SUM-FREE SETS WHICH ARE CLOSED UNDER MULTIPLICATIVE INVERSES
KATHERINE BENJAMIN

ABSTRACT. Let A be a subset of a finite field IF. When IF has prime order, we show that
there is an absolute constant ¢ > 0 such that, if A is both sum-free and equal to the set
of its multiplicative inverses, then |A| < (0.25 — ¢)|FF| + o(|FF|) as |F| — co. We contrast
this with the result that such sets exist with size at least 0.25|FF| — o(|[F|) when F has
characteristic 2.

1. INTRODUCTION
Let A be a subset of a finite field IF. We say A is sum-free if AN (A + A) = &, where
A+A={a+b:abe A}
We say A is closed under (multiplicative) inverses if 0 ¢ A and A = A1, where
Al ={a1t:ac A}

In this paper, we study sets which are both sum-free and closed under inverses.

When F has prime order, a simple application of the Cauchy-Davenport inequality
(see e.g. [7, Theorem 5.4]) shows that |A| < (|F| +1)/3 when A is sum-free. Lev
showed in [6] that when | A| is close to |F|/3, A is similar in structure to an arithmetic
progression, and therefore unlikely to be closed under inverses. So, we might expect
|A| to be smaller than |F|/3 if A is also closed under inverses.

In this direction, Bienvenu et al. showed in [1, Corollary 5.1] that |A| < 0.3051|F| +
o(|FF|) as |F| — co. We offer the following improvement on this:

Theorem 1.1. There is an absolute constant ¢ > 0 so that if IF is a field of prime order and
A C F* is sum-free and closed under inverses then |A| < (0.25 — ¢)|FF| + o(|F|) as |F| — oo.

A careful inspection of the argument yields ¢ = 2.5 x 1078, This is in contrast to
fields of characteristic 2, where we show:

Proposition 1.2. If [F is a field of characteristic 2 then there exists A C IF* which is both
sum-free and closed under inverses, such that |A| = 0.25|FF| 4 o(|F|) as |F| — oo.

Write u(IF) for the density |A|/|F| of the largest A C F that is both sum-free and
closed under inverses. Theorem 1.1 says that u(IF,) < 0.25 — ¢ 4 0(1), whereas Propo-
sition 1.2 says that p(IF2x) > 0.25 — 0(1). So we can deduce that:
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Corollary 1.3. The limit lim |, o, p(IF) does not exist.

The rest of the paper is structured as follows. In Section 2 we recall some basic
definitions of Fourier analysis, and establish some notation. In Section 3 we consider
tields of prime order. We establish some Fourier analytic results and use them to prove
Theorem 1.1. Then, in Section 4 we consider fields of even characteristic, and prove
Proposition 1.2. In Section 5 we make some final remarks.

2. NOTATION AND DEFINITIONS FROM FOURIER ANALYSIS

Let IF be a finite field. We recall some basic definitions from Fourier analysis (see e.g.
[7, Section 4] or [9, Section 1.1]).
If X C FF is non-empty and f: X — C is any function, we define the mean

xeX xeX

We will also write
E[f) = E[f(x)] = E [f(x)
when it is unambiguous to do so. We denote by 1x the indicator function

1y (x) = 1 ifxeX,
X " 10 otherwise.

We can view the set of functions F — C as a Hilbert space by equipping it with the
inner product

(f,8) = E[fg].
Write e(0) = exp(if) for the exponential map R — C. If F has prime order p then

for each r € F we can define the character e,: F — C by e,(x) = e(2rrx/p).! The
characters enjoy the following orthogonality property:

1 ifr=s
<er/es> = {

0 otherwise.
This motivates the definition of the Fourier coefficient of f at r as

flr) = {f,er).

Parseval’s identity is then

E[f = Y |F(n)[

relF

IWe follow the notation of [7]. It is also common to write ep(x) =e(2mx/p).
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3. FIELDS OF PRIME ORDER

The goal of this section is to prove Theorem 1.1. Let IF = F,, be a field of prime order
p > 2. Let A be a subset of [F*, not necessarily sum-free or closed under inverses, with
density & = |A|/p. We fix some 0 < ap < 0.25 and assume & > g, since otherwise
Theorem 1.1 is immediate.

Order the elements rq, .. T (p=1)/2 of the interval {1,...,(p —1)/2} C F so that

612>+ 2 6(y_1)/2, where |1/Z(ri)} = d;n. Note that

F* = {7’1, .. '/r(p—l)/Z} U {_71/- <. _7(p—1)/2}

and that 1,(—r;) = 14(r;) for each i. We will also write 6; € [0,27) for the argument
of 14(r1), so that 14(r1) = (1a)e(01) and 14(r1) + 14(—r1) = 251& cos 6.

3.1. Properties of sum-free sets. We begin by recalling a standard identity, which can
be derived by considering the convolution 14 * 14 (see e.g. [7, p. 153]).

Proposition 3.1. If A is sum-free then
— 2/\
0+ Y |14(r)[1a(r) = 0.
r#0

In fact, this sum is dominated by its largest terms.

Lemma 3.2. Let k be a positive integer. For any p such that k < (p —1)/2, if A C [, then
Yy 5 =0
i>k

as k — oo, uniformly in A provided o > wy.

Proof. From Parseval’s identity we know
o +20% )07 = a,
i>1
whence, looking at the first k terms of the sum,
11—«
P 7
k= "2ka
S0 3/2 3/2
Ca<ard<k (5t <k (fpR) —o

i>k i>k a

Corollary 3.3. If A is sum-free then
k k 1

57 > 83|cosbh] + Y 67 > = — 0peo(1),
j= i=2

i=1
where the error is uniform in A provided o > .
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Proof. The first inequality is immediate. For the second, we begin with Proposition 3.1
and make two applications of the triangle inequality.

0 = | L |Ta () Ta(r)
r#0

(p—1)/2 - -
< 5%0&2|2(510€C0891| + Z 51-2¢x2 (|1A(ri)| —+ ‘1A(—1’1‘)|>
i=2
(p-1)/2
=20{a|cosbr| + Y 2077
i=2
Now divide through by 2a® and apply Lemma 3.2. O

Another corollary of Proposition 3.1 gives bounds on « in terms of the sizes of the
largest two Fourier coefficients. The first, which considers only ¢;, is standard (c.f. [6,
p- 226]). The second is stronger when J; is small compared to 4.

Corollary 3.4. If A is sum-free then

01
<
“= 1+ 67
Moreover, if 1 4 6, + 25%52 — 2(5% > 0 then
02

a < .
T 146y + 2626, — 263

Proof. We prove the second bound. The first is proved similarly. We begin with Propo-
sition 3.1:

= | LT Ta0)|
0

<2830+ | ¥ |Ta()Ta)|
r;éO,irl
<283’ + 6 Y [Ta(n)]
r#0,£11
= 2830 + Sou (zx —a® - 25%a2> .
To get the final step here we use Parseval’s identity. Now rearrange to find

a (148 +200, - 261) < &,
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and apply the hypothesis. U

3.2. Properties of sets which are closed under inverses. To exploit the fact that A =
A~! we will make use of the following result from [2, Proposition 1], which can be
thought of as a version of Bessel’s inequality for vectors which are ‘almost orthogonal’.

Lemma 3.5. Let H be a Hilbert space with inner product (). Then forany f,g1,...,8m € H
we have the inequality

2 M fgz>‘2
A2 2 e gl

We also recall Weil’s estimate for Kloosterman sums [8, p. 207].

Lemma 3.6 (Weil's estimate). If p is prime and a, b are integers with ab # 0 then

‘Zea ‘<2\/—

erF*
We arrive at a useful bound on the size of a set which is closed under inverses.

Proposition 3.7. Suppose A = A~! and let m > 0. Suppose s1,...,sy are pairwise distinct
elements of Fy, with |14(s;)| = A Then

a < 1 +

T2y A2

Moreover, if k > 0 then we have the bound

< ;k +

14+4Y; ,6?
Proof. Define sy := 0, and so A9 = 1. For each i define ¢; := e, and, if i > 0, ¢;(x) :=

@;(x~1), with the convention that 0~! = 0. We aim to apply Lemma 3.5 to 14 and these
‘almost orthogonal” functions. For i > 0 and j > 0 we have

(9 9;)] __’Zesl ‘:_‘Zes x)e_s, _1)’<M

xe]Fp xele p

O (m/\/p).

O (k/\/P).

by Weil’s bound. Also, using the fact that the characters are orthonormal, we have

o - i
Wi d) = E [@i(x gD = E |9i0)g;(0)| = (91, 97) = {0 e
Finally,
1Ar¢z :_‘Zq)za 1 ‘:_’24)1 ‘ 1A/§01 |—}1A | Ajw.

aGA aeA
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So, applying Lemma 3.5, we find

m A2q? m A2a?
.y l
Sl+m(1+2yp)/p S1+(m+1)(1+2(p) /p

=T ) A+2yp) /p

from which the result follows.
For the moreover part, take m = 2k and s; = r; = —s,,,11_; foreach 1 <i <k. ]

3.3. Constructing large coefficients. If |1/Z(r)| = Jua then an observation of Yudin
recorded in [5, p. 258] yields the following bound on |1 (2r)|:

(1) Tar)] = (262 -1)w

We strengthen this in two ways. First we show that, given conditions on ¢ and the
argument 0 of 1,(r), the coefficient 1, (2r) lies in the right-half plane of C. Second, we
show that given some lower bound on «, we can obtain a slightly stronger lower bound
on |T4(2r)|. We shall prove (1) along the way.

Lemma 3.8. Suppose r # 0 and 1,(r) = (6a)e(). Then
2ReT4(2r) = 14(2r) +14(—2r) > 2 (252 cos20 — 1) .
Moreover, if & > ag > 0 then
Tar)] = (26 —1+e—0(1))a
as p — oo, where the error is uniform in A and € > 0, which depends only on wy, is given by

29

£ = ———up”.
34 x 5°

Proof. For any w € S!, it can be seen that
2) E [1A(x) (@e (x) + we_,(x) )2] = 20+ WP A (2r) + @214 (—2r).
By applying Cauchy-Schwarz we can compute
E [14(x)] E [14(x) (@e;(x) + we_r(x))*| = E[14(x) (@e,(x) + we_(x))]

(wﬁ(r) + wﬁ(-ﬂ)z :

Setting w = 1 and substituting in (2) then gives

—_— — — — 2
& <20c—|—1A(2r) —|—1A(—2r)) > <1A(r) —I—lA(—r)) — 4522 cos? 6,

from which the first inequality follows.
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If instead we take w = e(—0) then we find

« (204 + w1 4(2r) +wzﬁ(—2r)> > <‘1/Z(r)\ + \ﬁ(r)\)z = (260)*

which rearranges with the triangle inequality to give (1).
The Cauchy-Schwarz inequality E[XY]? < E[X?]E[Y?] is only close to equality when
the random variables X and Y are close to proportional. However, 14(x) and

1a(x) - (wWer(x) + we_r(x)) = 1a(x) - 2cos(27trx/p + 0)

are not approximately proportional, since A is not thin.
Concretely, set w = e(—0) again. Using the fact that E[X?] = E[(X — E[X])?] + E[X]?
for a random variable X, we can compute

xg:Fp [Lq(x)(wer(x) ™ we_,(x))z} =a E :(wer(x) + we_r(x))z]

=a [E -(wer(x) + we_p(x) — 25)2] + 46%
xcA L

= ]EA -(2 cos(2mtrx/p+0) — 2 cos 90)2] + 46%
xeA L

— 160 [sinz (#1(x)) sin? (tz(x))] + 462,

where ¢ = arccos(6) € [0,77/2], t1(x) == mrx/p+60/2+ ¢/2 and tp(x) == 7mrx/p +
0/2—¢/2.

We should be explicit about the fact that we are dealing with lifts § € Z of the
elements y = rx € F,. We can make any choice of lift we like, so let us fix the lift so
that |trx/p +0/2] < /2. It follows that

Iti(x)| < /2+ ¢/2 <3m/4

fori =1,2. Writing

Y
31’

we therefore have that?

3) |sin(t;(x))| > m|t;(x)].

2This bound can be derived by considering the concavity of sint in the region 0 <t < 37 /4.
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Now observe that, for any v, |f1(x)| <  for at most 1 + 277 p values of x. Similarly
for t,. We therefore have that t; (x)?t;(x)? < 4* for at most 2 + 477;9 values of x. Thus

B [sin?(t: () sit?(12(x))] = m* I [t (2Pt

xeA

N7t Xop
4y
4 4
=m*|1-— —o(1).
< 0607T> 7" —o(1)

Taking v = % X apg makes (1 — Di)—”;) 14 = wp* x g—:

Starting from (2) we can now compute

W1 4(2r) + @21 4(—2r) = xEF [1A(x) (wey(x) + we,r(x))z] —2u

> 16n E [sinz (t1(x)) sin? (tz(x))] +468% — 2u
X€A
> 2 (252 1+ Smtrtagt /55 — 0(1)) a,
from which the triangle inequality gives the result with

8_8;1147#10(4_ 20 vl
o5 0 Ty
0

Remarks. If a lower bound on J is assumed then e can be made slightly larger, by strengthening
the bound in (3).

We also have as a corollary that

Ta(n] < (1-0 (ag*) +0pe(1))

forany r # 0. A consequence of [5, Theorem 5], is the stronger result that
Ta(r)] < <1 -0 <tx02) + op_m(l)) o

for any r # 0. This suggests that the factor of ag* in € could be replaced with a factor of ay?
with some more work.

3.4. Proof of Theorem 1.1. The proof of Theorem 1.1 is a case analysis on the values
of 14(r;). If 61 and J;, are both small, then Corollary 3.4 is strong enough. Otherwise,
we use Proposition 3.7. The question then becomes: given that é; is large, how small

can YK | 6% be under the constraints, such as Corollary 3.3, implied by the sum-free
condition?
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We will make use of the following fact for x1,...,x, € [0,1], which is an instance of
nesting of /,-norms:

@ (L) = ()"

Proof of Theorem 1.1. We can assume that « > 0.24, since otherwise we are done. We
shall reason based on the value of §;. First, we make an observation common to several
of the cases. If we can show that there is an & > 0 so that

k
Y 07 > 0754 h — 0pye(1),
i=1
where the error is uniform in A, then applying Proposition 3.7 will yield

1
S T ax (07 +h—om()) O/ VP)
(1) < 0.25 — ¢ + 04 00(1) +O(k/ /D)

for some c; > 0 depending only on /. Now, begin by choosing k large enough that the
Ok—eo(1) in (1) is less than cj, /3. Then, choose p large enough that the O(k/,/p) in (1)
is also less than c¢j, /3. Then a < 0.25 — ¢}, /3 as required.

Case 1: 47 < 0.33. Recall the first bound from Corollary 3.4:
|
< .
“= 1+ 67

Note that as long as §; < 1/3, this is enough to bound a < 0.25. In particular, here we
have

01 <033 < 0.2482.

<
1T T 133

Case 2: 0.33 < §; < 0.45. Now the first conclusion of Corollary 3.4 is not enough, but
we can argue based on the value of ;. If J; is small, then the second conclusion of
Corollary 3.4 will suffice. Otherwise, we can force y'¥_, 67 to be large and apply (1). So,
write &, = ad; where a € (0,1].

Case 2.1: a < 0.7. Apply the second conclusion of Corollary 3.4, noting that the hy-
pothesis on 4 and &, is met, to get
adq Xy
a < < ma ,
= 1+4aéy +2a83 — 267 ~ 1+ xy + 2x3y — 2x3

where the maximum is taken over the range 0.33 < x < 0.45,0 <y <0.7.
This expression is increasing in y since x> < 1/2, so
0.7x 0.7x

< < .
b X 07 — 0.6 = 1+ 07x — 0.6 x 0453

Online Journal of Analytic Combinatorics, Issue 16 (2021), #08
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The expression on the right hand side increases with x, so plugging in x = 0.45 gives
a < 0.24994.

Case 2.2: a > 0.7. Applying Corollary 3.3 gives

i(sé’) > 1_5§ — 35 — 0peo(1) = 1 (1 +a3) 83 — 05 oo (1)
i=3 P2 2

whence, by (4),
Ltz (1) (5 (147) 8) 7 o)

1 2/3
: 2\ .2 i 31,3 _
(5) ZII;;H((Hy)x +<2 (I+y )x> ) Ok—s00(1),
where the minimum is over the range 0.33 < x < 0.45, 0.7 < y < 1. One can check that
the expression being minimised in (5) is increasing with y. Hence

2/3
(6) 6% > min (1.49x2 + (0.5 — 1.343x3> ) — 000 (1).
X

k
1=

1

This new expression increases with x (see Figure 1). So, we can compute

k 2/3
1
Y67 >1.49 x 0.33% + (E —1.343 x 0.333) > 0.7510 — 0g 00 (1).
i=1

Case 3: 0.45 < §; < 0.7455. Here 67 is quite large. Moreover, we have (5:1’3 < 1/2, which
will force J; to also be quite large and allow us to use (1). In detail, Corollary 3.3 gives

If k is large enough then the right hand side is positive. So from (4) we have

Eos o (13"
Y 07 =01+ (5 —51> — Of—00(1)
i=1
1 2/3
7) > min (x2 + (5 — x3) ) — 0k 5e0(1),

where the minimum is taken over the range 0.45 < x < 0.7455. This expression is
smallest when x = 0.7455 (see Figure 1). So we have

k 2/3
1
Y67 > 0.7455% + (5 — 0.74553) — Okseo(1) > 0.7501 — 0500 (1).
i=1
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0.79
0.78
0.77

0.76

:x 7 1 \x 0.75 i B

0.34 036 0.38 04 042 0.44 046 045 05 055 0.6 065 0.7 0.75 0.76 0.78 0.8

Ficure 1. The function of x which is minimised to produce a lower
bound on Y, 6% in different cases, along with the region on which x is
minimised in each case (dashed lines) and the constant 0.75 (red). Left:
Case 2.2 given by (6). Centre: Case 3 given by (7). Right: Cases 4.1 given
by (10) (black) and 4.2 given by (11) (blue).

Case 4: 0.7455 < 6; < 0.809016. If 6, is close to 0 or 7w then Lemma 3.8 will give us a
large coefficient in the right half-plane. Otherwise, the contribution of r; to the sum in
Corollary 3.3 is negligible. In either case, we end up being able to use ().

Assume p > 3 and let t be such that 2ry = =£7;. Note that t # 1, as otherwise either
2r1 = ry or 3r; = 0, which both imply r; = 0 since p > 3. If we write A(J,0) =
262 cos? 6 — 1 for any 6, 6, then Lemma 3.8 says that

Rela(r) > Aoy, 01)a.
We also know from (1) that 6; > 25% —1.

Case 4.1: A(d1,01) > 0.In this case, Re ﬁ(rt) > 0. From Proposition 3.1 and the
triangle inequality we have

2 P 2
51|C0891| + Z (5 1 5—tRe1A(rt) > 1+ <25% — 1) A(51,91).

i#1,t 2 2

By replacing 6; with 7t — 07 if necessary, we can assume 60; € [71/2,37/2]. Then

1 2
Y 2> (2(5%—1) A(51,61) + &8 cos 0,
2
i£1t
. (1 ’ 2 3
(8) > min E+(2(51—1) A(d1,t) + 3 cost |,

3The choice of boundary may seem odd here. The argument in this case gives « < 0.25+ 0(1) exactly

for 5 = 1/ (3+ \@) /8 ~ 0.809017, so to get below that bound with this argument we consider a region
slightly to the left of this critical point.

Online Journal of Analytic Combinatorics, Issue 16 (2021), #08
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where the minimum is taken over the range 71/2 <t < 37r/2. It can be checked that
this minimum is attained when t = 7t. So

y 5§z%+(25%—1)3—5’f.

i#1,t
Then by Lemma 3.2, since we’ve fixed a > 0.24, this becomes
1 3
) Y fzo+ (25% - 1) — 83— oo (1),
2<i<k it

We can lower bound % + (262 — 1)3 — 8% > 0.000001 here. Therefore, by taking k large
enough we can ensure that the right hand side of (9) is positive. It follows from (4) that

f;(sf > 8+ (203 - 1)2 + (% + (263 - 1)3 - 5%)2/3 — Opseo(1)
i=1

_ 2 /1 3 2/3
(10) > min (x2 + <2x2 _ 1) + (5 n (2x2 - 1) . x3) > —opeo(1),
where the minimum is taken in the range 0.7455 < x < 0.809016. Now, it can be
verified* that this attains its minimum when x = 0.809016 (see Figure 1), so we can
calculate

6% > 0.75001 — 0400 (1).

1

Case 4.2: A(d1,61) < 0. We shall apply Corollary 3.3, which says

k
=1

k
53 > 5~ 07|cos 01| — 0k eo(1).
i=2
From the assumption that A(d1,61) < 0 we know that &; |cos 8;| < v/2/2. So
1 V2
Y. 5> 5 = 50— 0rsee(1)
=72 2

Now, 1 — 5%\/5 > 1 —0.8090162 x v/2 > 0 here. So after taking k large enough the right
hand side above is positive. Then applying (4) gives

k 2/3
Z 51'2 2 5% + 1 Q(S% — Ok 00(1)
o 2 2

2/3
(1) > min (x2+ (% - ?a?) ) — 0 se(1),

4Ir1tuitively, this sum will be smallest when all of the mass is concentrated in é; and J,, i.e when

53 — (262 — 1)3 is close to 1/2, which is when ¢; is close to /(3 + /5)/8 ~ 0.809017.
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where the minimum is taken over the range 0.7455 < x < 0.809016. This minimum is
attained when x = 0.809016 (see Figure 1). So we can calculate

6% > 0.7659 — 05_y00(1).

k
i=1

Case 5: §; > 0.809016. Here, Lemma 3.8 will allow us to force 5% + 5% > 0.750001 and
use Proposition 3.7. Note that we really do need the improvement over (1), as otherwise

1/2
we get (5% + (5% > 0.75 when 61 = ((3 + \/5> / 8) . First, take p large enough that the

error in Lemma 3.8 is less than 0.000001, given «y > 0.24.
Then by Lemma 3.8 we know that §, > 2(5% — 14 & —0.000001 where

29
e=—— x0.24* > 0.0000061,

T3 x5
which implies

2 2
2402 > 62+ (25% - 0.999994) > min <x2 + <2x2 . 0.999994) ) ,

where the minimum is taken over the range 0.809016 < x < 1. This is increasing since
x > 0.809016 implies 2x> > 0.999994, so

2
67 + 63 > 0.809016> + (2 x 0.809016% — o.999994> > 0.7500001.

Now applying Proposition 3.7 with k = 2 gives

1
< 0 (1 < 0.249999975 1).
“_1+4((5%+5%)+ (1/vp) < +o(1)

4. FIELDS OF CHARACTERISTIC 2

Now suppose that [F is a field of order 4 = 2", and let A be a subset of IF*. Define
the trace Tr : F — IF, by

n—1 ;
Tr(x) == ) «*.
i=0

Note that Tr(x) + Tr(y) = Tr(x 4+ y). We shall make use of the following bound on
Kloosterman sums over fields of characteristic 2 (see [3]).

Lemma 4.1. If a € F* then

‘ Z (_1)Tr(x+ux‘1) <2./7.

x€lF*

Online Journal of Analytic Combinatorics, Issue 16 (2021), #08
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Proof of Proposition 1.2. Let y: F — C be the additive character on F given by

7(x) = (=)™,

Define X := IF \ kery and, noting that 0 ¢ X since 0 € kervy, A :== XN X~!. Then X is
sum-free, and A is both sum-free and closed under inverses.
Note 1x = 1(1 — ). So, with the convention that 0~! = 0, we have

o =E[1x(x)lx1(x)] = E [1X(x)1x(x71)}

= 2B [0 -1 -]
= 1 +4E [ )]

Since Tr(x) + Tr(x~1) = Tr(x + x~ 1), we have y(x)y(x~1) = y(x + x~!). Then
2
B [1(x)7 )] 1 = [E [rx-+ 2] < 20 = o1
by Lemma 4.1, which gives our result. U

5. FINAL REMARKS

5.1. Write o(FF) for the density |A|/|F| of the largest sum-free subset A of IF. This
quantity was studied in the more general context of finite Abelian groups by Diananda
and Yap in [4]. Recall from Section 1 that we define y(IF) to be the density of the largest
subset of IF which is both sum-free and closed under inverses.

When F has characteristic 2 it can be seen that ¢(IF) = 1/2, as the set X in the
proof of Proposition 1.2 demonstrates. Moreover, Proposition 1.2 itself shows u(IF) >
1/4—o0(1).

When F has prime order p > 2, the interval I = {x € F : p/3 < x < 2p/3}
has density 1/3 + 0(1), and this is the best possible for a sum-free set by the Cauchy-
Davenport inequality. As described in [1, p. 8], the set IN I~} is then sum-free and
closed under inverses, and has density 1/9 —o(1). So u(FF) > 1/9 —o(1).

It is reasonable to suspect that the events ‘A is sum-free’ and ‘A~! is sum-free’ are
independent. So, we conjecture that the lower bounds above are in fact tight:

Conjecture 5.1. Let F be a finite field. Then u(F) = o(IF)? + o(1) as |F| — oo.
5.2. For aset A C [F* we can use the quantity

|ANA~Y
Sl

to measure ‘how much’ A is closed under inverses. So we have studied sum-free sets
A with I(A) = 1. When F has prime order p and A is sum-free with I(A) large,
we might still expect to do better than the bound of |A| < (p +1)/3 given by the

I(A):
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Cauchy-Davenport inequality. Indeed, since AN A~! is itself sum-free and closed under
inverses we have | Y F)
ANA~ u(FF
= A = < .
N IRl V)
So when I(A) > 0.75 we can use Theorem 1.1 to deduce

o< P(‘)F;F; < (025 _0_C7)5+0(1) < (1—4c) /3+o0(1).
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