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Piazza di Porta San Donato, 5 - 40126 Bologna, Italy

luca.ferrari20@unibo.it

Mathematics Subject Classification: 05A05, 05A15

Abstract

A word is centrosymmetric if it is invariant under the reverse-complement map.

In this paper, we give enumerative results on k-ary centrosymmetric words of length

n avoiding a pattern of length 3 with no repeated letters.

1 Introduction

A sequence of positive integers �
1

�

2

. . . �

n

(for instance, a permutation or a word) is
said to avoid a pattern ⌧ = ⌧

1

⌧

2

. . . ⌧

s

if it does not contain any subsequence �

i1�i2 . . . �is

which is order isomorphic to ⌧ .
In the last two decades, the study of pattern avoidance has interested several research

fields in combinatorics: many results have been found on permutations, which is still
the most advanced area, and a considerable work has been made on words since 1998.
Burstein [4] gave for the first time an explicit formula for the number of words avoiding
a set of permutation patterns in S

3

; later, Burstein and Mansour [5] extended the results
to patterns with repeated letters.

Many improvement and generalizations have been made in the last years. In 2006 Firro
and Mansour [7] presented a new method, the scanning-element algorithm (that we exploit
in Section 5) to obtain an easier proof of Burstein’s results for the pattern 123; in the same
year, Mansour [11] applied the block decomposition method for the pattern 132. Brändén
and Mansour [3] used finite automata theory to give a combinatorial explanation for the
number of words avoiding patterns of length three; furthermore, Jeĺınek and Mansour [9]
determined all the Wilf-equivalence classes of subsequence patterns of length at most six.

In this paper, we focus on centrosymmetric words, namely, words that are invariant
under the reverse-complement map, or, equivalently, whose corresponding tableaux via
the Robinson-Schensted-Knuth algorithm are invariant under Schützenberger’s involution
(see [8], [10] and [13] for more details). We find the generating functions for the number
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Figure 1. The words 83872 2 W
5,8

, 64651 2 W
5,{1,4,5,6,8} and 52531 2 W

5,6

are all order isomorphic. Their common renormalization, as well as the

representative of their equivalence class, is 42431 2 W
5,4

.

of centrosymmetric words avoiding a pattern of length 3 with no repeated letters, and,
for the pattern 123, even the explicit formulae. In the special case of centrosymmetric
surjective words, we also reobtain some of the results described in Egge’s paper [6].

2 Preliminaries

Definition 2.1 A word of length n over a k-letter alphabet (also said a k-ary word of
length n, or a word of type (n, k)) is any map

� : {1, 2, . . . , n} �! A
k

,

where A
k

is a set of positive integers such that |A
k

| = k.

We denote the set of all words of length n over A
k

by W
n,Ak

; in particular, when A
k

=
{1, 2, . . . , k} we use the symbol W

n,k

instead of W
n,{1,2,...,k}. A word in W

n,Ak
will be

represented either by the one-line notation

�

1

�

2

. . . �

n

,

or by the usual graphical representation, as in figure (1).

Definition 2.2 Let W
n

be the set of all words of length n:

W
n

=
[

k�1

W
n,Ak

.

We say that two words �, ⌧ 2 W
n

are order isomorphic if, for every 1  a, b  n, we have

�

a

⇤ �
b

() ⌧

a

⇤ ⌧
b

for any relation ⇤ 2 {<,=, >}.
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Figure 2. The word 26417426 2 W
8,7

is centrosymmetric while 35517336 2
W

8,7

is not (figures above). Moreover, two words containing the same let-

ters can be or not centrosymmetric depending on the alphabet: the word

6344452 2 W
7,7

is centrosymmetric while 6344452 2 W
7,8

is not (figures

below).

Roughly speaking, two words are order isomorphic if and only if, ignoring the row num-
bering, their graphical representations are identical, or, alternatively, one can be obtained
from the other by erasing or adding a certain number of empty rows.

Observe that each word in a given equivalence class of order isomorphic words contains
the same number d of di↵erent letters. Hence, it is natural to give the following definition.

Definition 2.3 Given a word � 2 W
n

containing exactly d di↵erent letters, we call renor-
malization of � the only word ⇢(�) 2 W

n,d

which is order isomorphic to �. This word will
also be taken as the representative of the equivalence class that contains �.

Definition 2.4 A word � 2 W
n,Ak

is said to contain a pattern ⌧ 2 W
s,t

, where s  n

and t  k, if there exist indices 1  i

1

 · · ·  i

s

 n such that the subsequence �

i1 . . . �

is

is order isomorphic to ⌧ = ⌧

1

. . . ⌧

s

. Otherwise, � is said to avoid ⌧ .

For example, the word 325316 avoids the pattern 312 but contains 112, since the subse-
quence 336 is order isomorphic to 112. We denote the set of words in W

n,Ak
which avoid

⌧ by the symbol W
n,Ak

(⌧).

Definition 2.5 A word � 2 W
n,k

is centrosymmetric if, for every i = 1, 2, . . . , n,

�

i

+ �

n+1�i

= k + 1.

In this case, we say that �
i

is the conjugate letter of �
n+1�i

.
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Figure 3. The centrosymmetric word 553988 2 C
6,{2,3,5,8,9,12}.

We denote the set of centrosymmetric words of length n over the alphabet {1, 2, . . . , k}
by the symbol C

n,k

. Needless to say, a word is centrosymmetric if and only if its graphical
representation is symmetric with respect to the center of the grid (see figure 2).

Observe that there are no centrosymmetric words with n odd and k even, since in this
case there is no type (n, k) that satisfies 2 �

(n+1)/2

= k + 1. In all the other cases, the
number of k-ary centrosymmetric words of length n is

|C
n,k

| = k

bn
2 c
.

We need the following generalization of centrosymmetry.

Definition 2.6 Let A
k

= {a
1

, a

2

, . . . , a

k

} be a k-letter alphabet, with a

1

< a

2

< · · · < a

k

,
and let � = �

1

�

2

. . . �

n

2 W
n,Ak

, with �

i

= a

j(i)

for every i = 1, . . . , n. The word � is said
to be centrosymmetric if, for every i = 1, . . . , n,

j(i) + j(n+ 1� i) = k + 1.

We denote the set of centrosymmetric words in W
n,Ak

by the symbol C
n,Ak

.

3 Symmetries

Definition 3.1 We call reverse and complement, respectively, the transformations

r : W
n,k

�! W
n,k

c : W
n,k

�! W
n,k

� 7�! �

r

� 7�! �

c

such that (�r)
i

= �

n+1�i

and (�c)
i

= k + 1� �

i

.

The transformations r and c generate the group G = hr, ci = {id, r, c, rc}, which is
isomorphic to the group of symmetries of a rectangle D

4

(the dihedral group). The action
of G on W

n,k

allows us to state that, for every � 2 W
n,k

, ⌧ 2 W
s,t

and ' 2 G

� avoids ⌧ () '(�) avoids '(⌧).

Hence, in order to find the cardinality of C
n,k

(⌧) for every permutation pattern ⌧ of length
three it is su�cient to study the sets C

n,k

(123) and C
n,k

(132).
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We finally remark that centrosymmetric words are exactly those words which are
invariant under the reverse-complement (rc) operation. Then, for every � 2 C

n,k

,

� avoids ⌧ () � avoids ⌧ rc

and hence
|C

n,k

(⌧)| = |C
n,k

(⌧ rc)| = |C
n,k

(⌧, ⌧ rc)|. (1)

4 Surjective words

From definition (2.1), it is natural to define a surjective word of length n over a k-letter
alphabet A

k

to be a surjective map � : {1, 2, . . . , n} ! A
k

. In other terms, a surjective
word is a word in W

n,Ak
which contains all the letters of its alphabet. We denote the set

of surjective words in W
n,Ak

by S
n,Ak

, and the set of centrosymmetric surjective words in
W

n,Ak
by CS

n,Ak
. As usual, when A

k

= {1, 2, . . . , k}, we use the symbols S
n,k

and CS
n,k

,
respectively. Obviously, S

n,Ak
6= ? if and only if n � k � 1. We also observe that the set

S

n

of permutations of length n can be seen as the set S
n,n

of surjective words with length
equal to the cardinality of the alphabet.

Now, we focus on centrosymmetric words. Let c
n,k

be the number of centrosymmetric
words of type (n, k) and cs

n,k

the number of centrosymmetric surjective words of the same
type:

c

n,k

= |C
n,k

|, cs

n,k

= |CS
n,k

|.

Proposition 4.1 For m,h � 1 the following relations hold:

(i) c

2m,2h

=
hX

i=1

✓
h

i

◆
cs

2m,2i

(ii) c

2m,2h+1

=
hX

i=1

✓
h

i

◆
cs

2m,2i

+
hX

i=0

✓
h

i

◆
cs

2m,2i+1

(iii) c

2m+1,2h+1

=
hX

i=0

✓
h

i

◆
cs

2m+1,2i+1

(2)

Proof. Let d be the number of distinct letters contained in a fixed word � 2 C
n,k

,
and consider the graphical representation. In case (i) and (iii), � is obtained from its
renormalization ⇢(�) 2 CS

n,d

, which has the same type parities of �, by adding a suitable
number (possibly zero) of pairs of empty rows, and relabelling the alphabet letters from
1 to k. To preserve centrosymmetry, every pair consists of two rows inserted at the same
distance from the center. In the remaining case (ii), the renormalization ⇢(�) 2 CS

n,d

of
an even-odd centrosymmetric word � (i.e. a word with even length over an odd cardinality
alphabet) can either be even-even, or even-odd. In both cases, to obtain � from ⇢(�) we
have to add again some pairs of empty rows, while in the first case a further central empty
row is needed. ⇤
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Figure 4. Two words in C
6,7

obtained from their renormalizations by

adding the central row and another pair (figure above) or two pairs of rows

(figure below).

�!

By definition, a word � contains a given pattern ⌧ whenever its renormalization ⇢(�)
contains ⌧ . This implies that relations (2) hold also for restricted words. Hence, to
get the desired enumeration of C

n,k

(⌧) it is su�cient to obtain the number |CS
n,k

(⌧)| of
centrosymmetric surjective words avoiding ⌧ , and then use (2).

Obviously, the same can be done for the related generating functions. Define

c

⌧

n,k

= |C
n,k

(⌧)| and cs

⌧

n,k

= |CS
n,k

(⌧)|,

and let
C

⌧ (x, y) =
X

n�0

X

k�0

c

⌧

n,k

x

n

y

k

be the ordinary generating function for the number of centrosymmetric words avoiding
the pattern ⌧ . Defining the series

C

⌧

ee

(x, y) =
X

n�0

n even

X

k�0

k even

c

⌧

n,k

x

n

y

k

, CS

⌧

ee

(x, y) =
X

n�0

n even

X

k�0

k even

cs

⌧

n,k

x

n

y

k

,

C

⌧

eo

(x, y) =
X

n�0

n even

X

k�0

k odd

c

⌧

n,k

x

n

y

k

, CS

⌧

eo

(x, y) =
X

n�0

n even

X

k�0

k odd

cs

⌧

n,k

x

n

y

k

,

C

⌧

oo

(x, y) =
X

n�0

n odd

X

k�0

k odd

c

⌧

n,k

x

n

y

k

, CS

⌧

oo

(x, y) =
X

n�0

n odd

X

k�0

k odd

cs

⌧

n,k

x

n

y

k

,

(3)
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by inverse binomial transform (see e.g. [14]), relations (2) imply that the following rela-
tions hold:

C

⌧

ee

(x, y) =
1

1� y

2

CS

⌧

ee

 
x,

yp
1� y

2

!
,

C

⌧

eo

(x, y) =
y

1� y

2

CS

⌧

ee

 
x,

yp
1� y

2

!
+

1p
1� y

2

CS

⌧

eo

 
x,

yp
1� y

2

!
� y

1� y

2

,

C

⌧

oo

(x, y) =
1p

1� y

2

CS

⌧

oo

 
x,

yp
1� y

2

!
.

Hence, since
C

⌧ (x, y) = C

⌧

ee

(x, y) + C

⌧

eo

(x, y) + C

⌧

oo

(x, y),

we finally obtain that

C

⌧ (x, y) =
1

1� y

CS

⌧

ee

 
x,

yp
1� y

2

!
+

1p
1� y

2

CS

⌧

eo

 
x,

yp
1� y

2

!
+

+
1p

1� y

2

CS

⌧

oo

 
x,

yp
1� y

2

!
� y

1� y

2

.

(4)

5 The pattern 123

In order to compute the cardinality of the set CS
n,k

(123) we exploit the scanning-
element algorithm, presented in [7].

Denote by cs

123

n,k,i

the number of centrosymmetric surjective words avoiding 123 and
starting with the letter i. Of course, we have

cs

123

n,k

=
kX

i=1

cs

123

n,k,i

.

Observe that a word � 2 CS
n,k

starting with �

1

such that 1  �

1


⌃
k

2

⌥
� 1 contains the

pattern 123. In fact, by surjectivity there exists a letter �

x

such that the subsequence
�

1

�

x

�

n

is a 123-pattern. Hence, the preceding formula reduces to

cs

123

n,k

=
kX

i=d k
2e

cs

123

n,k,i

.

Now, our first goal is to find a recurrence relation for the terms cs

123

n,k,i

. In order to
do this, we consider the number cs

123

n,k,i,j

(with n � 4 and k � 3) of centrosymmetric
surjective words, that avoid 123, with first letter i and second letter j. By the preceding
considerations, we have

cs

123

n,k,i

=
kX

j=d k
2e�1

cs

123

n,k,i,j

. (5)
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The case j =
⌃
k

2

⌥
� 1 holds only in some special cases, that we present in the next result.

Theorem 5.1 For n � 4 and k � 3, if cs 123

n,k,i,j

6= 0 then only one of the following cases
holds:

(i)
⌃
k

2

⌥
 i < j = k,

(ii) k � i = j �
⌃
k

2

⌥
,

(iii) k � i > j �
⌃
k

2

⌥
,

(iv) n is even, i =
⌃
k

2

⌥
and j =

⌃
k

2

⌥
� 1,

(v) n and k are even, i = k

2

+ 1 and j = k

2

� 1.

Moreover, for each one of the preceding cases we have the following recurrences:

(i) cs

123

n,k,i,j

= cs

123

n�2,k,i

+ cs

123

n�2,k�2,i�1

,

(ii) cs

123

n,k,i,j

= cs

123

n�2,k,i

,

(iii) cs

123

n,k,i,j

=

(
cs

123

n�2,k,

k
2

if i = k

2

+ 1, j = k

2

and n, k are even

cs

123

n�2,k,j

+ cs

123

n�2,k�2,j�1

otherwise
,

(iv) cs

123

n,k,d k
2e,d k

2e�1

=

(
cs

123

n�2,k�2,

k�2
2

if n and k are even

cs

123

n�2,k�1,

k�1
2

if n is even and k is odd
,

(v) cs

123

n,k,

k
2+1,

k
2�1

= cs

123

n�2,k�2,

k�2
2

.

Proof. Let � = �

1

�

2

. . . �

n

be a word in CS
n,k

(123) with �

1

= i and �

2

= j,
respectively. Recall that i �

⌃
k

2

⌥
and j �

⌃
k

2

⌥
� 1.

Suppose i < j. If j 6= k, surjectivity implies that the sequence ijk is a 123-pattern:
hence, j = k. In this case, the symbol k in the second position of � and its conjugate
1 in the (n � 1)-th position cannot form any 123 pattern. Hence, the number cs

123

n,k,i,j

is completely determined by the subsequence �̃ = �

1

�

3

. . . �

n�2

�

n

, whose symbols can
belong either to the alphabet {2, . . . , k� 1}, or {1, . . . , k}. Obviously, in the first case we
can renormalize �̃, so its first letter becomes i � 1 and its alphabet {1, . . . , k � 2}. All
these considerations prove recurrence (i).

The case i = j is quite simple: when � has two identical starting letters, it avoids
123 if and only if its subword �̃ = �

2

. . . �

n�1

does. Furthermore, surjectivity is preserved
between � and �̃, and hence recurrence (ii) is proved.

Now, suppose that i > j. In this case, the only fact that there is no 123-pattern with
first letter j implies that no 123-pattern with first letter i occurs. The same is true for
the conjugates of i and j, and hence the number cs 123

n,k,i,j

is completely determined by the
subword �̃ = �

2

�

3

. . . �

n�1

. To preserve surjectivity, �̃ may either be over the alphabet
{1, . . . , k}r {�

1

, �

n

}, or {1, . . . , k}. This leads to the second recurrence of (iii). Observe

8



that, for particular values of i and j only one of the alphabets holds. In the even-even
case, if i = k

2

+ 1 and j = k

2

the subword �̃ can only be over {1, . . . , k}: this proves the
first recurrence of (iii). The last case j =

⌃
k

2

⌥
� 1 holds if and only if i =

⌃
k

2

⌥
(with n

even) or i = k

2

+1 (with both n and k even), otherwise a 123-pattern occurs. For the same
reason, there cannot be any letter equal to i or its conjugate in the subword �̃, hence the
only {1, . . . , k}r {�

1

, �

n

} alphabet is allowed for �̃. This yields recurrences (iv) and (v).
⇤

Theorem (5.1) and relation (5), for n � 4, k � 3 (n and k not odd and even, respec-
tively) and for every i such that

⌃
k

2

⌥
 i  k, yield the following recurrence relation for

cs

123

n,k,i

:

cs

123

n,k,i

= cs

123

n�2,k,d k
2e + cs

123

n�2,k�2,d k
2e�1

+ cs

123

n�2,k,i

+

+�d k
2e+1ik�1

(cs123
n�2,k,i

+ cs

123

n�2,k�2,i�1

)+

+�

i�d k
2e+2

i�1X

j=d k
2e+1

(cs 123

n�2,k,i

+ cs

123

n�2,k�2,i�1

) + �

i=d k
2e'(n, k),

(6)

where

�

A

=

⇢
1 if A holds
0 otherwise

and

'(n, k) =

8
><

>:

cs

123

n�2,k�2,

k
2�1

if n and k are even

0 if n is even and k is odd
cs

123

n�2,k�1,

k�1
2

if n and k are odd .

Now, the base cases of the recurrence are needed. First of all, we set

cs

123

0,0,0

= 1, cs

123

n,0,0

= 0 and cs

123

0,k,i

= 0 (7)

for every n, k � 1 and for every i such that 1  i  k. If k = 1 or k = 2 it is
straightforward that

cs

123

n,1,1

= 1 8n � 1, (8)

cs

123

n,2,1

= cs

123

n,2,2

=

⇢
2

n
2�1 if n � 2, n even

0 if n � 1, n odd.
(9)

Moreover, we recall that, for every i, cs 123

n,k,i

= 0 if k > n. Hence, the only remaining base
cases necessary for the recurrence are

cs

123

3,3,1

= cs

123

3,3,2

= 0 and cs

123

3,3,3

= 1.

Now we are ready to use the scanning-element algorithm. We will show its application
only for the even-even case, since the remaining two cases can be treated analogously.
First of all, we consider

P

123

ee

(x, y, v) =
X

n�0

n even

X

k�0

k even

cs

123

n,k,

k
2
x

n

y

k

v

k
2
.

9



Recurrence (6), for every n, k � 4 and for i = k

2

, yields

cs

123

n,k,

k
2
= 2 cs 123

n�2,k,

k
2
+ 2 cs 123

n�2,k�2,

k�2
2
.

Hence, multiplying by x

n

y

k

v

k
2 , summing over all even n, k � 4 and solving the resulting

equation we get

P

123

ee

(x, y, v) =
1� 2x2 � x

2

y

2

v

1� 2x2 � 2x2

y

2

v

. (10)

Now, define

CS

123

n,k

(v) =
kX

i=

k
2

cs

123

n,k,i

v

i

and

CS

123

ee

(x, y, v) =
X

n�0

n even

X

k�0

k even

kX

i=

k
2

cs

123

n,k,i

x

n

y

k

v

i =
X

n�0

n even

X

k�0

k even

CS

123

n,k

(v) xn

y

k

.

Multiplying recurrence (6) by v

i and summing over all i from k

2

to k we obtain

CS

123

n,k

(v) =
2� v

1� v

CS

123

n�2,k

(v)� v

k+1

1� v

CS

123

n�2,k

(1) +
v

1� v

CS

123

n�2,k�2

(v)

� v

k+1

1� v

CS

123

n�2,k�2

(1) + cs

123

n�2,k�2,

k�2
2

v

k
2 � cs

123

n�2,k,k

v

k

.

(11)

Observe that

cs

123

n�2,k,k

=
kX

i=

k
2

cs

123

n�4,k,i

+
kX

i=

k
2

cs

123

n�4,k�2,i

= CS

123

n�4,k

(1) + CS

123

n�4,k�2

(1). (12)

Substituting (12) in (11), multiplying (11) by x

n

⇣
y

v

⌘
k

and summing over all possible even

n, k � 4 we get
✓
1� 2� v

1� v

x

2 � x

2

y

2

v(1� v)

◆
CS

123

ee

⇣
x,

y

v

, v

⌘
=

=

✓
� vx

2

1� v

� vx

2

y

2

1� v

� x

4 � x

4

y

2

◆
CS

123

ee

(x, y, 1) +
x

2

y

2

v

P

123

ee

⇣
x,

y

v

, v

⌘
+ (x2 � 1)2,

(13)
where

P

123

ee

⇣
x,

y

v

, v

⌘
(10)

=
v � 2x2

v � x

2

y

2

v � 2x2

v � 2x2

y

2

and obviously
CS

123

ee

(x, y, 1) = CS

123

ee

(x, y).

10



Now, we apply the kernel method (for further details and examples, see [2] and [12]). The
coe�cient of CS

123

ee

�
x,

y

v

, v

�
in (13) vanishes for

v±(x, y) =
1� 2x2 ±

p
�(x, y)

2(1� x

2)
,

where
�(x, y) = 1� 4x2(1� x

2)(1 + y

2).

Hence, substituting v = v�(x, y) in (13) and solving the resulting equation we finally
obtain that

CS

123

ee

(x, y) =
y

2 +
p

�(x, y)

(1 + y

2)
p

�(x, y)
. (14)

The same method, used for the even-odd and the odd-odd case, yields

CS

123

eo

(x, y) =
y(1� 2x2)(1�

p
�(x, y))

2(1� x

2)(1 + y

2)
p

�(x, y)
(15)

and

CS

123

oo

(x, y) =
y(1�

p
�(x, y))

2x(1� x

2)(1 + y

2)
. (16)

The desired generating function C

123(x, y) is now immediately obtained by (4):

C

123(x, y) = 1� y

1� y

2

+
y

2x(1� x)
� y(1� 2x� y)

p
1 + y � 2x2

2x(1� x)
p

1� y

2

p
1� y � 2x2

.

Moreover, evaluating the coe�cients of the series expansions of the generating functions
(14), (15) and (16), we get the following explicit formulae for the number of surjective
centrosymmetric words avoiding 123:

cs

123

2m,2h

=
mX

i=0

(�1)m�i

✓
2i

i

◆✓
i

m� i

◆✓
i� 1

h� 1

◆
, m � 1, h � 1,

cs

123

2m,2h+1

=
mX

i=1

(�1)m�i

✓
2i� 1

m� 1

◆✓
m

i

◆✓
i� 1

h

◆
, m � 1, h � 0,

cs

123

2m+1,2h+1

=
mX

i=0

(�1)m�i

1

i+ 1

✓
2i

i

◆✓
i

m� i

◆✓
i

h

◆
, m � 0, h � 0.

(17)

As already observed, the set S
n,n

corresponds to the set S
n

of permutations of length n.
We recall that, as Egge already proved in [6] (Theorems 2.12 and 2.17), centrosymmetric
permutations avoiding 123 are counted by the central binomial coe�cients and the Catalan
numbers, according to the parity of their length (for a bijective proof, see also [1]). We
submit that this result can be reobtained from the preceding formulae by setting m = h

in the first and last of (17).

11



Now, using relations (2) we finally obtain the formulae for the number of centrosym-
metric words avoiding 123:

c

123

2m,2h

=
mX

i=0

(�1)m�i

✓
2i

i

◆✓
i

m� i

◆✓
i+ h� 1

h� 1

◆
, m � 1, h � 1,

c

123

2m,2h+1

=
mX

i=1

(�1)m�i

m+ 2h

2i

✓
2i

i

◆✓
i

m� i

◆✓
i+ h� 1

h

◆
, m � 1, h � 0,

c

123

2m+1,2h+1

=
mX

i=0

(�1)m�i

1

i+ 1

✓
2i

i

◆✓
i

m� i

◆✓
i+ h

h

◆
, m � 0, h � 0.

(18)

6 The pattern 132

Theorem 6.1 A word � 2 W
n,k

, with n, k � 6, n and k not odd and even respectively,
is a centrosymmetric surjective word that avoids 132 if and only if � is of one of the
following types:

(i) � = k↵1, where ↵ is a centrosymmetric surjective word of length n� 2, that avoids
132, either over the alphabet {2, . . . , k � 1}, or {1, . . . , k};

(ii) � = �↵�

0, where

(a) � = �

1

. . . �

j

is a binary word over the alphabet {k� 1, k}, with �

1

= k� 1 and
�

j

= k, such that it is the longest prefix of � of this kind;

(b) ↵ is a (possibly empty) centrosymmetric surjective word, that avoids 132, either
over the alphabet {3, . . . , k � 2}, or {2, . . . , k � 1};

(c) �

0 = ⇢(�)rc;

(iii) � = �↵�

0, where

(a) � = �

1

�

2

. . . �

j

is a surjective weakly increasing word over the alphabet {�
1

, . . . , �

j

},
with

⌅
k

2

⇧
+ 1  �

1

 k � 2 and �

j

= k, such that it is the longest prefix of � of
this kind;

(b) ↵ is a (possibly empty) centrosymmetric surjective word, that avoids 132, either
over the alphabet {k+2��

1

, . . . , �

1

�1} (if �
1

>

⌅
k

2

⇧
+1), or {k+1��

1

, . . . , �

1

};
(c) �

0 = ⇢(�)rc;

(iv) � is a weakly increasing centrosymmetric surjective word over the alphabet {1, . . . , k}.

Proof. It is easily checked that a word � either of type (i), (ii), (iii) or (iv) is a cen-
trosymmetric surjective word that avoids 132. To prove the converse, let � = �

1

�

2

. . . �

n

be a centrosymmetric surjective word over the alphabet {1, . . . , k} and avoiding 132. First

12



(a) Type (i)

(b) Type (ii)

(c) Type (iii)

(d) Type (iv)

Figure 5. Some examples of the four types of words descripted in Theorem

(6.1).
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of all, observe that we can’t have 2  �

1


⌅
k

2

⇧
, otherwise �

n

= k + 1 � �

1

and hence
the sequence �

1

k�

n

would be an occurrence of 132. Therefore, we analyse the remaining
cases for �

1

.

(i) If �
1

= k then, by centrosymmetry, we have �
n

= 1. Hence, the subword �

2

�

3

. . . �

n�1

is a surjective word either over the alphabet {2, . . . , k� 1} or {1, . . . , k} that avoids
132.

(ii) If �
1

= k � 1, let j be the rightmost position such that �

j

= k. Then, the prefix
� = �

1

. . . �

j

contains only the letters k � 1 and k: otherwise, it would contain an
occurrence of the pattern 213, and hence, by centrosymmetry, � would contain the
pattern 132. It is immediately checked that j 

⌅
n

2

⇧
and that � = �↵�

0, where
�

0 = ⇢(�)rc and, if j 6= n

2

, ↵ is a centrosymmetric surjective word either over the
alphabet {3, . . . , k�2}, or {2, . . . , k�1}. If j = n

2

, ↵ is necessarily the empty word.

(iii) If
⌅
k

2

⇧
+ 1  �

1

 k� 2, then �

1

is necessarily the first letter of a weakly increasing
subword � = �

1

�

2

. . . �

j

, where j 
⌅
n

2

⇧
is the rightmost position such that �

j

= k. If
not, � would contain a 21 pattern that yields a 213 by the surjectivity of �. Moreover,
in order to avoid both 132 and 213 (see relation (1)), we have �

i

 �

1

for every
i > j. Hence, � = �↵�

0, where �

0 = ⇢(�)rc and, if j 6= n

2

, ↵ is a centrosymmetric
surjective word, that avoids 132, either over the alphabet {k + 2 � �

1

, . . . , �

1

� 1}
(if k+2� �

1

 �

1

� 1, i.e. �
1

>

⌅
k

2

⇧
+1), or {k+1� �

1

, . . . , �

1

}. As in the previous
case, if j = n

2

, ↵ is necessarily the empty word.

(iv) If �
1

= 1 then �

n

= k, so, in order to avoid both 132 and 213, the subword �

2

. . . �

n�1

cannot contain any 21 pattern. Therefore, � is weakly increasing.

⇤
Theorem (6.1) allows us to determine a recurrence relation for the number cs

132

n,k

of
k-ary centrosymmetric surjective words of length n that avoid 132. In order to do this, it
is convenient to analyse the first values of n and k. We recall that cs 132

n,k

= 0 if n is odd
and k is even, and we set

cs

132

0,0

= 1, cs

132

n,0

= 0 and cs

132

0,k

= 0 8n, k � 1.

• For k = 1 or k = 2, we have

cs

132

n,1

= 1 8n � 1, (19)

cs

132

n,2

=

⇢
2

n
2 if n � 2, n even

0 if n � 1, n odd.
(20)

• If k = 3 and n � 3, a word � 2 CS
n,3

(132) can be either of type (i), (ii) or (iv) of
Theorem (6.1).

– If � is of type (i) then its central subword ↵ belongs either to CS
n�2,3

(132), or
CS

n�2,1

(132); then, there are cs

132

n�2,3

+ 1 of such words.

14



– If � is of type (ii) then the central subword is necessarily ↵ = 22 . . . 2, so we
have

bn
2 cX

n�=2

2n��2 = 2b
n
2 c�1 � 1

of such words �.

– It is easily checked that there are
⌃
n

2

⌥
� 1 words � of type (iv).

Hence, the preceding considerations lead to the recurrence

cs

132

n,3

= cs

132

n�2,3

+ 2b
n
2 c�1 +

l
n

2

m
� 1,

which yields

cs

132

n,3

=

8
>>><

>>>:

✓
n

2

2

◆
+ 2

n
2 � 2 if n is even

✓
n�1

2

2

◆
+ 2

n�1
2 +

n� 3

2
if n is odd.

• If n, k � 4, denote by cs

132

n,k (i)

, cs 132

n,k (ii)

, cs 132

n,k (iii)

and cs

132

n,k (iv)

the number of elements
of CS

n,k

(132) of type (i), (ii), (iii) and (iv), respectively (see Theorem 6.1). Of
course, we have

cs

132

n,k

= cs

132

n,k (i)

+ cs

132

n,k (ii)

+ cs

132

n,k (iii)

+ cs

132

n,k (iv)

.

We deduce a recurrence formula for each one of the sequences cs 132

n,k (·).

(i) It is immediately verified that

cs

132

n,k (i)

= cs

132

n�2,k

+ cs

132

n�2,k�2

.

(ii) Fix the length n

�

of the subword �. There are 2n��2 of such subwords, and
each one matches with cs

132

n�2n� ,k�2

+ cs

132

n�2n� ,k�4

surjective subwords ↵. Hence,

cs

132

n,k (ii)

=

bn
2 cX

n�=2

2n��2

⇣
cs

132

n�2n� ,k�2

+ cs

132

n�2n� ,k�4

⌘
.

(iii) Of course, cs 132

n,k (iii)

6= 0 if and only if n � 6 and k � 5. Fix the length n

�

and the number of symbols k
�

of the subword �. We have 3  n

�


⌅
n

2

⇧
and

3  k

�

 min{n
�

,

⌃
k

2

⌥
}. There are

�
n��1

n��k�

�
of such subwords, and each of them

is associated with:

⇤ cs

132

n�2n� ,k�2k�+2

+ cs

132

n�2n� ,k�2k�
subwords ↵, if k � 6 and k

�


⌅
k

2

⇧
;

⇤ the only subword ↵ = k+1

2

k+1

2

· · · k+1

2

, if k � 5 is odd and k

�

= k+1

2

.
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Hence, for n � 6 and k = 5, we have k

�

= 3 and then

cs

132

n,5 (iii)

=

bn
2 cX

n�=3

✓
n

�

� 1

n

�

� 3

◆
=

✓⌅
n

2

⇧

3

◆
,

while, for n, k � 6,

cs

132

n,k (iii)

=

bn
2 cX

n�=3

min{n� ,b k
2c}X

k�=3

✓
n

�

� 1

n

�

� k

�

◆⇣
cs

132

n�2n� ,k�2k�+2

+ cs

132

n�2n� ,k�2k�

⌘
+

+�

(k odd)

bn
2 cX

n�=d k
2e

✓
n

�

� 1

n

�

�
⌃
k

2

⌥
◆

=

=

bn
2 cX

n�=3

min{n� ,b k
2c}X

k�=3

✓
n

�

� 1

n

�

� k

�

◆⇣
cs

132

n�2n� ,k�2k�+2

+ cs

132

n�2n� ,k�2k�

⌘
+

+�

(k odd)

✓⌅
n

2

⇧

k+1

2

◆
.

(iv) The number of weakly increasing centrosymmetric surjective words is trivially

cs

132

n,k (iv)

=

✓⌃
n

2

⌥
� 1⌃

k

2

⌥
� 1

◆
.

Hence, for n, k � 4, we conclude that

cs

132

n,k

= cs

132

n�2,k

+ cs

132

n�2,k�2

+

bn
2 cX

n�=2

2n��2

⇣
cs

132

n�2n� ,k�2

+ cs

132

n�2n� ,k�4

⌘
+

+�

(n�6^k�6)

bn
2 cX

n�=3

min{n� ,b k
2c}X

k�=3

✓
n

�

� 1

n

�

� k

�

◆⇣
cs

132

n�2n� ,k�2k�+2

+ cs

132

n�2n� ,k�2k�

⌘
+

+�

(k�5^kodd)

✓⌅
n

2

⇧

k+1

2

◆
+

✓⌃
n

2

⌥
� 1⌃

k

2

⌥
� 1

◆
.

Further computations in the special cases k = 4 and k = 5 yield

cs

132

n,4

=

✓
n

2

2

◆
+ n 2

n
2�2 � 1 if n is even, n � 2,

cs

132

n,5

=

8
>><

>>:

n 2
n�4
2 +

n

4 + 4n3 � 100n2 � 208n+ 384

384
if n is even, n � 2

(n+ 7) 2
n�5
2 +

n

4 � 58n2 � 384n� 327

384
if n is odd, n � 1.
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n/k 0 1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
2 0 1 2 0 0 0 0 0 0 0
3 0 1 0 2 0 0 0 0 0 0
4 0 1 4 3 4 0 0 0 0 0
5 0 1 0 6 0 4 0 0 0 0
6 0 1 8 9 14 6 8 0 0 0
7 0 1 0 13 0 19 0 8 0 0
8 0 1 16 20 37 28 42 12 16 0
9 0 1 0 25 0 59 0 52 0 16

Table 1. The first values for cs 132

n,k

. The values for 6  k  n  9 have

been computed directly.

Routine calculations yield the following recurrence.

Formula 6.2 The number cs

132

n,k

of k-ary centrosymmetric surjective words of length n

that avoid 132, with n � 10 and k � 6, is given by the following recurrence relation:

cs

132

n,k

= 6cs 132

n�2,k

+ 2cs 132

n�2,k�2

� 14cs 132

n�4,k

� 9cs 132

n�4,k�2

+ 16cs 132

n�6,k

+

15cs 132

n�6,k�2

+ cs

132

n�6,k�4

� 9cs 132

n�8,k

� 11cs 132

n�8,k�2

� 2cs 132

n�8,k�4

+

2cs 132

n�10,k

+ 3cs 132

n�10,k�2

� cs

132

n�10,k�6

.

Multiplying the above equation by x

n

y

k, summing over all even n and k (with n � 10
and k � 6) and solving the resulting equation we obtain that

CS

132

ee

(x, y) =

1� 6x2 + 14x4 � 16x6 + 9x8 � 2x10+
+x

4

y

2 � 3x6

y

2 + 3x8

y

2 � x

10

y

2 � x

6

y

4 + x

8

y

4 + x

10

y

4

(1� 2x2 + x

4 + x

4

y

2)(1� 4x2 + 5x4 � 2x6 � 2x2

y

2 + 4x4

y

2 � x

6

y

2 + x

6

y

4)
.

(21)
Similarly,

CS

132

eo

(x, y) =
x

2

y (1 + x

2

y

2 � 5x2 + 9x4 � 2x4

y

2 � 7x6 + 2x8 � x

8

y

4 + x

8

y

2)

(1� 2x2 + x

4 + x

4

y

2)(1� 4x2 + 5x4 � 2x6 � 2x2

y

2 + 4x4

y

2 � x

6

y

2 + x

6

y

4)
(22)

and

CS

132

oo

(x, y) =
xy (1� 3x2 + 2x4)

1� 4x2 + 5x4 � 2x6 � 2x2

y

2 + 4x4

y

2 � x

6

y

2 + x

6

y

4

. (23)

Even in this case, in the series expansions of (21) and (23) the coe�cients of the monomials
associated to words of length equal to their alphabet cardinality agree with Egge’s result
(see [6]). Hence, for every m � 0 we have

cs

132

2m,2m

= 2m and cs

132

2m+1,2m+1

= 2m.
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Using relation (4), we finally obtain that the generating function for the number of cen-
trosymmetric words that avoid 132 is the rational function

C

132(x, y) =
↵(x, y)

�(x, y)
,

where

↵(x, y) =

1� 16x6 � 2x10 + 8x4

y

3 � 5x4

y � 17x6

y

3

+9x8 � 6x2 � 41x4

y

2 + 14x4 + xy + 45x6

y

2 + 18x2

y

2

�3y2 � 43x6

y

4 � 24x8

y

2 + 22x8

y

4 + 5x10

y

2 � 3x10

y

4 � 7x7

y

�18x2

y

4 + 3y4 + 40x4

y

4 � 8x5

y

7 + 5x3

y

7 � xy

7 + 4x7

y

7 + 3xy5 + 25x5

y

5

�15x3

y

5 � 4x9

y

3 + 2x9

y

5 + 15x3

y

3 � 3xy3 � 15x7

y

5 + 9x5

y + 18x7

y

3 + 2x9

y

�5x3

y � 26x5

y

3 � 13x4

y

6 � 7x8

y

6 + 6x2

y

6 � y

6 � 3x10

y

3 � x

2

y

3

+7x6

y

5 + 13x8

y

3 + x

6

y

7 � 6x8

y

5 � x

2

y

5 � x

4

y

5 � 2x4

y

7

+x

2

y

7 + 14x6

y

6 + 9x6

y � 7x8

y + x

2

y + 2x10

y

and

�(x, y) =
(1� y

2)(1� 2x2 + x

4 + 2x2

y

2 � y

2)
(1� 2x6 + 3x6

y

2 � 6x4

y

2 + x

4

y

4 + 5x4 + 6x2

y

2 � 2x2

y

4 � 4x2 + y

4 � 2y2).
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