
from an identity for the jth derivatives of the first–order harmonic number generating
function given by

D(j)
z

[
−Log(1− z)

(1− z)

]
=

(
Hj − Log(1− z)

)
j!

(1− z)j+1 ,

for all integers j ≥ 0. Since this identity is straightforward to prove by induction, we
move quickly along to the next example.

We also observe the key difference between the generalized zeta series transform
coefficients introduced in [20] and those defined by (10) and (13) of this article. In par-
ticular, the definitions of the generalized coefficients given in this article imply func-
tional equations for a number of special series. For example, the second series in the
equations immediately above is given in terms of the first sum in the following form:

∑
n≥0

(−1)n

(2n + 1)3 Hn = ∑
n≥0

(−1)n

(2n + 1)2 Hn

+ ∑
j≥0

(
j + 1

2
1
2

)−1
(Hj − Log(2))

2j+2

(
H(1)

j (2, 1)2 + H(2)
j (2, 1)

)
.

We have similar relations for series defining rational multiples of the polygamma func-
tions, ψs−1(z/2) − ψs−1((z + 1)/2), for example, as in the next pair of related sums

4 These special cases of the generalized harmonic number sequences are expanded in terms of the
ordinary r-order harmonic numbers, H(r)

n , considered in the expansions of [20] as

H(r)
n (2, 1) = H(r)

2n+2 − 2−r · H(r)
n+1 − 1.
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given by

∑
k≥0

(−1)k

(k + z)2 = ∑
j≥0

(
j + z

z

)−1 [ 1
z2 +

1
z

H(1)
j (1, z)

]
1

2j+1

∑
k≥0

(−1)k

(k + z)3 =
1
z

(
∑
k≥0

(−1)k

(k + z)2

)
+ ∑

j≥0

(
j + z

z

)−1 [1
z

(
H(1)

j (1, z)2 + H(2)
j (1, z)

)] 1
2j+2 ,

which then implies functional equations between the polygamma functions including
the following identity:

− z
4

(
ψ(2)

( z
2

)
− ψ(2)

(
z + 1

2

))
=

ψ′
( z

2

)
− ψ′

(
z + 1

2

)
+ 4×∑

j≥0

(
j + z

z

)−1 [
H(1)

j (1, z)2 + H(2)
j (1, z)

] 1
2j+2 .

4.2. An exotic Euler sum with powers of cubic denominators. Flajolet mentions a
more “exotic” family of Euler sums in his article defined for positive integers q by [7]

A∗q = ∑
n≥1

(−1)nH2
n

[(2n− 1)(2n)(2n + 1)]q
.

It is not difficult to prove that we have the following two ordinary generating functions
for the squares of the first–order harmonic numbers:

∑
n≥0

H2
nzn =

1
(1− z)

(
Log(1− z)2 + Li2(z)

)
(16)

= − 1
(1− z)

(
2 Li2

(
− z

1− z

)
+ Li2(z)

)
.

A proof of these two series identities follows from the expansions of the polylogarithm
function, Li2(z)/(1− z), generating the second–order harmonic numbers, H(2)

n , in [20,
§4]. In particular, we expand the polylogarithm series as

Li2(z)
(1− z)

= −∑
j≥0

(
H2

j + H(2)
j

)
2(1− z)2

(
− z

1− z

)j
,

and then perform the change of variable z 7→ −z/(1− z) to obtain these results.
Since the derivatives of the polylogarithm functions in each of the equations in (16)

are tedious and messy to expand, we do not give any explicit series for these Euler
sums, A∗q . However, we do note that a sufficiently motivated reader may expand these
sums by the generalized coefficients we defined in (8) by taking partial fractions of the
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denominators of Aq. For example, when q = 1, 2 we have the series

A∗1 = ∑
n≥1

(−1)nH2
n

2

(
1

(2n + 1)
− 1

n
+

1
(2n− 1)

)
A∗2 = ∑

n≥1

(−1)nH2
n

4

(
3

(2n + 1)
− 3

(2n− 1)
+

1
(2n + 1)2 +

1
n2 +

1
(2n− 1)2

)
.

To expand the more involved cases of the polylogarithm function derivatives, we first
note that for integers s ≥ 2 and |z| ≤ 1 we have [10, §2.7]

Dz [Lis(z)] =
1
z

Lis−1(z),

where for r ∈ Z+ we have the identity that [11, §7.4]

Li−r(z) = ∑
0≤j≤r

{
r
j

}
zj j!

(1− z)j+1 =
1

(1− z)r+1 × ∑
0≤i≤r

〈
r
i

〉
zi+1,

and where the composite derivatives in the second equation of (16) are expanded by Faá
de Bruno’s formula [17, §1.4(iii)]. The two triangles of coefficients in the previous expan-

sions are the Stirling numbers of the second kind, {n
k} = S(n, k) = n! · [zn]

{
(ez−1)k

k!

}
, and

the first-order Eulerian numbers, 〈nk〉 = n! · [znwk]
{

1−w
e(w−1)z−w

}
, respectively, for integers

n ≥ 0 and 0 ≤ k ≤ n [11, §6.1–6.2; §7.4].

4.3. Zeta function series with powers of quadratic denominators. We next provide
examples of generalized zeta function series over denominator powers of quadratic
polynomials. The method employed to expand these particular series is to factor
and then take partial fractions to apply the generalized transformation cases we study
within this article. For example, we observe that

1
n2 + 1

=
ı
2

(
1

n + ı
− 1

n− ı

)
1

(n2 + 1)2 = −1
4

(
ı

(n− ı)
− ı

(n + ı)
+

1
(n + ı)2 +

1
(n− ı)2

)
,

which immediately leads to the first two of the next series examples.

∑
n≥0

(−1)n

(n2 + 1)
=

1
2
(1 + π csch(π))

= ∑
j≥0

1
2j+2

((
j + ı

ı

)−1

+

(
j− ı
−ı

)−1
)

∑
n≥0

(−1)n

(n2 + 1)2 =
1
4
(2 + π(1 + π coth(π)) csch(π))
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= ∑
j≥0

1
2j+3

((
j + ı

ı

)−1 (
2 + ıH(1)

j (1, ı)
)
−
(

j− ı
−ı

)−1 (
−2 + ıH(1)

j (1,−ı)
))

∑
n≥0

(−1)n

(n2 + 1)3 =
1

32

(
16 + 6π(1 + π coth(π)) csch(π) + π3(3 + cosh(2π)) csch(π)3

)
= ∑

j≥0

1
2j+5

(
j + ı

ı

)−1 (
8 + 5ıH(1)

j (1, ı)− H(1)
j (1, ı)2 − H(2)

j (1, ı)
)

+ ∑
j≥0

1
2j+4

(
j− ı
−ı

)−1 (
8− 5ıH(1)

j (1,−ı)− H(1)
j (1,−ı)2 − H(2)

j (1,−ı)
)

Another quadruple of trigonometric function series providing additional examples of
expanding sums with quadratic denominators by partial fractions is given as follows
[10, §1.2]:

π

sin(πx)
=

1
x
+ ∑

n≥0

2(−1)n+1

x2 − (n + 1)2

=
1
x
+ ∑

j≥0

[(
j + 1− x

1− x

)−1 1
1− x

−
(

j + 1 + x
1 + x

)−1 1
1 + x

]
1

2j+1

=
1
x
+

π2

6
x +

7π4

360
x3 +

31π6

15120
x5 +

127π8

604800
x7 + O(x9)

1 + x csc(x)
x

= ∑
n≥0

2x(−1)n

x2 − π2n2

= ∑
j≥0

[(
j + x

π
x
π

)−1 1
x
+

(
j− x

π

− x
π

)−1 1
x

]
1

2j+1

=
2
x
+

x
6
+

7
360

x3 +
31

15120
x5 +

127
604800

x7 + O(x9)

π sec(πx) =
∞

∑
n=−∞

(−1)n

n + x + 1
2

=
1(

x + 1
2

) −∑
j≥0

(
j + x + 3

2

x + 3
2

)−1
1

2j+1
(
x + 3

2

)
+ ∑

j≥0

(
j + 1

2 − x
1
2 − x

)−1
1

2j+1
(

1
2 − x

)
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= π +
π3

2
x2 +

5π5

24
x4 +

61π7

720
x6 +

277π9

8064
x8 + O(x10)

2 + x(1 + x cot(x)) csc(x)
4x4 = ∑

n≥0

(−1)n

(x2 − π2n2)2

= ∑
b=±1

∑
n≥0

(−1)n

4

(
b

x3(πn + bx)
+

1
x2(πn + bx)2

)

= ∑
b=±1

∑
j≥0

(
j + bx

π

j

)−1(
2
x4 +

b
x3 H(1)

j (π, bx)
)

1
2j+3

=
1
x4 −

7
720
− 31x2

15120
− 127x4

403200
− 73x6

1710720
+ O(x7).

Remark (Expansions of General Zeta Series with Quadratic Denominators). For general
quadratic zeta series of the form

∑
n≥0

(−1)nzn

(an2 + bn + c)s ,(17)

for integers s ≥ 1 and constants a, b, c ∈ R, we can apply the same procedure of factoring the
denominators into linear factors of z and taking partial fractions to write the first sums as a
finite sum over functions of the form Φ(z, s, α, β) for variable parameters, α, β ∈ C. We also
note that a less standard definition of the Lerch transcendent function, Φ(z, s, a), is given by

Φ∗(z, s, a) = ∑
n≥0

zn

{(z + a)2}s/2 = ∑
n≥0

zn

(z2 + 2az + a2)s/2 , when <(a) > 0,

which also suggests an approach to a reduction to non–integer order exponents s from the
general quadratic zeta series in the forms of (17). The key distinguishing factor in the less
standard definition of the classical special function in the last equation is that it allows us to
write Φ∗(z, 2s, a) in the form of a quadratic zeta series with exponent s as in the more general
expansions defined in (17) above. Additionally, when <(a) ≤ 0 and a 6= 0 avoids the negative
integers, the right-hand-side series in the previous equation actually defines a distinct variant
of the classical series in the form of the first equation in (17).

4.4. Special series identities for the Riemann zeta function.

4.4.1. Series generating the Riemann zeta function at the even integers. We first consider the
following series identity for the zeta function constant, ζ(3), given by [4, §7.10.2]

ζ(3) =
2π2

9

(
Log(2) + 2× ∑

k≥0

ζ(2k)
22k(2k + 3)

)
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We know the next ordinary generating function as [17, §25.8]

∑
k≥0

ζ(2k)zk = −π
√

z
2

cot(π
√

z),

where D(n)
z [ f (z) · g(z)] = ∑k (

n
k) f (k)(z)g(n−k)(z), Dz [cot(z)] = −1− cot2(z), and where

we can expand the nth derivatives of the cotangent function according to the known
formula on the Wolfram Functions website as

D(n)
z [cot(z)] = cot(z) · [n = 0]δ − csc2(z) · [n = 1]δ

− n× ∑
0≤j<k<n

(
2k
j

)(
n− 1

k

)
(−1)k2n−2k(k− j)n−1

(k + 1) · sin2k+2(z)
sin
(nπ

2
+ 2(k− j)z

)
,

or equivalently through the series for the polygamma function, ψn(z) = ∑n≥0(n+ z)−(n+1),
as5

D(n)
z [cot(πz)] =

1
π
((−1)nψ(1− z)− ψ(z)) .

Then we may expand variants of the first sum for ζ(3) related to the zeta function
constants, ζ(2k + 1), for integers k ≥ 1. In particular, we expand the first sum as
follows:

ζ(3) =
2π2

9

Log(2) + 2×∑
j≥0

(
j + 3

2
3
2

)−1
(
−1

4

)j

3j!
D(j)

z

[
−π
√

z
2

cot
(
π
√

z
)]∣∣∣∣∣

z= 1
4

 .

5 We remark that in general we have the following derivative formulas for all j ≥ 0 where the
coefficients ci,j ∈ Z+ for all 0 ≤ i ≤ j:

D(j)
z [z · F(z)] = j · F(j−1)(z) + z · F(j)(z)

D(j)
z
[√

z · F(
√

z)
]
=

1
2j · (
√

z)2j−1

j

∑
i=0

(−1)j−1−icj,i(
√

z)iF(i)(
√

z).

In this case, the expansions of the polygamma function in terms of our new series identities from Section
4.1 provide the relevant derivatives of F(z) = cot(πz) in the series involved in the formulas given below.
Additionally, we can apply the first of the previous two formulas in tandem with the next two identities
from [6, §4] to expand our formulas exactly by the Hurwitz zeta function when n ≥ 1 (cf. Section 4.5.3):

π

(2n)!
D(2n)

x [cot(πx)] = ζ(2n + 1, x)− ζ(2n + 1, 1− x)

− π

(2n− 1)!
D(2n−1)

x [cot(πx)] = ζ(2n, x) + ζ(2n, 1− x).
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Related expansions of other series for the zeta function constants over the odd positive
integers s ≥ 3 include the next identity for integers n ≥ 1 [4, §7.10.2].

ζ(2n + 1) =
2(−1)n(2π)2n

(2n− 1)22n + 1

(
∑

1≤k<n

(−1)k−1k
(2n− 2k + 1)!

ζ(2k + 1)
π2k + ∑

k≥0

(2k)!
(2n + 2k + 1)!

ζ(2k)
22k

)

We then arrive at a BBP–type series for the constant, ζ(5), in the following form when
(a1, a2, a3, a4, a5) =

(
1
24 ,−1

6 , 1
4 ,−1

6 , 1
24

)
:

ζ(5) =
16π2

147
ζ(3) +

32π4

49
×∑

j≥0
∑

1≤i≤5

(
j + i

2
i
2

)−1
ai

i

(
−1

4

)j

j!
D(j)

z

[
−π
√

z
2

cot
(
π
√

z
)]∣∣∣∣∣

z= 1
4

Suppose that the ordinary generating function for the sequence, 〈c∗k〉, is denoted by
C(z). Then provided that the function C(z) has jth derivatives with respect to z for
1 ≤ j ≤ 5, we can transform this generating function into a generating function enu-
merating the next sequence enumerated in the form of

∑
k≥0

(
32k5 + 240k4 + 680k3 + 900k2 + 548k + 120

)
c∗k zk =

120C(z) + 2400zC′(z) + 5100z2C′′(z) + 2920z3C(3)(z) + 560z4C(4)(z) + 32z5C(5)(z),

which implies that

C̃2k(z) := ∑
k≥0

(2k + 1)(2k + 2)(2k + 3)(2k + 4)(2k + 5)ζ(2k)zk

=8π6z3 csc6(π
√

z)+4π4z2(11π2z cot2(π
√

z)−60π
√

z cot(π
√

z)+75) csc4(π
√

z)

+4π2z(−30π3z3/2 cot3(π
√

z)+2π4z2 cot4(π
√

z)+150π2z cot2(π
√

z)−300π
√

z cot(π
√

z)+225) csc2(π
√

z)

−360π
√

z cot(π
√

z).

From the generating function expansion in the previous equation, we have another “co-
erced” variant of a degree–2 BBP–type formula of the following form when the corre-
sponding coefficient sets are defined to be (b1, b2, b3, b4, b5) =

1
3456 (−25,−160, 0, 160, 25)

and (c1, c2, c3, c4, c5) =
1

3456 (6, 96, 216, 96, 6):

ζ(5) =
16π2

147
ζ(3)

+
32π4

49
×∑

j≥0
∑

1≤i≤5

(j + i
2

i
2

)−1 (
bi

i
+

ci

i2 +
ci

i
H(1)

j (2, i)
)

(
−1

4

)j

j!
D(j)

z

[
C̃2k(z)

]∣∣∣∣∣
z= 1

4

.
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4.4.2. Zeta function constants defined by the alternating Hurwitz zeta function. We conclude
the applications in this section with several series for the alternating Hurwitz zeta func-
tion, ζ∗(s, α, β) + β−s = Φ(−1, s, α, β). In particular, we see that [17, §25.11(x)]

∑
n≥0

(−1)n
[

1
(3n + 1)s −

1
(3n + 2)s

]
= 6−s

[
ζ

(
s,

1
6

)
− ζ

(
s,

2
3

)
+ ζ

(
s,

5
6

)
− ζ

(
s,

1
3

)]
= 6−s (2s − 2) (3s − 1) · ζ(s).

Examples of the last series identity for the Riemann zeta function, ζ(s), when s = 2, 3, 4
are given in the following equations in terms of the special cases of the transformation
coefficients expanded in Table 3 and Table 4:

2π2

27
= ∑

i=1,2
∑
j≥0

(
j + i

3
i
3

)−1 [
1
i2 +

1
i

H(1)
j (3, i)

]
(−1)i+1

2j+1

13
18

ζ(3) = ∑
i=1,2

∑
j≥0

(
j + i

3
i
3

)−1 [
1
i3 +

1
i2 H(1)

j (3, i) +
1
2i

(
H(1)

j (3, i)2 + H(2)
j (3, i)

)] (−1)i+1

2j+1

7π4

729
= ∑

i=1,2
∑
j≥0

(
j + i

3
i
3

)−1[
1
i4 +

1
i3 H(1)

j (3, i) +
1

2i2

(
H(1)

j (3, i)2 + H(2)
j (3, i)

)

+
1
6i

(
H(1)

j (3, i)3 + 2H(1)
j (3, i) H(2)

j (3, i) + 3H(3)
j (3, i)

)] (−1)i+1

2j+1 .

4.5. More examples of the series transformations and applications to other special
functions.

4.5.1. Examples of geometric-series-based generating function variants. Another example of
a geometric-series-based zeta series variant is given by

tan−1(x) = ∑
n≥0

(−1)n

5n
F2n+1t2n+1

(2n + 1)

=

√
5

2ı
× ∑

b=±1
∑
j≥0

(
j + 1

2
j

)−1
b√
5


(

bıϕt/
√

5
)j

(
1− bıϕt√

5

)j+1 −

(
bıΦt/

√
5
)j

(
1 + bıΦt√

5

)j+1

 ,

for t ≡ 2x/
(

1 +
√

1 + 4
5 x2
)

, where F2n+1 denotes the (2n + 1)th Fibonacci number

whose generating function is expanded in partial fractions as follows for ϕ, Φ :=
1
2

(
1±
√

5
)

and the real-valued constants c1 := 1/
√

5 and c2 := −1/
√

5:

∑
n≥0

F2n+1z2n+1 =
1
2
·
(

c1

1− ϕz
− c1

1 + ϕz
− c2

1 + Φz
+

c2

1−Φz

)
.
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We can also form yet other variants of the geometric-series-based transformations by
considering Fourier series for special polynomials, such as the periodic Bernoulli poly-
nomials, B̃n(x) ≡ Bn(x− {x}), and the Euler polynomials, En(x) = n! · [tn]2etx/(et + 1),
given in the forms of the following particular series expansions for n ≥ 1 [17, §24.8(i)]:

E2n−1(x)
(2n− 1)!

=
4(−1)n

π2n × ∑
k≥0

cos ((2k + 1)πx)
(2k + 1)2n

E2n(x)
(2n)!

=
4(−1)n

π2n+1 × ∑
k≥0

sin ((2k + 1)πx)
(2k + 1)2n+1 .

Section 4.5.3 provides additional identities for these trigonometric series expanded by
the alternating Hurwitz zeta function, ζ∗(s, a), and its new series expansions given in
Section 4.4.2 from above.

4.5.2. Series involving reciprocals of binomial coefficients. We can extend the method em-
ployed in constructing the results in Section 4.4 to further zeta series enumerating
reciprocals of the central binomial coefficients, (2n

n ), by first noticing that we have the
following generating function:

∑
n≥0

z2n

(2n
n )

= 4
(

1
4− z2 +

z
(4− z2)3/2 sin−1

( z
2

))
, |z| < 2.

Though a formula for the jth derivatives of the right-hand-side function in the last
equation is not clear, we may proceed to formulate the corresponding modified zeta se-
ries transformations involving the power series expansions of this ordinary generating
function. Examples of applications of expanding series of this type through the new
generating function transformations include the following three series [17, §25.6(iii)]:

ζ(3) =
5
2
× ∑

k≥1

(−1)k−1

k3(2k
k )

ζ(2)− csch−1(2) sinh−1(2) = ∑
n≥0

(−1)n

(2n + 1)2

(
2n
n

)−1

(
sin−1(x)

)2
=

1
2
× ∑

n≥0

(2x)2n

n2(2n
n )

.

4.5.3. Some new identities for the alternating Hurwitz zeta function. We are restricted in
our new geometric-series-based transformation results by the fact that we cannot set
(1− z)−1 nor its jth derivatives to have an input of z = 1. This is still not particularly
restrictive in identifying new series expansions for the Hurwitz zeta function, ζ(s, z) =
Φ(1, s, z), which in fact converges whenever <(s) > 1 and a /∈ Z− ∪ {0}. In particular,
in analgous form to the alternating zeta function defined in [20], we define the so-termed
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alternating Hurwitz zeta function by the series

ζ∗(s, a) := ∑
n≥0

(−1)n

(n + a)s , <(s) ≥ 1, a 6= 0,−1,−2, · · · .

We prove the next lemma expanding the classical ζ(s, a) in terms of its alternating series
forms.

Lemma 4.1. For any s ∈ C with <(s) > 1 and any real a /∈ Z, we have the following formula:

ζ(s, a) =
(−1)s

21−s − 1
· ζ∗(s,−a/2)− ζ∗(s, a).

Proof. First, notice that by direct expansion of the series for ζ∗(s, a) we have that

ζ∗(s, a) = ∑
n≥0

1
(2n + a)s − ∑

n≥0

1
(2n + 1 + a)s

= 2−s
[

ζ
(

s,
a
2

)
− ζ

(
s,

a + 1
2

)]
.

Then by applying the multiplication formula for the Hurwitz zeta function we obtain
that

ζ∗(s, a) = 21−sζ
(

s,
a
2

)
− ζ(s, a).(i)

Next, we need to express the half-argument term in the previous expansion in terms of
the alternating Hurwitz zeta function. We do this by expanding

21−s · ζ
(

s,
a
2

)
= ∑

n≥0

[
1

(n + a/2)s +
(−1)s+n

(n− a/2)s

]
= ζ(s, a/2) + (−1)sζ∗(s,−a/2),

which then implies that

ζ
(

s,
a
2

)
=

(−1)s

(21−s − 1)
ζ∗(s,−a/2).

Finally, we combine the previous equation with (i) above to arrive at our claimed for-
mula. �

Remark (Corollaries). One immediate relevant corollary is that the Dirichlet L-functions,
L(s, χ), for χ any character modulo k ≥ 2 are expanded as

L(s, χ) =
1
ks

k

∑
n=1

χ(n)ζ
(

s,
n
k

)
=

1
ks

k

∑
n=1

χ(n)
[

(−1)s

21−s − 1
ζ∗
(

s,− n
2k

)
− ζ∗

(
s,

n
k

)]
.

This corollary then provides new series expansions of these L-function cases through our new
identities for the Lerch functions Φ(−1, s, a) and Φ∗(−1, s, a) which we have already obtained
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in more generality in the previous subsections of this article. We also have corresponding new
expansions of the trigonometric series defined by the next equations for ν ∈ R>1 and any fixed
α ∈ C [5, 6].

Cν(α) := ∑
k≥0

cos [(2n + 1)α]
(2n + 1)ν

= < [χν(eıα)]

Sν(α) := ∑
k≥0

sin [(2n + 1)α]
(2n + 1)ν

= = [χν(eıα)]

In particular, for integers p, q ≥ 1 such that gcd(p, q) = 1 the following formulas are proved
in the references:

Cν

(
πp
q

)
=

1
(2q)ν

q

∑
s=1

ζ

(
ν,

2s− 1
2q

)
cos

[
(2s− 1)πp

q

]
Sν

(
πp
q

)
=

1
(2q)ν

q

∑
s=1

ζ

(
ν,

2s− 1
2q

)
sin
[
(2s− 1)πp

q

]
.

4.5.4. Miscellaneous other examples and applications. One last class of applications of the
modified zeta series transformations that is important to mention comprises geometric
and exponential-series-based generating functions for which the parameters (α, β) in
the coefficients from (8) correspond to the expansion variable in a power series for a
special function. We again demonstrate by example [17, cf. §5.9(i)]:

Γ(z) = ∑
n≥0

(−1)n

(n + z) · n!
+
∫ ∞

1
tz−1e−tdt

= ∑
j≥0

e−1

z

(
j + z

z

)−1

+
∫ ∞

1
tz−1e−tdt

∑
k≥1

z
(kz + 1)2 = ∑

k≥0
Bkzk =

∫ ∞

0

tze−t

etz − 1
dt

= ∑
k≥1

(−1)kz
(kz + 1)2 + 2× ∑

k≥0

z
((2k + 1)z + 1)2

= ∑
k≥1

(−1)kz
(kz + 1)2 + 2× ∑

k≥0

(−1)kz
((2k + 1)z + 1)2 + 4× ∑

k≥0

z
((4k + 3)z + 1)2

= ∑
i≥0

∑
k≥0

2i(−1)kz

((2ik + 2i − 1)z + 1)2 .
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5. Conclusions and final examples

5.1. Summary. We have defined and proved special cases of a generalized generating
function transform generating modified zeta functions and special zeta series. In Sec-
tion 2 we connected the harmonic number expansions of generalized Stirling numbers
of the first kind to partial sums of the modified Hurwitz zeta function defined by (1)
and (3) of Section 1. The primary source of our new examples and applications is the
generalization, or at least significant corollary, to the generating function transforma-
tions proved in [20]. Section 1.3 of the introduction and Section 4 suggest many more
important applications of these generalized forms of the generating function transfor-
mations explored in the first article.

5.2. Relations to variations of the Stirling numbers of the second kind. The second
geometric series transformation identity stated in (8) effectively provides a combinato-
rial motivation for the known series for the Lerch transcendent function given by (See
[20])

Φ(z, s, α, β) = ∑
k≥0

(
−z

1− z

)k+1

∑
0≤m≤k

(
k
m

)
(−1)m+1

(αm + α + β)s .

The even more general forms of the transformation coefficients defined by (8) are con-
sidered to be Stirling numbers of the second kind “in reverse” in the sense that we have
another related generalized form of the generating function transformation motivating
the explorations in the first article defined by [11, cf. §7.4] (cf. [21]){

k
j

}
α,β

:= ∑
0≤m≤j

(
j

m

)
(−1)j−m(αm + β)k

j!
=⇒

∑
n≥0

(αn + β)kzn = ∑
0≤j≤k

{
k
j

}
α,β

zj · j!
(1− z)j+1 .

Moreover, we can extend this analog by observing that we also have the following
negative-order identity involving the generalized Stirling numbers of the second kind
defined by the last power series transformation identity [17, cf. §26.8(v)]:

∑
0≤j≤n

(αj + β)kzj = ∑
0≤j≤k

{
k
j

}
α,β

zj × D(j)
z

[
1− zn+1

1− z

]
.

5.3. Some limitations on the convergence of the zeta series at z = 1. Most of the
generating functions we have employed in constructing the examples and applications
within this article are based on variants of the geometric series, G(z) = 1/(1− cz), for
some non-zero constant c ∈ C such that |cz| < 1 or when cz ≡ −1. One notable and
obvious limitation of applying these geometric-series-based cases of our new trans-
formations defined in Section 3 is that we are not able to handle series of the form
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∑n zn/(αn + β)s when |z| ≡ 1, nor when |1z | < 1. This restriction prevents us from
constructing further examples of series for special zeta functions and constants such as

π2

8
= ∑

k≥0

1
(2k + 1)2 = 1 +

1
32 +

1
52 +

1
72 + · · ·

ζ(s) =
1

1− 2−s × ∑
n≥0

1
(2n + 1)s .

On the other hand, expansions for multiples of π2 and Catalan’s constant, G, for exam-
ple, such as

π2

12
= ∑

k≥0

(−1)k

(k + 1)2

= ∑
k≥0

(−1)k
[

13
(3k + 1)2 −

13
(3k + 2)2 +

4
(3k + 3)2

]
,

are readily handled by our new transformations of ordinary power series generating
functions. The treatment given in Section 4.5.3 wherby we expand the ordinary, or clas-
sical, Hurwitz zeta function by its alternating series variant which we are readily able
to handle with these new results suggests one workaround for the general geometric-
series-based zeta function and polylogarithm cases.

Notes for readers and reviewers (supplementary computational data summary). A
summary Mathematica notebook providing numerical data and supporting computa-
tions in deriving key results and new applications to specific series is prepared online
at the following Google Drive link: https://drive.google.com/file/d/0B6na6iIT7ICZMjJnOFcySmlBMGs/view?

usp=sharing. The intention of this supplementary document included with the submission
of this article is to help the reviewer process the article more quickly, and to assist the
reader with verifying and modifying the examples presented as applications of the new
results cited above.
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