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Abstract. Let A be a subset of a finite field F. When F has prime order, we show that
there is an absolute constant c > 0 such that, if A is both sum-free and equal to the set
of its multiplicative inverses, then |A| < (0.25− c)|F|+ o(|F|) as |F| → ∞. We contrast
this with the result that such sets exist with size at least 0.25|F| − o(|F|) when F has
characteristic 2.

1. Introduction

Let A be a subset of a finite field F. We say A is sum-free if A ∩ (A + A) = ∅, where

A + A := {a + b : a, b ∈ A}.
We say A is closed under (multiplicative) inverses if 0 6∈ A and A = A−1, where

A−1 := {a−1 : a ∈ A}.
In this paper, we study sets which are both sum-free and closed under inverses.

When F has prime order, a simple application of the Cauchy-Davenport inequality
(see e.g. [7, Theorem 5.4]) shows that |A| ≤ (|F| + 1)/3 when A is sum-free. Lev
showed in [6] that when |A| is close to |F|/3, A is similar in structure to an arithmetic
progression, and therefore unlikely to be closed under inverses. So, we might expect
|A| to be smaller than |F|/3 if A is also closed under inverses.

In this direction, Bienvenu et al. showed in [1, Corollary 5.1] that |A| < 0.3051|F|+
o(|F|) as |F| → ∞. We offer the following improvement on this:

Theorem 1.1. There is an absolute constant c > 0 so that if F is a field of prime order and
A ⊆ F∗ is sum-free and closed under inverses then |A| < (0.25− c)|F|+ o(|F|) as |F| → ∞.

A careful inspection of the argument yields c = 2.5× 10−8. This is in contrast to
fields of characteristic 2, where we show:

Proposition 1.2. If F is a field of characteristic 2 then there exists A ⊆ F∗ which is both
sum-free and closed under inverses, such that |A| = 0.25|F|+ o(|F|) as |F| → ∞.

Write µ(F) for the density |A|/|F| of the largest A ⊆ F that is both sum-free and
closed under inverses. Theorem 1.1 says that µ(Fp) ≤ 0.25− c + o(1), whereas Propo-
sition 1.2 says that µ(F2n) ≥ 0.25− o(1). So we can deduce that:
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Corollary 1.3. The limit lim|F|→∞ µ(F) does not exist.

The rest of the paper is structured as follows. In Section 2 we recall some basic
definitions of Fourier analysis, and establish some notation. In Section 3 we consider
fields of prime order. We establish some Fourier analytic results and use them to prove
Theorem 1.1. Then, in Section 4 we consider fields of even characteristic, and prove
Proposition 1.2. In Section 5 we make some final remarks.

2. Notation and definitions from Fourier analysis

Let F be a finite field. We recall some basic definitions from Fourier analysis (see e.g.
[7, Section 4] or [9, Section 1.1]).

If X ⊆ F is non-empty and f : X → C is any function, we define the mean

E
x∈X

[ f (x)] :=
1
|X| ∑

x∈X
f (x).

We will also write

E[ f ] = E
x
[ f (x)] = E

x∈F
[ f (x)]

when it is unambiguous to do so. We denote by 1X the indicator function

1X(x) :=

{
1 if x ∈ X,
0 otherwise.

We can view the set of functions F → C as a Hilbert space by equipping it with the
inner product

〈 f , g〉 := E[ f g].

Write e(θ) = exp(iθ) for the exponential map R → C. If F has prime order p then
for each r ∈ F we can define the character er : F → C by er(x) := e(2πrx/p).1 The
characters enjoy the following orthogonality property:

〈er, es〉 =
{

1 if r = s
0 otherwise.

This motivates the definition of the Fourier coefficient of f at r as

f̂ (r) := 〈 f , er〉.

Parseval’s identity is then

E[| f |2] = ∑
r∈F

∣∣ f̂ (r)∣∣2.

1We follow the notation of [7]. It is also common to write ep(x) = e(2πx/p).
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3. Fields of prime order

The goal of this section is to prove Theorem 1.1. Let F = Fp be a field of prime order
p > 2. Let A be a subset of F∗, not necessarily sum-free or closed under inverses, with
density α = |A|/p. We fix some 0 < α0 < 0.25 and assume α ≥ α0, since otherwise
Theorem 1.1 is immediate.

Order the elements r1, . . . , r(p−1)/2 of the interval {1, . . . , (p − 1)/2} ⊆ F so that
δ1 ≥ · · · ≥ δ(p−1)/2, where

∣∣1̂A(ri)
∣∣ = δiα. Note that

F∗ = {r1, . . . , r(p−1)/2} ∪ {−r1, . . . ,−r(p−1)/2}

and that 1̂A(−ri) = 1̂A(ri) for each i. We will also write θ1 ∈ [0, 2π) for the argument
of 1̂A(r1), so that 1̂A(r1) = (δ1α)e(θ1) and 1̂A(r1) + 1̂A(−r1) = 2δ1α cos θ1.

3.1. Properties of sum-free sets. We begin by recalling a standard identity, which can
be derived by considering the convolution 1A ∗ 1A (see e.g. [7, p. 153]).

Proposition 3.1. If A is sum-free then

α3 + ∑
r 6=0

∣∣1̂A(r)
∣∣21̂A(r) = 0.

In fact, this sum is dominated by its largest terms.

Lemma 3.2. Let k be a positive integer. For any p such that k < (p− 1)/2, if A ⊆ Fp then

∑
i>k

δ3
i → 0

as k→ ∞, uniformly in A provided α ≥ α0.

Proof. From Parseval’s identity we know

α2 + 2α2 ∑
i≥1

δ2
i = α,

whence, looking at the first k terms of the sum,

δ2
k ≤

1− α

2kα
.

So

∑
i>k

δ3
i ≤ δk ∑

i>k
δ2

i ≤ k−1/2
(

1− α

2α

)3/2

≤ k−1/2
(

1− α0

2α0

)3/2

→ 0.

�

Corollary 3.3. If A is sum-free then
k

∑
i=1

δ3
i ≥ δ3

1 |cos θ1|+
k

∑
i=2

δ3
i ≥

1
2
− ok→∞(1),

where the error is uniform in A provided α ≥ α0.
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Proof. The first inequality is immediate. For the second, we begin with Proposition 3.1
and make two applications of the triangle inequality.

α3 =
∣∣∣∑
r 6=0

∣∣1̂A(r)
∣∣21̂A(r)

∣∣∣
=
∣∣∣(p−1)/2

∑
i=1

δ2
i α2

(
1̂A(ri) + 1̂A(−ri)

)∣∣∣
≤

(p−1)/2

∑
i=1

δ2
i α2

∣∣∣1̂A(ri) + 1̂A(−ri)
∣∣∣

≤ δ2
1α2|2δ1α cos θ1|+

(p−1)/2

∑
i=2

δ2
i α2

(∣∣1̂A(ri)
∣∣+ ∣∣1̂A(−ri)

∣∣)
= 2δ3

1α3|cos θ1|+
(p−1)/2

∑
i=2

2δ3
i α3

Now divide through by 2α3 and apply Lemma 3.2. �

Another corollary of Proposition 3.1 gives bounds on α in terms of the sizes of the
largest two Fourier coefficients. The first, which considers only δ1, is standard (c.f. [6,
p. 226]). The second is stronger when δ2 is small compared to δ1.

Corollary 3.4. If A is sum-free then

α ≤ δ1

1 + δ1
.

Moreover, if 1 + δ2 + 2δ2
1δ2 − 2δ3

1 > 0 then

α ≤ δ2

1 + δ2 + 2δ2
1δ2 − 2δ3

1
.

Proof. We prove the second bound. The first is proved similarly. We begin with Propo-
sition 3.1:

α3 =
∣∣∣∑
r 6=0

∣∣1̂A(r)
∣∣21̂A(r)

∣∣∣
≤ 2δ3

1α3 +
∣∣∣ ∑
r 6=0,±r1

∣∣1̂A(r)
∣∣21̂A(r)

∣∣∣
≤ 2δ3

1α3 + δ2α ∑
r 6=0,±r1

∣∣1̂A(r)
∣∣2

= 2δ3
1α3 + δ2α

(
α− α2 − 2δ2

1α2
)

.

To get the final step here we use Parseval’s identity. Now rearrange to find

α
(

1 + δ2 + 2δ2
1δ2 − 2δ3

1

)
≤ δ2
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and apply the hypothesis. �

3.2. Properties of sets which are closed under inverses. To exploit the fact that A =
A−1 we will make use of the following result from [2, Proposition 1], which can be
thought of as a version of Bessel’s inequality for vectors which are ‘almost orthogonal’.

Lemma 3.5. Let H be a Hilbert space with inner product 〈 , 〉. Then for any f , g1, . . . , gM ∈ H
we have the inequality

‖ f ‖2 ≥
M

∑
i=1

|〈 f , gi〉|2

∑M
j=1|〈gi, gj〉|

.

We also recall Weil’s estimate for Kloosterman sums [8, p. 207].

Lemma 3.6 (Weil’s estimate). If p is prime and a, b are integers with ab 6= 0 then∣∣∣ ∑
x∈F∗p

ea(x)eb(x−1)
∣∣∣ ≤ 2

√
p.

We arrive at a useful bound on the size of a set which is closed under inverses.

Proposition 3.7. Suppose A = A−1 and let m ≥ 0. Suppose s1, . . . , sm are pairwise distinct
elements of F∗p with

∣∣1̂A(si)
∣∣ = λiα. Then

α ≤ 1
1 + 2 ∑m

i=1 λ2
i
+ O (m/

√
p) .

Moreover, if k ≥ 0 then we have the bound

α ≤ 1
1 + 4 ∑k

i=1 δ2
i

+ O (k/
√

p) .

Proof. Define s0 := 0, and so λ0 = 1. For each i define ϕi := esi and, if i > 0, ψi(x) :=
ϕi(x−1), with the convention that 0−1 = 0. We aim to apply Lemma 3.5 to 1A and these
‘almost orthogonal’ functions. For i ≥ 0 and j > 0 we have

|〈ϕi, ψj〉| =
1
p

∣∣∣ ∑
x∈Fp

esi(x)esj(x−1)
∣∣∣ = 1

p

∣∣∣ ∑
x∈Fp

esi(x)e−sj(x−1)
∣∣∣ ≤ 1 + 2

√
p

p

by Weil’s bound. Also, using the fact that the characters are orthonormal, we have

〈ψi, ψj〉 = E
x

[
ϕi(x−1)ϕj(x−1)

]
= E

x

[
ϕi(x)ϕj(x)

]
= 〈ϕi, ϕj〉 =

{
1 if i = j,
0 otherwise.

Finally,

|〈1A, ψi〉| =
1
p

∣∣∣∑
a∈A

ϕi(a−1)
∣∣∣ = 1

p

∣∣∣∑
a∈A

ϕi(a)
∣∣∣ = |〈1A, ϕi〉| =

∣∣1̂A(si)
∣∣ = λiα.
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So, applying Lemma 3.5, we find

α ≥
m

∑
i=0

λ2
i α2

1 + m
(
1 + 2

√
p
)

/p
+

m

∑
i=1

λ2
i α2

1 + (m + 1)
(
1 + 2

√
p
)

/p

≥ α2 1 + 2 ∑m
i=1 λ2

i
1 + (m + 1)

(
1 + 2

√
p
)

/p
,

from which the result follows.
For the moreover part, take m = 2k and si = ri = −sm+1−i for each 1 ≤ i ≤ k. �

3.3. Constructing large coefficients. If
∣∣1̂A(r)

∣∣ = δα then an observation of Yudin
recorded in [5, p. 258] yields the following bound on

∣∣1̂A(2r)
∣∣:

(1)
∣∣1̂A(2r)

∣∣ ≥ (2δ2 − 1
)

α.

We strengthen this in two ways. First we show that, given conditions on δ and the
argument θ of 1̂A(r), the coefficient 1̂A(2r) lies in the right-half plane of C. Second, we
show that given some lower bound on α, we can obtain a slightly stronger lower bound
on
∣∣1̂A(2r)

∣∣. We shall prove (1) along the way.

Lemma 3.8. Suppose r 6= 0 and 1̂A(r) = (δα)e(θ). Then

2 Re 1̂A(2r) = 1̂A(2r) + 1̂A(−2r) ≥ 2α
(

2δ2 cos2 θ − 1
)

.

Moreover, if α ≥ α0 > 0 then∣∣1̂A(2r)
∣∣ ≥ (2δ2 − 1 + ε− o(1)

)
α

as p→ ∞, where the error is uniform in A and ε > 0, which depends only on α0, is given by

ε =
29

34 × 55 α0
4.

Proof. For any ω ∈ S1, it can be seen that

(2) E
x

[
1A(x) (ωer(x) + ωe−r(x))2

]
= 2α + ω21̂A(2r) + ω21̂A(−2r).

By applying Cauchy-Schwarz we can compute

E
x
[1A(x)]E

x

[
1A(x) (ωer(x) + ωe−r(x))2

]
≥ E

x
[1A(x) (ωer(x) + ωe−r(x))]2

=
(

ω1̂A(r) + ω1̂A(−r)
)2

.

Setting ω = 1 and substituting in (2) then gives

α
(

2α + 1̂A(2r) + 1̂A(−2r)
)
≥
(

1̂A(r) + 1̂A(−r)
)2

= 4δ2α2 cos2 θ,

from which the first inequality follows.
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If instead we take ω = e(−θ) then we find

α
(

2α + ω21̂A(2r) + ω21̂A(−2r)
)
≥
(∣∣1̂A(r)

∣∣+ ∣∣1̂A(r)
∣∣)2

= (2δα)2

which rearranges with the triangle inequality to give (1).
The Cauchy-Schwarz inequality E[XY]2 ≤ E[X2]E[Y2] is only close to equality when

the random variables X and Y are close to proportional. However, 1A(x) and

1A(x) · (ωer(x) + ωe−r(x)) = 1A(x) · 2 cos(2πrx/p + θ)

are not approximately proportional, since A is not thin.
Concretely, set ω = e(−θ) again. Using the fact that E[X2] = E[(X−E[X])2] +E[X]2

for a random variable X, we can compute

E
x∈Fp

[
1A(x)(ωer(x) + ωe−r(x))2

]
= α E

x∈A

[
(ωer(x) + ωe−r(x))2

]
= α E

x∈A

[
(ωer(x) + ωe−r(x)− 2δ)2

]
+ 4δ2α

= α E
x∈A

[
(2 cos(2πrx/p + θ)− 2 cos ϕ)2

]
+ 4δ2α

= 16α E
x∈A

[
sin2 (t1(x)) sin2 (t2(x))

]
+ 4δ2α,

where ϕ := arccos(δ) ∈ [0, π/2], t1(x) := πrx/p + θ/2 + ϕ/2 and t2(x) := πrx/p +
θ/2− ϕ/2.

We should be explicit about the fact that we are dealing with lifts ỹ ∈ Z of the
elements y = rx ∈ Fp. We can make any choice of lift we like, so let us fix the lift so
that |πrx/p + θ/2| ≤ π/2. It follows that

|ti(x)| ≤ π/2 + ϕ/2 ≤ 3π/4

for i = 1, 2. Writing

m =
2
√

2
3π

,

we therefore have that2

(3) |sin(ti(x))| ≥ m |ti(x)| .

2This bound can be derived by considering the concavity of sin t in the region 0 ≤ t ≤ 3π/4.
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Now observe that, for any γ, |t1(x)| ≤ γ for at most 1 + 2γ
π p values of x. Similarly

for t2. We therefore have that t1(x)2t2(x)2 ≤ γ4 for at most 2 + 4γ
π p values of x. Thus

E
x∈A

[
sin2(t1(x)) sin2(t2(x))

]
≥ m4 E

x∈A

[
t1(x)2t2(x)2

]
≥ m4

(
1− 4γ

α0π
− 2

α0p

)
γ4

= m4
(

1− 4γ

α0π

)
γ4 − o(1).

Taking γ = π
5 × α0 makes

(
1− 4γ

α0π

)
γ4 = α0

4 × π4

55 .
Starting from (2) we can now compute

ω21̂A(2r) + ω21̂A(−2r) = E
x∈Fp

[
1A(x) (ωer(x) + ωe−r(x))2

]
− 2α

≥ 16α E
x∈A

[
sin2 (t1(x)) sin2 (t2(x))

]
+ 4δ2α− 2α

≥ 2
(

2δ2 − 1 + 8m4π4α0
4/55 − o(1)

)
α,

from which the triangle inequality gives the result with

ε =
8m4π4

55 α0
4 =

29

34 × 55 α0
4.

�

Remarks. If a lower bound on δ is assumed then ε can be made slightly larger, by strengthening
the bound in (3).

We also have as a corollary that∣∣1̂A(r)
∣∣ ≤ (1−Ω

(
α0

4
)
+ op→∞(1)

)
α

for any r 6= 0. A consequence of [5, Theorem 5], is the stronger result that∣∣1̂A(r)
∣∣ ≤ (1−Ω

(
α0

2
)
+ op→∞(1)

)
α

for any r 6= 0. This suggests that the factor of α0
4 in ε could be replaced with a factor of α0

2

with some more work.

3.4. Proof of Theorem 1.1. The proof of Theorem 1.1 is a case analysis on the values
of 1̂A(ri). If δ1 and δ2 are both small, then Corollary 3.4 is strong enough. Otherwise,
we use Proposition 3.7. The question then becomes: given that δ1 is large, how small
can ∑k

i=1 δ2
i be under the constraints, such as Corollary 3.3, implied by the sum-free

condition?
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We will make use of the following fact for x1, . . . , xn ∈ [0, 1], which is an instance of
nesting of `p-norms:

(4)
( n

∑
i=1

x2
i

)
≥
( n

∑
i=1

x3
i

)2/3
.

Proof of Theorem 1.1. We can assume that α ≥ 0.24, since otherwise we are done. We
shall reason based on the value of δ1. First, we make an observation common to several
of the cases. If we can show that there is an h > 0 so that

k

∑
i=1

δ2
i ≥ 0.75 + h− ok→∞(1),

where the error is uniform in A, then applying Proposition 3.7 will yield

α ≤ 1
1 + 4× (0.75 + h− ok→∞(1))

+ O(k/
√

p)

< 0.25− ch + ok→∞(1) + O(k/
√

p)(†)

for some ch > 0 depending only on h. Now, begin by choosing k large enough that the
ok→∞(1) in (†) is less than ch/3. Then, choose p large enough that the O(k/

√
p) in (†)

is also less than ch/3. Then α < 0.25− ch/3 as required.

Case 1: δ1 ≤ 0.33. Recall the first bound from Corollary 3.4:

α ≤ δ1

1 + δ1
.

Note that as long as δ1 < 1/3, this is enough to bound α < 0.25. In particular, here we
have

α ≤ δ1

1 + δ1
≤ 0.33

1.33
< 0.2482.

Case 2: 0.33 ≤ δ1 ≤ 0.45. Now the first conclusion of Corollary 3.4 is not enough, but
we can argue based on the value of δ2. If δ2 is small, then the second conclusion of
Corollary 3.4 will suffice. Otherwise, we can force ∑k

i=1 δ2
i to be large and apply (†). So,

write δ2 = aδ1 where a ∈ (0, 1].

Case 2.1: a ≤ 0.7. Apply the second conclusion of Corollary 3.4, noting that the hy-
pothesis on δ1 and δ2 is met, to get

α ≤ aδ1

1 + aδ1 + 2aδ3
1 − 2δ3

1
≤ max

x,y

xy
1 + xy + 2x3y− 2x3 ,

where the maximum is taken over the range 0.33 ≤ x ≤ 0.45, 0 ≤ y ≤ 0.7.
This expression is increasing in y since x3 ≤ 1/2, so

α ≤ max
x

0.7x
1 + 0.7x− 0.6x3 ≤ max

x

0.7x
1 + 0.7x− 0.6× 0.453 .
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The expression on the right hand side increases with x, so plugging in x = 0.45 gives
α < 0.24994.

Case 2.2: a ≥ 0.7. Applying Corollary 3.3 gives

k

∑
i=3

δ3
i ≥

1
2
− δ3

1 − δ3
2 − ok→∞(1) =

1
2
−
(

1 + a3
)

δ3
1 − ok→∞(1)

whence, by (4),

k

∑
i=1

δ2
i ≥

(
1 + a2

)
δ2

1 +
(1

2
−
(

1 + a3
)

δ3
1

)2/3
− ok→∞(1)

≥ min
x,y

((
1 + y2

)
x2 +

(
1
2
− (1 + y3)x3

)2/3
)
− ok→∞(1),(5)

where the minimum is over the range 0.33 ≤ x ≤ 0.45, 0.7 ≤ y ≤ 1. One can check that
the expression being minimised in (5) is increasing with y. Hence

(6)
k

∑
i=1

δ2
i ≥ min

x

(
1.49x2 +

(
0.5− 1.343x3

)2/3
)
− ok→∞(1).

This new expression increases with x (see Figure 1). So, we can compute

k

∑
i=1

δ2
i ≥ 1.49× 0.332 +

(
1
2
− 1.343× 0.333

)2/3

> 0.7510− ok→∞(1).

Case 3: 0.45 ≤ δ1 ≤ 0.7455. Here δ1 is quite large. Moreover, we have δ3
1 < 1/2, which

will force δ2 to also be quite large and allow us to use (†). In detail, Corollary 3.3 gives

k

∑
i=2

δ3
i ≥

1
2
− δ3

1 − ok→∞(1).

If k is large enough then the right hand side is positive. So from (4) we have

k

∑
i=1

δ2
i ≥ δ2

1 +

(
1
2
− δ3

1

)2/3

− ok→∞(1)

≥ min
x

(
x2 +

(
1
2
− x3

)2/3
)
− ok→∞(1),(7)

where the minimum is taken over the range 0.45 ≤ x ≤ 0.7455. This expression is
smallest when x = 0.7455 (see Figure 1). So we have

k

∑
i=1

δ3
i ≥ 0.74552 +

(
1
2
− 0.74553

)2/3

− ok→∞(1) > 0.7501− ok→∞(1).
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x

Figure 1. The function of x which is minimised to produce a lower
bound on ∑k

i=1 δ3
i in different cases, along with the region on which x is

minimised in each case (dashed lines) and the constant 0.75 (red). Left:
Case 2.2 given by (6). Centre: Case 3 given by (7). Right: Cases 4.1 given
by (10) (black) and 4.2 given by (11) (blue).

Case 4: 0.7455 ≤ δ1 ≤ 0.809016. If θ1 is close to 0 or π then Lemma 3.8 will give us a
large coefficient in the right half-plane. Otherwise, the contribution of r1 to the sum in
Corollary 3.3 is negligible. In either case, we end up being able to use (†).3

Assume p > 3 and let t be such that 2r1 = ±rt. Note that t 6= 1, as otherwise either
2r1 = r1 or 3r1 = 0, which both imply r1 = 0 since p > 3. If we write ∆(δ, θ) =
2δ2 cos2 θ − 1 for any δ, θ, then Lemma 3.8 says that

Re 1̂A(rt) ≥ ∆(δ1, θ1)α.

We also know from (1) that δt ≥ 2δ2
1 − 1.

Case 4.1: ∆(δ1, θ1) > 0. In this case, Re 1̂A(rt) > 0. From Proposition 3.1 and the
triangle inequality we have

δ3
1 |cos θ1|+ ∑

i 6=1,t
δ3

i ≥
1
2
+

δ2
t

α
Re 1̂A(rt) ≥

1
2
+
(

2δ2
1 − 1

)2
∆(δ1, θ1).

By replacing θ1 with π − θ1 if necessary, we can assume θ1 ∈ [π/2, 3π/2]. Then

∑
i 6=1,t

δ3
i ≥

1
2
+
(

2δ2
1 − 1

)2
∆(δ1, θ1) + δ3

1 cos θ1

≥ min
t

(
1
2
+
(

2δ2
1 − 1

)2
∆(δ1, t) + δ3

1 cos t
)

,(8)

3The choice of boundary may seem odd here. The argument in this case gives α ≤ 0.25 + o(1) exactly

for δ1 =
√
(3 +

√
5)/8 ≈ 0.809017, so to get below that bound with this argument we consider a region

slightly to the left of this critical point.
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where the minimum is taken over the range π/2 ≤ t ≤ 3π/2. It can be checked that
this minimum is attained when t = π. So

∑
i 6=1,t

δ3
i ≥

1
2
+
(

2δ2
1 − 1

)3
− δ3

1 .

Then by Lemma 3.2, since we’ve fixed α ≥ 0.24, this becomes

(9) ∑
2≤i≤k,i 6=t

δ3
i ≥

1
2
+
(

2δ2
1 − 1

)3
− δ3

1 − ok→∞(1).

We can lower bound 1
2 +

(
2δ2

1 − 1
)3 − δ3

1 > 0.000001 here. Therefore, by taking k large
enough we can ensure that the right hand side of (9) is positive. It follows from (4) that

k

∑
i=1

δ2
i ≥ δ2

1 +
(

2δ2
1 − 1

)2
+
(1

2
+
(

2δ2
1 − 1

)3
− δ3

1

)2/3
− ok→∞(1)

≥ min
x

(
x2 +

(
2x2 − 1

)2
+
(1

2
+
(

2x2 − 1
)3
− x3

)2/3
)
− ok→∞(1),(10)

where the minimum is taken in the range 0.7455 ≤ x ≤ 0.809016. Now, it can be
verified4 that this attains its minimum when x = 0.809016 (see Figure 1), so we can
calculate

k

∑
i=1

δ2
i > 0.75001− ok→∞(1).

Case 4.2: ∆(δ1, θ1) ≤ 0. We shall apply Corollary 3.3, which says
k

∑
i=2

δ3
i ≥

1
2
− δ3

1 |cos θ1| − ok→∞(1).

From the assumption that ∆(δ1, θ1) ≤ 0 we know that δ1 |cos θ1| ≤
√

2/2. So
k

∑
i=2

δ3
i ≥

1
2
−
√

2
2

δ2
1 − ok→∞(1).

Now, 1− δ2
1

√
2 ≥ 1− 0.8090162×

√
2 > 0 here. So after taking k large enough the right

hand side above is positive. Then applying (4) gives

k

∑
i=1

δ2
i ≥ δ2

1 +

(
1
2
−
√

2
2

δ2
1

)2/3

− ok→∞(1)

≥ min
x

x2 +

(
1
2
−
√

2
2

x2

)2/3
− ok→∞(1),(11)

4Intuitively, this sum will be smallest when all of the mass is concentrated in δ1 and δ2, i.e when

δ3
1 − (2δ2

1 − 1)3 is close to 1/2, which is when δ1 is close to
√
(3 +

√
5)/8 ≈ 0.809017.
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where the minimum is taken over the range 0.7455 ≤ x ≤ 0.809016. This minimum is
attained when x = 0.809016 (see Figure 1). So we can calculate

k

∑
i=1

δ2
i > 0.7659− ok→∞(1).

Case 5: δ1 ≥ 0.809016. Here, Lemma 3.8 will allow us to force δ2
1 + δ2

2 > 0.750001 and
use Proposition 3.7. Note that we really do need the improvement over (1), as otherwise

we get δ2
1 + δ2

2 ≥ 0.75 when δ1 =
((

3 +
√

5
)

/8
)1/2

. First, take p large enough that the
error in Lemma 3.8 is less than 0.000001, given α0 ≥ 0.24.

Then by Lemma 3.8 we know that δ2 ≥ 2δ2
1 − 1 + ε− 0.000001 where

ε =
29

34 × 55 × 0.244 > 0.0000061,

which implies

δ2
1 + δ2

2 ≥ δ2
1 +

(
2δ2

1 − 0.999994
)2
≥ min

x

(
x2 +

(
2x2 − 0.999994

)2
)

,

where the minimum is taken over the range 0.809016 ≤ x ≤ 1. This is increasing since
x ≥ 0.809016 implies 2x2 > 0.999994, so

δ2
1 + δ2

2 ≥ 0.8090162 +
(

2× 0.8090162 − 0.999994
)2

> 0.7500001.

Now applying Proposition 3.7 with k = 2 gives

α ≤ 1
1 + 4

(
δ2

1 + δ2
2
) + O (1/

√
p) ≤ 0.249999975 + o(1).

�

4. Fields of characteristic 2

Now suppose that F is a field of order q = 2n, and let A be a subset of F∗. Define
the trace Tr : F→ F2 by

Tr(x) :=
n−1

∑
i=0

x2i
.

Note that Tr(x) + Tr(y) = Tr(x + y). We shall make use of the following bound on
Kloosterman sums over fields of characteristic 2 (see [3]).

Lemma 4.1. If a ∈ F∗ then ∣∣∣ ∑
x∈F∗

(−1)Tr(x+ax−1)
∣∣∣ ≤ 2

√
q.
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Proof of Proposition 1.2. Let γ : F→ C be the additive character on F given by

γ(x) = (−1)Tr(x).

Define X := F \ ker γ and, noting that 0 6∈ X since 0 ∈ ker γ, A := X ∩ X−1. Then X is
sum-free, and A is both sum-free and closed under inverses.

Note 1X = 1
2(1− γ). So, with the convention that 0−1 = 0, we have

α = E
x
[1X(x)1X−1(x)] = E

x

[
1X(x)1X(x−1)

]
=

1
4

E
x

[
(1− γ(x))(1− γ(x−1))

]
=

1
4
+

1
4

E
x

[
γ(x)γ(x−1)

]
.

Since Tr(x) + Tr(x−1) = Tr(x + x−1), we have γ(x)γ(x−1) = γ(x + x−1). Then∣∣E
x

[
γ(x)γ(x−1)

]∣∣ = ∣∣E
x

[
γ(x + x−1)

]∣∣ ≤ 2
√

q
q

= o(1)

by Lemma 4.1, which gives our result. �

5. Final remarks

5.1. Write σ(F) for the density |A|/|F| of the largest sum-free subset A of F. This
quantity was studied in the more general context of finite Abelian groups by Diananda
and Yap in [4]. Recall from Section 1 that we define µ(F) to be the density of the largest
subset of F which is both sum-free and closed under inverses.

When F has characteristic 2 it can be seen that σ(F) = 1/2, as the set X in the
proof of Proposition 1.2 demonstrates. Moreover, Proposition 1.2 itself shows µ(F) ≥
1/4− o(1).

When F has prime order p > 2, the interval I = {x ∈ F : p/3 < x < 2p/3}
has density 1/3 + o(1), and this is the best possible for a sum-free set by the Cauchy-
Davenport inequality. As described in [1, p. 8], the set I ∩ I−1 is then sum-free and
closed under inverses, and has density 1/9− o(1). So µ(F) ≥ 1/9− o(1).

It is reasonable to suspect that the events ‘A is sum-free’ and ‘A−1 is sum-free’ are
independent. So, we conjecture that the lower bounds above are in fact tight:

Conjecture 5.1. Let F be a finite field. Then µ(F) = σ(F)2 + o(1) as |F| → ∞.

5.2. For a set A ⊆ F∗ we can use the quantity

I(A) :=
|A ∩ A−1|
|A|

to measure ‘how much’ A is closed under inverses. So we have studied sum-free sets
A with I(A) = 1. When F has prime order p and A is sum-free with I(A) large,
we might still expect to do better than the bound of |A| < (p + 1)/3 given by the
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Cauchy-Davenport inequality. Indeed, since A∩A−1 is itself sum-free and closed under
inverses we have

α = |A|/p =
|A ∩ A−1|
I(A)× p

≤ µ(F)

I(A)
.

So when I(A) ≥ 0.75 we can use Theorem 1.1 to deduce

α ≤ µ(F)

0.75
≤ (0.25− c) + o(1)

0.75
≤ (1− 4c) /3 + o(1).
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