GENERALIZATION OF A STATISTIC ON LINEAR DOMINO ARRANGEMENTS

TOUFIK MANSOUR AND MARK SHATTUCK

ABSTRACT. In this paper, we generalize an earlier statistic on square-and-domino tilings by considering only those squares covering a multiple of k, where k is a fixed positive integer. We consider the distribution of this statistic jointly with the one that records the number of dominos in a tiling. We derive both finite and infinite sum expressions for the corresponding joint distribution polynomials, the first of which reduces when $k = 1$ to a prior result. The cases $q = 0$ and $q = -1$ are noted for general k. Finally, the case $k = 2$ is considered specifically, where further results may be given, including a combinatorial proof when $q = -1$.

1. INTRODUCTION

Let F_n be the Fibonacci number defined by the recurrence $F_n = F_{n-1} + F_{n-2}$ if $n \geq 2$, with initial conditions $F_0 = 0$ and $F_1 = 1$. See, for example, sequence A000045 in [12]. Let $G_n = G_n(t)$ be the Fibonacci polynomial defined by $G_n = G_{n-1} + tG_{n-2}$ if $n \geq 2$, with $G_0 = 0$ and $G_1 = 1$; note that $G_n(1) = F_n$ for all n. See, for example, [10]. Finally, the q-binomial coefficient \(\binom{x}{k}_q \) is defined by

\[
\binom{x}{k}_q = \begin{cases}
\prod_{i=1}^{k} \frac{1-q^{x-i+1}}{1-q^i}, & \text{if } k \geq 0; \\
0, & \text{if } k < 0.
\end{cases}
\]

Polynomial generalizations of F_n have arisen in connection with statistics on binary words [3], Morse code sequences [4], lattice paths [5], and linear domino arrangements [10, 11]. Let us recall now a statistic related to domino arrangements. If $n \geq 1$, then let F_n denote the set of coverings of the numbers 1, 2, …, n, arranged in a row by indistinguishable dominos and indistinguishable squares, where pieces do not overlap, a domino is a rectangular piece covering two numbers, and a square is a piece covering a single number. The members of F_n are also called (linear) tilings or domino arrangements. (If $n = 0$, then F_0 consists of the empty tiling having length zero.)

Note that members of F_n correspond uniquely to words in the alphabet $\{d, s\}$ comprising i d's and $n-2i$ s's for some i, $0 \leq i \leq \lfloor \frac{n}{2} \rfloor$. In what follows, we will frequently identify tilings c by such words $c_1c_2\cdots$. For example, if $n = 4$, then $F_4 = \{dd, dss, sds, ssd, sss\}$. Note that $|F_n| = F_{n+1}$ for all n. Given $\pi \in F_n$, let $\rho(\pi)$ denote the sum of the numbers covered by squares in π. For example, if $n = 15$ and $\pi = sds^2d^2sds^2s \in F_{15}$ (see Figure 1 below), then $\rho(\pi) = 1 + 4 + 5 + 10 + 15 = 35$.

![Figure 1. The tiling $\pi = sds^2d^2sds^2s \in F_{15}$ has $\rho(\pi) = 35.$](image)

Date: 2013-06-14.

2000 Mathematics Subject Classification. 11B39, 05A15.

Key words and phrases. tilings, Fibonacci numbers, polynomial generalization.
The statistic ρ was introduced in [11], where its distribution was studied on r-mino arrangements. Let $v(\pi)$ denote the number of dominos in the tiling π. Then the joint distribution for the ρ and v statistics on \mathcal{F}_n is given by

$$\sum_{\pi \in \mathcal{F}_n} q^{\rho(\pi)} t^{v(\pi)} = \sum_{j=0}^{n} q^{\left(\frac{n-2j+1}{2}\right)} \binom{n-j}{j} t^j, \quad n \geq 0,$$

where q and t are indeterminates. Equation (1) is the $r = 2$ case (corresponding to square-and-domino tilings) of [11, Theorem 2.1], which is a result on more general r-mino arrangements. Here, we will provide a different generalization of (1). Note that (1) reduces to the well-known formula $F_{n+1} = \sum_{j=0}^{n} \binom{n-j}{j}$ when $q = t = 1$.

Recently, generalizations of the Fibonacci sequence have been studied which specify the recurrence for each value of the index mod k, where k is a fixed positive integer. For example, the recurrence

$$Q_m = a_j Q_{m-1} + b_j Q_{m-2}, \quad m \equiv j \pmod{k},$$

with $Q_0 = 0$ and $Q_1 = 1$, was considered in [8], where a Binet-like formula is derived. See also [6] for the case when $b_j = 1$ for all j and [13] for the case $k = 2$. These generalizations so far have been studied primarily from an algebraic standpoint such as through the use of generating functions [6] or orthogonal polynomials [8]. In [7], a special case of (2) and a closely related sequence are studied from a more combinatorial viewpoint in terms of statistics on linear tilings and new generalizations of F_n are obtained which extend prior ones.

In this paper, we continue this study by considering a generalization of the ρ statistic defined above, where one looks only at squares that cover multiples of k. More precisely, let ρ_k record the sum divided by k of all the multiples of k which are covered by squares within a member of \mathcal{F}_n. Note that ρ_k reduces to ρ when $k = 1$.

In the next section, we obtain an explicit formula for all k (see Theorem 2.2 below) for the joint distribution

$$a_n^{(k)}(q, t) := \sum_{\pi \in \mathcal{F}_n} q^{\rho_k(\pi)} t^{v(\pi)}.$$

This yields an infinite family of q-generalizations for the numbers $G_n(t)$ defined above, and setting $q = 1$ yields seemingly new expressions for $G_n(t)$. When $k = 1$ in our formula, we obtain the explicit expression (1) above, but with a different proof than that given in [11]. We also note some special cases of q and provide an infinite expansion for $a_n^{(k)}(q, t)$ (see Theorem 2.7 below). In the third section, we consider specifically the case $k = 2$, where further combinatorial results may be given. In particular, we provide a combinatorial proof explaining the values of $a_n^{(2)}(-1, 1)$ as well as an explicit expression for the sum of the ρ_2 values taken over all the members of \mathcal{F}_n. Note that ρ_2 records half the sum of the even numbers covered by squares within a tiling.

2. General Formulas

Suppose k is a fixed positive integer. Given $\pi \in \mathcal{F}_n$, let $v(\pi)$ denote the number of dominos of π and let $\rho_k(\pi)$ denote the sum divided by k of all the multiples of k covered by squares of π. For example, if $\pi = s^2 d^3 s d s d s d s d^2 d^2 \in \mathcal{F}_{25}$ (see Figure 2 below), then $v(\pi) = 9$ and

$$\rho_3(\pi) = \frac{9 + 12 + 15 + 21}{3} = 19.$$
If \(q \) and \(t \) are indeterminates, then define the distribution polynomial \(a_n^{(k)}(q, t) \) by
\[
a_n^{(k)}(q, t) := \sum_{\pi \in \mathcal{F}_n} q^{\rho_k(\pi)} t^{v(\pi)}, \quad n \geq 1,
\]
with \(a_n^{(0)}(q, t) := 1 \). For example, if \(n = 6 \) and \(k = 3 \), then
\[
a_6^{(3)}(q, t) = 2t^2 + t^3 + q(1 + t)(t + 2qt + q^2 + q^2t).
\]
Note that \(a_n^{(k)}(1, t) = G_{n+1} \) for all \(k \) and \(n \).

![Figure 2](image_url) The tiling \(\pi = s^d d^3 ds ds d^2 s^d \in \mathcal{F}_5 \) has \(\rho_3(\pi) = 19 \).

In what follows, we will often suppress arguments and write \(a_n \) for \(a_n^{(k)}(q, t) \). Considering whether the last piece within a member of \(\mathcal{F}_n \) is a square or a domino yields the recurrence
\[
a_n = q^n a_{n-1} + ta_{n-2}, \quad n \geq 2,
\]
if \(n \) is divisible by \(k \), and the recurrence
\[
a_n = a_{n-1} + ta_{n-2}, \quad n \geq 2,
\]
if \(n \) is not, with the initial conditions \(a_0 = 1 \) and
\[
a_1 = \begin{cases} q, & \text{if } k = 1; \\ 1, & \text{if } k > 1. \end{cases}
\]

To solve recurrences (3) and (4), we first ascertain an explicit formula for the generating function of the numbers \(a_n \).

Theorem 2.1. We have
\[
\sum_{n \geq 0} a_n x^n = \left(\frac{\sum_{r=0}^{k-1} x^r G_{r+1} - tx^k \sum_{r=0}^{k-1} (-tx)^r G_{k-1-r}}{\prod_{i=0}^{j} (1 - 2tq^i x^k G_{k-1} - (-t)^k q^{2i} x^{2k})} \right) \sum_{j \geq 0} \frac{G_k q^{j+1} x^j}{x^{jk}}.
\]

Proof. It is more convenient to first consider the generating function for the numbers \(a_n' := a_{n-1}^{(k)}(q, t) \). Then the sequence \(a_n' \) has initial values \(a_0' = 0 \) and \(a_1' = 1 \) and satisfies the recurrences
\[
a_{mk+r}' = a_{mk+r-1}' + ta_{mk+r-2}', \quad 2 \leq r \leq k \quad \text{and} \quad m \geq 0,
\]
with
\[
a_{mk+1}' = q^m a_{mk}' + ta_{mk-1}', \quad m \geq 1.
\]
Let
\[
a_r(x) = \sum_{m \geq 0} a_{mk+r}' x^m,
\]
where \(r \in [k] \). Then multiplying the recurrences (6) and (7) by \(x^m \), and summing the first over \(m \geq 0 \) and the second over \(m \geq 1 \), gives
\[
a_r(x) = a_{r-1}(x) + ta_{r-2}(x), \quad 3 \leq r \leq k,
\]
\[
a_2(x) = a_1(x) + txa_k(x),
\]
\[
a_1(x) = 1 + qxa_k(qx) + txa_{k-1}(x).
\]
By induction on r, we obtain
\[a_r(x) = G_{r-1} a_2(x) + t G_{r-2} a_1(x), \quad 2 \leq r \leq k. \]
Therefore,
\[a_r(x) = G_{r-1} (a_1(x) + t x a_k(x)) + t G_{r-2} a_1(x), \]
which implies
\[a_r(x) = G_r a_1(x) + t x G_{r-1} a_k(x), \quad 2 \leq r \leq k. \]
Taking $r = k$ in (8) gives
\[a_1(x) = \frac{1 - txG_{k-1}}{G_k} a_k(x). \]

By induction on r, we obtain
\[a_r(x) = \frac{G_r + (-t)^r x G_{k-r}}{G_k} a_k(x), \quad 1 \leq r \leq k. \]

Since $a_1(x) = 1 + q x a_k(q x) + t x a_{k-1}(x)$, the last relation may be rewritten as
\[a_k(x) = \frac{G_k}{1 - 2 tx G_{k-1} + (-t)^k x^2} + \frac{qxG_k}{1 - 2 tx G_{k-1} + (-t)^k x^2} a_k(q x). \]

Iterating (9) yields
\[a_k(x) = \sum_{j=0}^{\infty} \frac{G_k^{j+1} q^{(j+1) \frac{j}{2}} x^j}{\prod_{i=0}^{j} (1 - 2 t q^i x G_{k-1} + (-t)^k q^{2i} x^2)}. \]

Thus, we have
\[a_r(x) = (G_r + (-t)^r x G_{k-r}) \sum_{j=0}^{\infty} \frac{G_k^j q^{(j+1) \frac{j}{2}} x^j}{\prod_{i=0}^{j} (1 - 2 t q^i x G_{k-1} + (-t)^k q^{2i} x^2)}, \quad 1 \leq r \leq k, \]
which implies
\[
\sum_{n \geq 0} a_n x^n = \sum_{r=1}^{k} \sum_{m \geq 0} a_{m+r} x^{mk+r} = \sum_{r=1}^{k} x^r a_r(x^k) \\
= \left(\sum_{r=1}^{k} x^r G_r + x^k \sum_{r=1}^{k} (-tx)^r G_{k-r} \right) \sum_{j=0}^{\infty} \frac{G_k^j q^{(j+1) \frac{j}{2}} x^j}{\prod_{i=0}^{j} (1 - 2 t q^i x G_{k-1} + (-t)^k q^{2i} x^{2k})}.
\]

The result now follows since
\[\sum_{n \geq 0} a_n x^n = \sum_{n \geq 0} a'_n x^n = \frac{1}{x} \sum_{n \geq 0} a'_n x^n. \]

We now derive an explicit formula for the polynomials $a_n^{(k)}(q, t)$.

Theorem 2.2. If $n = km + r$, where $m \geq 0$ and $0 \leq r \leq k - 1$, then
\[a_n = G_{r+1} S(m) + (-t)^{r+1} G_{k-1-r} S(m-1), \]
where
\[S(m) = \sum_{j=0}^{m} (-1)^j G_j^j q^{(j+1) \frac{j}{2}} t^{m-(k-1)j} \sum_{a=j}^{m} a^a d^{m+a-j} \binom{a}{j} \binom{m+j-a}{j} q^j, \quad m \geq 0, \]
with $S(-1) = 0$ and
\[d_\pm = G_{k-1} \pm \sqrt{G_k G_{k-2}}. \]
Proof. Note first that
\[d_{\pm} = G_{k-1} \pm \sqrt{G_{k-1}^2 - (-t)^{k-2}}, \]
by the identity \(G_m^2 - G_{m+1}G_{m-1} = (-t)^{m-1} \), which can be shown by induction (see, e.g., [2, Identity 8] for the \(t = 1 \) case). Then
\[1 - 2tq^ixG_{k-1} + (-t)^kq^{2i}x^2 = (1 - d_+tq^ix)(1 - d_-tq^ix). \]

Let \(n = mk + r \), where \(m \geq 0 \) and \(0 \leq r \leq k-1 \). By Theorem 2.1, we have
\[a_n = G_{r+1} [x^m] (a(x)) + (-t)^{r+1} G_{k-1-r} [x^{m-1}] (a(x)), \]
where
\[a(x) = \frac{G_k^j q^{(j+1)} x^j}{\prod_{i=0}^j (1 - d_+tq^i x)(1 - d_-tq^i x)}. \]
Using the expansion [1]
\[\frac{y^j}{\prod_{i=0}^j (1 - q^i y)} = \sum_{a \geq j} \binom{a}{j}_q y^a \]
and the fact \(d_+d_- = (-t)^{k-2} \), we have
\[
[x^m](a(x)) = \sum_{j \geq 0} [x^m] \left(\frac{G_k^j q^{(j+1)} x^j}{\prod_{i=0}^j (1 - d_+tq^i x)(1 - d_-tq^i x)} \right)
= \sum_{j \geq 0} G_k^j q^{(j+1)} \left[\frac{(d_+tq^j)^j}{\prod_{i=0}^j (1 - d_+tq^i x)} \cdot \frac{(d_-tq^j)^j}{\prod_{i=0}^j (1 - d_-tq^i x)} \right]
= \sum_{j \geq 0} (-1)^{kj} G_k^j q^{(j+1)} t^{m-(k-1)} \sum_{a=j}^m \binom{a}{j}_q (d_+t)^a \cdot \binom{m+j-a}{j}_q (d_-t)^{m+j-a}
= \sum_{j \geq 0} \binom{n}{j}_q (d_+t)^j \cdot \binom{m+j-a}{j}_q,
\]
which completes the proof. \(\square \)

Letting \(k = 1 \) in Theorem 2.2 gives the following expression for \(a_n^{(1)}(q,t) \).

Corollary 2.3. If \(n \geq 0 \), then
\[
a_n^{(1)}(q,t) = \sum_{j=0}^n q^{(n-j+1)} \binom{n-j}{j}_q t^j.
\]
Proof. When \(k = 1 \), we have \(d_\pm = \pm \frac{1}{\sqrt{t}} \) since \(G_0 = 0 \) and \(G_{-1} = \frac{1}{t} \). Taking \(k = 1 \) in (10) then gives

\[
\begin{align*}
a_n^{(1)}(q, t) &= S(n) = \sum_{j=0}^{n} (-1)^j q^{\binom{j+1}{2}} t^n \sum_{a=j}^{n} \binom{a}{j} q^{n-a} \binom{n+j-a}{j} \cdot (-1)^{n-a} q^{n+j-a} \binom{n+j-a}{j} q \\
&= \sum_{j=0}^{n} q^{\binom{j+1}{2}} t^j \sum_{a=j}^{n} (-1)^{n-a} q^{n-j} \binom{a}{j} q^{2n-j-a} \binom{2n-j-a}{n-j} q \\
&= \sum_{j=0}^{n} (-1)^j q^{\binom{n-j+1}{2}} t^j \sum_{a=0}^{j} (-1)^a q^{a+n-j} \binom{a+n-j}{n-j} q^{n-j} \\
&= \sum_{j=0}^{n} (-1)^j q^{\binom{n-j+1}{2}} \binom{n-j}{n-j} q^{j} t^j = \sum_{j=0}^{n} q^{\binom{n-j+1}{2}} q^{j} t^j,
\end{align*}
\]

where we have used the identity

\[
\sum_{a=0}^{n-m} (-1)^a q^{a+m} \binom{n-a}{m} = \begin{cases} \binom{n+m}{m} q^2, & \text{if } n \equiv m \pmod{2}; \\ 0, & \text{otherwise,} \end{cases} \quad (0 \leq m \leq n).
\]

Note that (12) may be obtained by writing

\[
\sum_{a \geq 0} (-1)^a \binom{a+m}{m} x^a \cdot \sum_{a \geq 0} \binom{a}{m} x^a = \frac{1}{\prod_{i=0}^{m} (1 + q^i x)} \cdot \frac{x^m}{\prod_{i=0}^{m} (1 - q^i x)} = \frac{x^m}{\prod_{i=0}^{m} (1 - q^{2i} x^2)}
\]

\[
= \sum_{a \geq 0} \binom{a+m}{m} x^{2a+m} q^2,
\]

and extracting the coefficient of \(x^n \) from both sides. \(\square \)

Remark: Formula (11) corresponds to the \(r = 2 \) case of [11, Theorem 2.1], which is a result on more general \(r \)-mino arrangements where no restriction is placed on the positions of \(r \)-minos or squares. The proof there was combinatorial, though it does not seem that it can be extended to prove Theorem 2.2 above.

Taking \(q = 1 \) and \(r = k - 1 \) in (10), and noting \(a_n^{(k)}(1, t) = G_{n+1} \), yields the following identity.
Corollary 2.4. If \(m \geq 0 \) and \(k \geq 1 \), then

\[
G_{(m+1)k} = G_k \sum_{j=0}^{k} (-1)^j G_j t^{m-(k-1)} j \sum_{a=j}^{m} d_+^a d_-^{m-j-a} \binom{a}{j} \binom{m+j-a}{j},
\]

where \(d_\pm = G_{k-1} \pm \sqrt{G_k G_{k-2}} \).

We have the following explicit formula for the number of members of \(\mathcal{F}_n \) (weighted according to the value of \(v \)) in which no square covers a multiple of \(k \).

Corollary 2.5. If \(n = km + r \), where \(m \geq 0 \) and \(0 \leq r \leq k-1 \), then

\[
d_n^{(k)}(0, t) = t^m G_{r+1} T(m) + (-1)^{r+1} t^{m+r} G_{k-1-r} T(m-1),
\]

where

\[
T(m) = \sum_{i=0}^{m} \binom{m+1}{2i+1} G_{k-1}^{m-2i} (G_k G_{k-2})^i.
\]

Proof. Setting \(q = 0 \) in (10) implies

\[
a_m^{(k)}(0, t) = t^m G_{r+1} \sum_{a=0}^{m} d_+^a d_-^{m-a} + (-1)^{r+1} t^{m+r} G_{k-1-r} \sum_{a=0}^{m-1} d_+^a d_-^{m-1-a},
\]

with

\[
\frac{\sum_{a=0}^{m} d_+^a d_-^{m-a}}{d_+ - d_-} = \frac{1}{2\sqrt{G_k G_{k-2}}} \sum_{i=0}^{m} \binom{m+1}{2i+1} G_{k-1}^{m-2i} (\sqrt{G_k G_{k-2}})^{2i+1}.
\]

For example, when \(k = 1 \) in (14), we see that \(a_n^{(1)}(0, t) \) equals \(t^2 \) for \(n \) even and zero for \(n \) odd. Taking \(k = 2 \) in (14) gives \(a_n^{(2)}(0, t) = t^m \) and \(a_n^{(2)}(0, t) = (m+1) t^m \) for \(m \geq 0 \). These formulas are readily seen directly.

We next consider the case \(q = -1 \). Recall that for any generating function in \(q \), the evaluation at \(q = -1 \) gives the difference in cardinalities between those members of a structure having an even value for the statistic counted by \(q \) with those having an odd value. Letting \(q = -1 \) and \(t = 1 \) in (5) gives the following formulas, where \(f_i := \sum_{n \geq 0} a_n^{(i)}(-1, 1) x^n \):

\[
f_1 = \frac{(1 - x - x^3 - x^4)(1 - x^6)}{1 - x^{12}},
\]
\[
f_2 = \frac{(1 + x + x^3 + x^4 + 2x^5 - x^6 + x^7 + x^9 - x^{10})(1 - x^{12})}{1 - x^{24}},
\]
\[
f_3 = \frac{1 + x + 2x^2 - x^3 + x^4}{1 - x^6},
\]
\[
f_4 = \frac{(1 + x + 2x^2 + 3x^3 - 2x^4 + x^5 - x^6)(1 + x^4 + x^8)}{1 - 5x^8 + x^{16}}.
\]

The first three generating functions show that the sequences \(a_n^{(i)}(-1, 1), i = 1, 2, 3 \), are periodic with periods 12, 24, and 6, respectively. The sequences \(a_n^{(1)}(-1, 1) \) and \(a_n^{(2)}(-1, 1) \) are seen to satisfy the stronger conditions \(p_{n+6} = -p_n \) and \(p_{n+12} = -p_n \) for all \(n \geq 0 \). From the appearance of the generating function \(f_4 \), it seems that the sequence \(a_n^{(4)}(-1, 1) \) would not be periodic, which is indeed the case. It turns out that there are no other values of \(k \) for which the sequence \(a_n^{(k)}(-1, 1) \) is periodic.
Proposition 2.6. The sequence $a_n^{(k)}(-1, 1)$ is never periodic (or eventually periodic) when $k \geq 4$.

Proof. Substituting $q = -1$ and $t = 1$ into the infinite part of (5) gives

$$\sum_{j=0}^{\infty} \prod_{i=0}^{j} (1 - 2F_{k-1}(-1)^j x^k + (-1)^k x^{2k}) = \sum_{m=0}^{\infty} \frac{F_{2m}^{2m}(-1)^{m} x^{2mk}}{(1 - 2F_{k-1}(-1)^k x^k + (-1)^k x^{2k})(1 + (1 + (-1)^k x^{2k})^2 - 4F_{k-1}^2(-1)^k x^{2k}) m}.$$

Then the equation above for any polynomial (possibly zero), and $d(x)$ is of the form $d(x) = x^{m+1} e(x)$, with m denoting the degree of $c(x)$ (we take m to be -1 if $c(x)$ is the zero polynomial) and $e(x)$ being a polynomial of degree at most $\ell - 1$. Then $(1 - x^\ell)(a(x) - b(x) c(x)) = b(x) d(x)$ implies that the equation $b(x) = 0$ must have at least one root of unity among its roots since $e(x) = \frac{d(x)}{x^{m+1}}$ is of degree at most $\ell - 1$, with $e(x)$ not identically zero.

Then the equation $b(u) = 0$, where $u = x^\frac{1}{2\ell}$, must also have at least one root of unity among its roots, since r a root of unity implies r^{2k} is as well.

The equation $b(u) = 0$ is given by

$$1 + (F_k^2 - 4F_{k-1}^2 + 2(-1)^k) u + u^2 = 0.$$

If $k \geq 4$, then

$$F_k^2 - 4F_{k-1}^2 + 2(-1)^k \leq -5,$$

since

$$F_k^2 - 4F_{k-1}^2 = (F_k - 2F_{k-1})(F_k + 2F_{k-1}) = -F_{k-3}(F_k + 2F_{k-1}) \leq -7.$$

Note that an equation of the form

$$1 - au + u^2 = 0, \quad a \geq 5,$$

has (real) roots $\frac{a}{2} \pm \frac{\sqrt{a^2 - 4}}{2}$. So the only possible roots of unity that are also roots to such an equation are ± 1. However, the equations $\frac{a}{2} + \frac{\sqrt{a^2 - 4}}{2} = \pm 1$ and $\frac{a}{2} - \frac{\sqrt{a^2 - 4}}{2} = \pm 1$ have solutions $a = \pm 2$ in each case, but $a \geq 5$. Thus no roots of unity satisfy equation (15) when $k \geq 4$, which implies the result.

\square
Remark: When \(k = 1, 2, 3 \), the equation (15) is satisfied by roots of unity and it works out that the sequences \(a^{(k)}_n(-1, 1) \) are periodic in these cases.

Let \((x : q)_s = \prod_{i=0}^{s-1} (1 - q^i x)\). We conclude this section with the following infinite expansion for the numbers \(a^{(k)}_n(q, t) \) for all \(k \geq 1 \).

Theorem 2.7. If \(n = km + r \), where \(m \geq 1 \) and \(0 \leq r \leq k - 1 \), then

\[
a_n = t^m G_{r+1} \sum_{s=0}^{\infty} q^{sm} \left(d_+^m b_s + d_-^m c_s \right) + (-1)^{r+1} t^{m+r} G_{k-1-r} \sum_{s=0}^{\infty} q^{s(m-1)} \left(d_+^{m-1} b_s + d_-^{m-1} c_s \right),
\]

where

\[
b_s = \sum_{j \geq s} \frac{(-1)^s G^j_k q^{(j+1) \frac{r_1}{2}} + (r_{1}')^{s} d_+}{t^j (q : q)_s(q : q)_{j-s} \prod_{i=0}^j (q^i d_+ - q^i d_-)},
\]

\[
c_s = \sum_{j \geq s} \frac{(-1)^s G^j_k q^{(j+1) \frac{r_1}{2}} + (r_{1}^{1'})^{s} d_-}{t^j (q : q)_s(q : q)_{j-s} \prod_{i=0}^j (q^i d_- - q^i d_+)},
\]

and

\[
d_\pm = G_{k-1} \pm \sqrt{G_{k-1} G_{k-2}}.
\]

Proof. Note first that \(d_\pm = G_{k-1} \pm \sqrt{G_{k-1} (-t)^{k-2}} \), as in the proof of Theorem 2.2, and thus

\[1 - 2t q^s x G_{k-1} + (-t)^k q^{2s} x^2 = (1 - \rho_s x)(1 - \theta_s x),\]

where \(\rho_s = d_+ t q^s \) and \(\theta_s = d_- t q^s \).

Let \(n = mk + r \), where \(m \geq 1 \) and \(0 \leq r \leq k - 1 \). By partial fractions, let us write

\[
\sum_{j \geq s} \frac{G^j_k q^{(j+1) \frac{r_1}{2}} x^j}{\prod_{i=0}^j (1 - 2t q^i x G_{k-1} + (-t)^k q^{2i} x^2)} = \sum_{s=0}^{\infty} \frac{b_s}{1 - \rho_s x} + \sum_{s=0}^{\infty} \frac{c_s}{1 - \theta_s x},
\]

where \(b_s \) and \(c_s \) are constants to be determined. By Theorem 2.1,

\[
a_n = G_{r+1} [x^m] \left(\sum_{j \geq s} \frac{G^j_k q^{(j+1) \frac{r_1}{2}} x^j}{\prod_{i=0}^j (1 - 2t q^i x G_{k-1} + (-t)^k q^{2i} x^2)} \right) + (-t)^{r+1} G_{k-1-r} [x^{m-1}] \left(\sum_{j \geq s} \frac{G^j_k q^{(j+1) \frac{r_1}{2}} x^j}{\prod_{i=0}^j (1 - 2t q^i x G_{k-1} + (-t)^k q^{2i} x^2)} \right)
\]

\[= G_{r+1} [x^m] \left(\sum_{s=0}^{\infty} \frac{b_s}{1 - \rho_s x} + \sum_{s=0}^{\infty} \frac{c_s}{1 - \theta_s x} \right) + (-t)^{r+1} G_{k-1-r} [x^{m-1}] \left(\sum_{s=0}^{\infty} \frac{b_s}{1 - \rho_s x} + \sum_{s=0}^{\infty} \frac{c_s}{1 - \theta_s x} \right)
\]

\[= G_{r+1} \sum_{s=0}^{\infty} (b_s \rho_s^m + c_s \theta_s^m) + (-t)^{r+1} G_{k-1-r} \sum_{s=0}^{\infty} (b_s \rho_s^{m-1} + c_s \theta_s^{m-1}).
\]
We also have
\[
\begin{align*}
b_s &= \sum_{j=s} \frac{G_k^j q^{(i+1)}}{\rho_s^j \prod_{i=0}^{s-1} (1 - \rho_i / \rho_s) \prod_{i=s+1}^j (1 - \rho_i / \rho_s) \prod_{i=0}^j (1 - \theta_i / \rho_s)} \\
&= \sum_{j=s} \frac{(-1)^s G_k^j q^{(i+1)} \rho_s^{j+1}}{t j \prod_{i=0}^{s-1} (q^i - q^s) \prod_{i=s+1}^j (q^s - q^i) \prod_{i=0}^j (d_+ t q^s - d_- t q^i)} \\
&= \sum_{j=s} \frac{(-1)^s G_k^j q^{(i+1) + (\tau_1^s)} d_+}{t^j (q : q)_s (q : q) j - \prod_{i=0}^j (q^s d_+ - q^i d_-)}
\end{align*}
\]
and, similarly,
\[
c_s = \sum_{j=0} (-1)^s G_k^j q^{(i+1) + (\tau_1^s) + s} d_-
\]
which gives (16). \(\square\)

3. The Case \(k = 2\)

In this section, we consider further results concerning the polynomial sequence \(a_n^{(2)} = a_n^{(2)}(q, t)\). Taking \(k = 2\) in (10), and noting \(d_+ = d_- = 1\) in this case, gives the explicit formulas
\[
a^{(2)}_{2m} = \sum_{j=0}^{m} q^{(i+1)} t^{m-j} \sum_{a=j}^{m} \binom{a}{j} \binom{m+j-a}{j} \rho_s^{j+1} \\
- t \sum_{j=0}^{m-1} q^{(i+1)} t^{m-1-j} \sum_{a=j}^{m-1} \binom{a}{j} \binom{m+j-1-a}{j} \rho_s^{j+1}
\]
(17)
\[
a^{(2)}_{2m+1} = \sum_{j=0}^{m} q^{(i+1)} t^{m-j} \sum_{a=j}^{m} \binom{a}{j} \binom{m+j-a}{j} \rho_s^{j+1}
\]
(18)

Though we are unable to give simpler expressions for the polynomials (17) and (18), they are seen to be solutions to the following relatively simple recurrences.

Proposition 3.1. If \(m \geq 2\), then
\[
a^{(2)}_{2m} = (q^m + q t + t) a^{(2)}_{2m-2} - q t^2 a^{(2)}_{2m-4},
\]
with \(a^{(2)}_{0} = 1\) and \(a^{(2)}_{2} = q + t\), and
\[
a^{(2)}_{2m+1} = (q^m + 2t) a^{(2)}_{2m-1} - t^2 a^{(2)}_{2m-3},
\]
with \(a^{(2)}_{1} = 1\) and \(a^{(2)}_{3} = q + 2t\).

Proof. We provide a combinatorial argument, the initial values being clear. To show (19), first note that if \(m \geq 2\), then the total weight of all the members of \(F_{2m}\) ending in \(ss\) is \(q^m a^{(2)}_{2m-2}\), while the weight of those ending in \(d\) is \(t a^{(2)}_{2m-2}\). To determine the weight of the members of \(F_{2m}\) ending in \(ds\), first insert a domino before the final square within any member of \(F_{2m-2}\) ending in \(s\). By subtraction, the total weight of all the members of
Iterating the last equation gives

\[f_{n+1} \] for the sequences \(F \).

By similar reasoning, the total weight of all members of \(F \) is

\[q^m a_{2m-1}^{(2)} + t a_{2m-2}^{(2)} \] and thus

\[f = \sum_{n \geq 0} a_n^{(2)}(q,t)x^n, \]

which we'll also denote by \(f(x) \).

Proposition 3.2. We have

\[f(x; q, t) = (1 + x - tx^2) \sum_{j \geq 0} \frac{q^{\binom{j+1}{2}} x^{2j}}{\prod_{i=0}^{j} (1 - qt^j x^2)^2}. \]

Proof. This follows from setting \(k = 2 \) in (5) above, but we give an alternative derivation using Proposition 3.1 as follows. Let \(b(x) = \sum_{m \geq 0} a_{2m}^{(2)} x^m \). Multiplying (19) by \(x^m \), and summing over \(m \geq 2 \), implies

\[b(x) - 1 - (t + q)x = qx(b(qx) - 1) + tx(1 + q)(b(x) - 1) - qt^2 x^2 b(x), \]

or

\[b(x) = \frac{1}{1 - tx} + \frac{q x}{(1 - tx)(1 - qtx)} b(qx). \]

Iterating the last equation gives

\[b(x) = \sum_{j \geq 0} \frac{q^{\binom{j+1}{2}} x^j}{(1 - tx) \prod_{i=0}^{j} (1 - qt^i x^2)^2} \]

\[= (1 - tx) \sum_{j \geq 0} \frac{q^{\binom{j+1}{2}} x^j}{\prod_{i=0}^{j} (1 - qt^i x^2)^2}. \]

Similarly, if \(c(x) = \sum_{m \geq 0} a_{2m+1}^{(2)} x^m \), then we have

\[c(x) = \sum_{j \geq 0} \frac{q^{\binom{j+1}{2}} x^j}{\prod_{i=0}^{j} (1 - qt^i x^2)^2}, \]

and thus

\[f(x) = b(x^2) + xc(x^2) \]

\[= (1 - tx^2) \sum_{j \geq 0} \frac{q^{\binom{j+1}{2}} x^{2j}}{\prod_{i=0}^{j} (1 - qt^i x^2)^2} + x \sum_{j \geq 0} \frac{q^{\binom{j+1}{2}} x^{2j}}{\prod_{i=0}^{j} (1 - qt^i x^2)^2}, \]

as desired.

Substituting \(q = -1 \) in (21) yields the following result.

Corollary 3.3. We have

\[\sum_{n \geq 0} a_n^{(2)}(-1, t)x^n = \frac{(1 + x + tx^2)(1 + x - tx^2)(1 - x + tx^2)}{1 - (2t^2 - 1)x^4 + t^4 x^8}. \]
Corollary 3.4. The sequence \(a_n^{(2)}(-1, 1) \) is determined by the condition

\[
f(n + 12) = -f(n), \quad n \geq 0,
\]

with the values of \(a_n^{(2)}(-1, 1) \) for \(0 \leq n \leq 11 \) given by \(1, 1, 0, 1, 2, -1, 1, 0, 1, -1, 0 \).

Proof. Letting \(t = 1 \) in (22), we have

\[
\sum_{n \geq 0} a_n^{(2)}(-1, 1) x^n = \frac{(1 + x + x^2)(1 + x - x^2)(1 - x + x^2)}{1 - x^4 + x^8}
\]

\[
= \frac{(1 + x + x^3 + x^5 - x^6)(1 + x^4)(1 - x^{12})}{(1 - x^4 + x^8)(1 + x^4)(1 - x^{12})}
\]

\[
= \frac{(1 + x + x^3 + x^4 + 2x^5 - x^6 + x^7 + x^9 - x^{10})(1 - x^{12})}{1 - x^{24}}
\]

which implies the result. \(\square \)

Combinatorial proof of Corollary 3.4.

Let \(\mathcal{F}'_n \) and \(\mathcal{F}_n^0 \) denote the subsets of \(\mathcal{F}_n \) having even and odd \(\rho_2 \) values, respectively. We first define an involution of \(\mathcal{F}_n \) off of a set \(\mathcal{F}'_n \) which pairs members of \(\mathcal{F}_n^e \) and \(\mathcal{F}_n^o \). Let \(\mathcal{F}'_n \subseteq \mathcal{F}_n \) consist of those tilings of the form

\[(23) \quad \pi = d^i (sd^{2i} s)(sd^{2i} s) \cdots (sd^{2i} s), \]

if \(n \) is even, and of the form

\[(24) \quad \pi = d^i (sd^{2i} s)(sd^{2i} s) \cdots (sd^{2i} s)sd^j, \]

if \(n \) is odd, for some \(\ell \) where \(i, j, i_1, i_2, \ldots, i_\ell \geq 0 \). We define an involution of \(\mathcal{F}_n - \mathcal{F}_n' \) as follows. Given \(\lambda \in \mathcal{F}_n - \mathcal{F}_n' \), let \(j_0 \) denote the smallest index \(j \geq 1 \) such that either

(i) an odd number of dominos occurs between the \((2j - 1)\)-st and \((2j)\)-th squares, or

(ii) an even number of dominos occurs between the \((2j - 1)\)-st and \((2j)\)-th squares with at least one domino between the \((2j)\)-th and \((2j + 1)\)-st squares (or between the \((2j)\)-th square and the end of the tiling, if the \((2j)\)-th square is right-most).

Now exchange positions of the \((2j_0)\)-th square and the domino that precedes it if (i) occurs, or exchange the positions of the \((2j_0)\)-th square and the domino that directly follows it if (ii) occurs. Let \(\lambda' \) denote the resulting member of \(\mathcal{F}_n' \). Then \(\lambda \) and \(\lambda' \) have opposite \(\rho_2 \)-parity (since their \(\rho_2 \) values differ by one), and the mapping \(\lambda \mapsto \lambda' \) is an involution of \(\mathcal{F}_n - \mathcal{F}_n' \). For example, if \(n = 28 \) and \(\lambda = d^3 sd^2 s^3 d^3 sd^2 s \in \mathcal{F}_{28} \), then \(j_0 = 3 \) and \(\lambda' = d^3 sd^2 s^3 d^2 sd^2 s \). See Figure 3 below, where the \((2j_0 - 1)\)-st and \((2j_0)\)-th squares are shaded in each tiling.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| | | |

Figure 3. The tiling \(\lambda \) has \(\rho_2(\lambda) = 35 \), while \(\rho_2(\lambda') = 34 \).

We now consider the signed sum of members of \(\mathcal{F}'_n \), i.e., \(\sum_{\pi \in \mathcal{F}'_n} (-1)^{\rho_2(\pi)} \). First observe that if \(i \) is even in (23) and (24) above, then one may verify that

\[
\rho_2(\pi) \equiv \left(\frac{\ell + 1}{2} \right) \pmod{2},
\]
whereas if \(i\) is odd, then

\[
\rho_2(\pi) \equiv \left(\frac{\ell}{2} \right) (\mod 2).
\]

For the remainder of the proof, we will assume that \(n\) is even, the proof in the odd case being similar. Assume further that \(n = 2m\), where \(m\) is odd, as the argument for the case of even \(m\) is basically the same.

First suppose that \(\pi \in F'_{n}\) is of the form in (23) above, with \(i\) even. Note that \(m\) odd implies \(\ell\) is odd. Let \(\bar{\pi}\) be the tiling of length \(m\) given by

\[
\bar{\pi} = d^i s d^{i_1} s d^{i_2} \cdots s d^{i_{\ell}};
\]

note that all members of \(F_m\) arise uniquely as \(\pi\) ranges over all members of \(F'_{n}\) for which \(i\) is even. Let \(s(\sigma)\) denote the number of squares in a tiling \(\sigma\). Then we have

\[
\rho_2(\pi) \equiv \left(\frac{\ell + 1}{2} \right) \equiv \frac{\ell + 1}{2} = \frac{s(\bar{\pi}) + 1}{2} (\mod 2).
\]

If \(\pi \in F'_{n}\) is of the form in (23) with \(i\) odd, then \(m\) odd implies \(\ell\) is even. Let \(\pi^*\) be the tiling of length \(m - 1\) given by

\[
\pi^* = d^{i-1} s d^{i_1} s d^{i_2} \cdots s d^{i_{\ell}};
\]

note that all members of \(F_{m-1}\) arise uniquely in this manner. Observe that in this case

\[
\rho_2(\pi) \equiv \left(\frac{\ell}{2} \right) \equiv \frac{\ell}{2} = \frac{s(\pi^*)}{2} (\mod 2).
\]

Therefore, we have

\[
\sum_{\pi \in F'_{n}} (-1)\rho_2(\pi) = \sum_{\pi \in F'_{n}, i \text{ even}} (-1)\rho_2(\pi) + \sum_{\pi \in F'_{n}, i \text{ odd}} (-1)\rho_2(\pi)
\]

\[
= \sum_{\sigma \in F_m} (-1)^{(s(\sigma) + 1)/2} + \sum_{\sigma \in F_{m-1}} (-1)^{s(\sigma)/2}.
\]

(25)

To evaluate the last two sums, we consider the statistic \([s(\sigma)/2]\) on \(F_r\) where \(r \geq 1\) and pair members of \(F_r\) of opposite parity with respect to this statistic. Given \(\sigma = \sigma_1 \sigma_2 \cdots \in F_r\), let \(a_o\) denote the smallest index \(a \geq 1\) such that either

(i) \(\sigma_{2a-1} = d\), or
(ii) \(\sigma_{2a-1} \sigma_{2a} = ss\).

Define an involution of \(F_r\) by replacing \(\sigma_{2a-1} = d\) with \(ss\) if (i) occurs or by replacing \(\sigma_{2a-1} \sigma_{2a} = ss\) with \(d\) if (ii) occurs. Note that this mapping changes the value of \([s(\sigma)/2]\) by one, whence it changes its parity. If \(r \equiv 0 (\mod 3)\), then there is a single unpaired tiling in \(F_r\), namely, \((sd)^{r/3}\), which has sign \((-1)^{[r/6]}\). If \(r \equiv 1 (\mod 3)\), then the single unpaired tiling \((sd)^{(r-1)/3}s\) has sign \((-1)^{[r+2]/6}\). If \(r \equiv 2 (\mod 3)\), then each member of \(F_r\) is paired with another of opposite parity, whence the resulting sum is zero.
Theorem 3.5. The coefficient of x^n for $n \geq 0$ in $\frac{d}{dq} f(x; q, t) |_{q=1}$ is given by

$$
\frac{(i \sqrt{7})^{n+1}}{8(4t+1)} \left(\frac{(2n+1)(4t+1)(-1)^n + 2n(n+1) - 4t - 1}{2i \sqrt{t}} U_n(y) + \frac{4t + 1}{2i \sqrt{t}} U_n(y) \right),
$$

where $y = \frac{1}{2i \sqrt{t}}$ and $i = \sqrt{-1}$.

Proof. Differentiating the generating function $f(x; q, t)$ in (21) with respect to q, and substituting $q = 1$, yields

$$
g(x; t) := \left. \frac{d}{dq} f(x; q, t) \right|_{q=1} = \frac{x^2(1 - tx^2)(1 + tx^2)}{(1 - x - tx^2)^3(1 + x - tx^2)^2}.
$$

By partial fractions, we may rewrite this as

$$
g(x; t) = -\frac{3 - 2tx}{16(1 + x - tx^2)} + \frac{2 + x}{8(1 + x - tx^2)^2} - \frac{1 + 2tx}{16(1 - x - tx^2)}
$$

$$
+ \frac{1 - tx}{4t(1 - x - tx^2)} - \frac{1 - 2tx - x}{4t(1 - x - tx^2)^3}.
$$

By the fact that $\sum_{n \geq 0} U_n(t)x^n = \frac{1}{1 - 2tx + x^2}$, we obtain

$$
\sum_{n \geq 1} nU_n(t)x^{n-1} = \frac{2t - 2x}{(1 - 2tx + x^2)^2}
$$

and

$$
\sum_{n \geq 2} n(n - 1)U_n(t)x^{n-2} = \frac{8t^2 - 2 - 12tx + 6x^2}{(1 - 2tx + x^2)^3}.
$$

Applying the preceding to (25) shows that if $m \equiv 0 \pmod{3}$, i.e., if $m = 6p + 3$ for some p (since m was assumed odd) and $n = 12p + 6$, then

$$
ad_n^{(2)}(-1, 1) = \sum_{n \in \mathcal{F}_n'} (-1)^{p_2(x)}
$$

$$
= \sum_{\sigma \in \mathcal{F}_{6p+3}} (-1)^{\lfloor s(\sigma)/2 \rfloor} + \sum_{\sigma \in \mathcal{F}_{6p+2}} (-1)^{\lfloor s(\sigma)/2 \rfloor} = (-1)^{(6p+3)/6} + 0 = (-1)^{b+1}.
$$

Similarly, if $n = 12p + 2$, then $ad_n^{(2)}(-1, 1) = (-1)^{p+1} + (-1)^p = 0$, and if $n = 12p + 10$, then $ad_n^{(3)}(-1, 1) = 0 + (-1)^{p+1} = (-1)^{b+1}$. This yields the values of $ad_n^{(2)}(-1, 1)$ given in Corollary 3.4 above in the case when $n = 2m$, where m is odd. The other cases are obtained similarly. \hfill \square

Remark: Comparable proofs may be given to explain the periodic nature of the $ad_n^{(1)}(-1, 1)$ and $ad_n^{(3)}(-1, 1)$ values witnessed above.

Let $U_n(t)$ denote the n-th Chebyshev polynomial of the second kind defined by $U_n+1(t) = 2tU_n(t) - U_{n-1}(t)$, with $U_0(t) = 1$ and $U_1(t) = 2t$ (see, e.g., [9]).

Theorem 3.5. The coefficient of x^n for $n \geq 0$ in $\frac{d}{dq} f(x; q, t) |_{q=1}$ is given by

$$
\frac{(i \sqrt{7})^{n+1}}{8(4t+1)} \left(\frac{(2n+1)(4t+1)(-1)^n + 2n(n+1) - 4t - 1}{2i \sqrt{t}} U_n(y) + (4t + 1)(-1)^n + 4t - 1 - 2n(n+2)U_{n-1}(y) \right),
$$

where $y = \frac{1}{2i \sqrt{t}}$ and $i = \sqrt{-1}$.

Proof. Differentiating the generating function $f(x; q, t)$ in (21) with respect to q, and substituting $q = 1$, yields

$$
g(x; t) := \left. \frac{d}{dq} f(x; q, t) \right|_{q=1} = \frac{x^2(1 - tx^2)(1 + tx^2)}{(1 - x - tx^2)^3(1 + x - tx^2)^2}.
$$

By partial fractions, we may rewrite this as

$$
g(x; t) = -\frac{3 - 2tx}{16(1 + x - tx^2)} + \frac{2 + x}{8(1 + x - tx^2)^2} - \frac{1 + 2tx}{16(1 - x - tx^2)}
$$

$$
+ \frac{1 - tx}{4t(1 - x - tx^2)} - \frac{1 - 2tx - x}{4t(1 - x - tx^2)^3}.
$$

By the fact that $\sum_{n \geq 0} U_n(t)x^n = \frac{1}{1 - 2tx + x^2}$, we obtain

$$
\sum_{n \geq 1} nU_n(t)x^{n-1} = \frac{2t - 2x}{(1 - 2tx + x^2)^2}
$$

and

$$
\sum_{n \geq 2} n(n - 1)U_n(t)x^{n-2} = \frac{8t^2 - 2 - 12tx + 6x^2}{(1 - 2tx + x^2)^3}.
$$
Let \(y = \frac{1}{2i\sqrt{t}} \), where \(i = \sqrt{-1} \). Extracting the coefficient of \(x^n \) from each summand then gives

\[
[x^n] \left(-\frac{3 - 2tx}{16(1 + x - tx^2)} \right) = -\frac{(-i\sqrt{t})^n}{16}(3U_n(y) - 2i\sqrt{t}U_{n-1}(y)),
\]

\[
[x^n] \left(\frac{2 + x}{8(1 + x - tx^2)^2} \right) = \frac{(2 + n)(-i\sqrt{t})^n}{8}U_n(y),
\]

\[
[x^n] \left(-\frac{1 + 2tx}{16(1 + x - tx^2)^2} \right) = -\frac{(i\sqrt{t})^n}{16}(U_n(y) - 2i\sqrt{t}U_{n-1}(y)),
\]

\[
[x^n] \left(\frac{1 - tx}{4t(1 + x - tx^2)^2} \right) = \frac{(1 + 4t + (t + 1)n)(i\sqrt{t})^n}{4t(1 + 4t)}U_n(y) - \frac{(1 + n)(2-t-1)(i\sqrt{t})^{n-1}}{4t(1 + 4t)}U_{n-1}(y),
\]

\[
[x^n] \left(-\frac{1 - 2tx - x}{4t(1 + x - tx^2)^2} \right) = \frac{(tn^2 - (t+2)n - 2(1 + 4t))(i\sqrt{t})^n}{8t(1 + 4t)}U_n(y) + \frac{(tn^2 + (4t-1)n - 1 + 3t)(i\sqrt{t})^n}{4(1 + 4t)}U_{n-1}(y).
\]

Adding all of these expressions yields the desired result. \(\square \)

Let \(t_n(\rho_2) \) denote the sum of the \(\rho_2 \) values of all the members of \(\mathcal{F}_n \). Letting \(t = 1 \) in the prior theorem, and noting \(i^nU_n(-i/2) = F_{n+1} \), gives the following expression for \(t_n(\rho_2) \).

Corollary 3.6. If \(n \geq 0 \), then

\begin{equation}
(26) \quad t_n(\rho_2) = (-1)^n \frac{(2n+1)F_{n+1} - 2F_n + (2n^2 + 2n - 5)F_{n+1} + (4n^2 + 8n - 6)F_n}{16}.
\end{equation}

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAIFA, 31905 HAIFA, ISRAEL
E-mail address: tmansour@univ.haifa.ac.il

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996
E-mail address: shattuck@math.utk.edu