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ABSTRACT. Let G be a simple, connected graph with finite vertex set V and edge set E . A
depletion of G is a permutation v1v2v3 . . . vn of the elements of V with the property that
vi is adjacent to some member of {v1, v2, · · · , vi°1} for each i ∏ 2. Depletions model the
spread of a rumor or a disease through a population and are related to heaps. In this paper
we develop techniques for enumerating the depletions of a graph.

1. INTRODUCTION

Let G be a simple, connected graph with finite vertex set V and edge set E . A depletion of
G is a permutation v1v2v3 . . . vn of the elements of V with the property that vi is adjacent
to some member of {v1, v2, . . . , vi°1} for each i ∏ 2. In other words, each vertex in the list,
with the exception of the first, must be adjacent to some vertex to its left in the list. If the
nodes of a graph represent a population and its edges model contact between the nodes,
then a depletion represents the order in which a rumor or a disease could spread through
this population. While there is, quite naturally, a wealth of research pertaining to the rate
with which a rumor or disease could diffuse through a system of nodes (see, for example,
[9], [11], [10], [4], [3]) , the motivation for this research is to enumerate the ways that this
rumor or disease could spread, that is, to count the number of depletions.
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FIGURE 1. Starting from vertex a, there are three ways to deplete this graph:
abcd , acbd , and acdb.

Given a 2 V , we will denote by dep(G , a) the set of all depletions of G starting at vertex
a and we will denote by dep(G) the set of depletions of G without regard to the starting
vertex. To fix this idea, consider the graph pictured in Figure 1 and observe that

dep(G , a) = {abcd , acbd , acdb} and dep(G ,d) = {dcab,dcba}.

It is easy to see that |dep(G ,b)| = 3 and |dep(G ,c)| = 6; hence, |dep(G)| = 14. Thus, in
this notation, the problem under consideration in this paper is this: given a graph G and
a vertex a, what are |dep(G , a)| and |dep(G)|? Since |dep(G)| can be found by summing
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|dep(G , a)| over all vertices a of G , we will concentrate most of our attention on methods
for finding |dep(G , a)|.

The inspiration for this study came from a paper of Golomb [6] that described an enu-
meration problem for a billiards game. In this game there are 15 balls, numbered 1 through
15. At first any of the balls may be pocketed, but thereafter only a ball bearing a number
consecutive with a previously pocketed ball may be pocketed. For example, if we suppose
that the 4 ball is pocketed first, then either the 3 or the 5 ball may be pocketed next; and,
if the 5 ball is pocketed next, then either the 3 ball or the 6 ball may be pocketed next.
This process continues until all of the balls have been pocketed. Golomb’s objective was
to demonstrate a variety of approaches to answer the question: in how many ways can
this game be played? Of course the 15 billiard ball problem can be recast into a problem
of counting the depletions of a graph: plays of the billiard ball game correspond to deple-
tions of the path given in Figure 2. Golomb shows there are

° 14
i°1

¢
ways to complete this

game if ball i is pocketed first.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 2. The 15 billiard balls represented as a graph.

Graph depletions are related to heaps. A sequence of distinct numbers {an : 1 ∑ n ∑ N }
forms a (binary) heap if ai < a2i for 1 ∑ i ∑ N /2 and ai < a2i+1 for 1 ∑ i ∑ (N °1)/2. For
example, the list `= {1,7,3,13,8,5,9,16,20,14} is a heap. Heaps are employed in Heapsort,
a rapid algorithm for sorting a list of numbers. Some of the pioneering work in this area
was carried out by Williams [13] and Floyd [5]. Recently Bernstein [2] has used heaps to
efficiently search for integer solutions of certain polynomial equations. Heaps are also an
efficient way to implement a priority queue, a data structure used to identify and extract
the element of highest priority from a queue. The recent paper of Navarro and Paredes
[8], for example, employs heaps to solve the incremental sorting problem, a problem in
priority queueing.

There is a natural correspondence between heaps and labeled binary trees and there-
fore between heaps and depletions. Consider a binary tree opening downward from the
root. Attach labels to the binary tree by starting from the root and labeling its vertices
with the elements of the heap by moving through the tree from top to bottom and from
left to right. This corresponds to placing the labels on the tree according to a level-order
transversal; see Figure 3. In this setting, the heap property assumes the following simple
form: a labeled binary tree corresponds to a heap if each parent bears a smaller label than
those of its children. This labeling gives us a simple recipe for depleting the tree from its
root: select the vertices in the order of their labels from least to greatest. Thus the num-
ber of heaps of a set of distinct numbers corresponds to the number of depletions from
the root of the corresponding binary tree. Skiena [12, p. 36] gives the number of complete
heaps of k levels (that is 2k °1 vertices) Sk by the recursive formula

(1) Sk =
√

2k °2
2k°1 °1

!

S2
k°1, S1 = 1.

While the concept of a heap is naturally associated with binary trees, it can be extended
to general rooted trees. Knuth gives a simple formula for the number of heaps on a rooted
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FIGURE 3. A binary tree labeled by the heap `= {1,7,3,13,8,5,9,16,20,14}.
The heap ` corresponds to a depletion of the tree.

aG1 G2

FIGURE 4. A graph G rendered as two subgraphs G1 and G2 with cut-point a.

tree. Let a tree T have vertex set {1,2, . . . ,n} with root 1. For each i , let si denote the size of
the sub-tree rooted at i . Given a list ` of n distinct numbers, the number of ways to build
a heap on T from ` is

(2) n!/
nY

i=1
si .

See exercise 20 of [7, p. 70] and equation (16) of [7, p. 154]. For example, the number of
ways to build a heap from the list ` on the tree pictured in Figure 3 is 10!/(10 ·6 ·3 ·3 ·2 ·1 ·
1 ·1 ·1 ·1) = 3360.

Throughout this paper we will observe the following conventions. Pn will denote the
path with vertex set {0,1,2, · · · ,n °1} and edge set {(i , i +1) : 0 ∑ i ∑ n °2}. For complete-
ness, P1 will denote the trivial graph with vertex set {0} and no edges. Cn will denote the
cycle graph with vertex set {0,1, · · · ,n°1} and edge set {(n°1,0)}[ {(i , i +1) : 0 ∑ i ∑ n°2}.
Kn will denote a complete graph on the vertex set {0,1, . . . ,n ° 1} and Km,n = (V1 +V2,E)
will denote a complete bipartite graph with disjoint parts V1 = {v0,1, . . . , vm°1} and V2 =
{w0, w1, . . . , wn°1}. Given graphs G1 = (V1,E1) and G2 = (V2,E2) we will denote the Carte-
sian graph product of G1 and G2 by G1‰G2. The vertex set of G1‰G2 is V1£V2, the ordinary
Cartesian product of the vertex sets of G1 and G2. There is an edge between (x1, y1) and
(x2, y2) in G1 £G2 provided that either x1 = x2 and (y1, y2) 2 E2 or y1 = y2 and (x1, x2) 2 E1.

Ad hoc procedures can be employed with some success in counting depletions. We will
treat a few simple examples here and give two additional examples in §2. In forming a
depletion of a complete graph, any vertex of the graph can be listed in any order; thus,

|dep(Kn , i )| = (n °1)!, 0 ∑ i ∑ n °1.

In forming a depletion of a cycle Cn , once the initial vertex has been selected, there will be
two choices for each of the next n °2 vertices in the depletion list; thus,

(3) |dep(Cn , i )| = 2n°2, 0 ∑ i ∑ n °1.
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In section §5 we will introduce graph reductions, a more elaborate method for counting
depletions. At present, however, let us describe a simple version of this method. Suppose
that a graph G can be rendered as two subgraphs G1 and G2 that share only a common
vertex a. We suppose, in addition, that any path from a vertex of G1 to a vertex of G2 must
contain a. This situation is depicted symbolically in Figure 4. The vertex a is customar-
ily called a cut-point of G , a vertex whose removal separates the graph into more than 1
component. Now the simple idea is this: depletions of G starting from a are obtained by
blending depletions of G1 from a and depletions of G2 from a. If G1 has m vertices and G2
has n vertices, then there will be (n+m°2)!/((n°1)! (m°1)!) ways to blend a depletion of
G1 from a and a depletion of G2 from a. This leads to the formula:

|dep(G , a)| = (n +m °2)!
(m °1)! (n °1)!

|dep(G1, a)||dep(G2, a)|.

Here is another simple but useful observation. Suppose that a is a leaf of the graph
G = (V ,E) with (a,b) 2 E . Let G 0 denote the subgraph of G induced by the vertex set V \{a}.
Then, since a is adjacent only to b,

|dep(G , a)| = |dep(G 0,b)|.
Armed with these two observations, we can produce the formula

dep(Pn+1, i ) =
√

n

i

!

, 0 ∑ i ∑ n,

for counting the depletions of a path from a given vertex. These same techniques are suf-
ficient to reproduce formulas (1) and (2), the results of Skiena and Knuth for trees.

Here is a brief overview of the content of this paper. In §2 we present two additional
examples using ad hoc techniques. In §3 we introduce a polynomial function for the set of
depletions of a graph relative to a path and the linear operator D , which acts as an inverse
to these depletion polynomials. In §4 we present some properties of D . We are greatly
aided at this point in our analysis by Gauss’s hypergeometric function and some of its
related identities. In §5 we introduce graph reductions and blends. This technique allows
us to analyze the depletions of a graph through blending depletions of subgraphs. The
process of blending the depletions of subgraphs is made algebraic through the depletion
polynomials. In §6 we use the method of reductions and blends to count the depletions
of two different families of graphs. First is the family of what we call butterfly graphs. A
butterfly graph is essentially a sewing together of two cycles along an edge. Second is
the family of Cartesian graph products of paths and complete graphs. An example from
each of these families is given in Figure 5. Finally, in §7, we present a general method for
counting the depletions of any unicyclic graph. Essentially we show that for any unicyclic
graph G there exists a set of trees whose depletions partition the set of depletions of G .
Since the depletions of trees can be calculated through Knuth’s formula (2), the depletions
of any unicyclic graph can be enumerated as well.

We will observe the following conventions with regard to notation for the falling and
rising factorials. Given x 2R and an integer n ∏ 0, we will write

(x)n = (x)(x °1)(· · · )(x °n +1)

for the falling factorial and

(x)(n) = (x)(x +1)(· · · )(x +n °1)
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FIGURE 5. A B6,8 butterfly graph and a P6‰K3 graph.

for the rising factorial.
We end this section with some open problems:

(1) Enumerate the depletions (from an arbitrary vertex) of Pm‰Pn , a grid graph. The
special case m = 2 is covered by our Theorem 6.2.

(2) Enumerate the depletions (from an arbitrary vertex) of the n-cube. The special
cases n = 2 and 3 are covered by equation (3) and our Theorem 2.2.

2. SOME AD HOC TECHNIQUES

While we know of no general technique for enumerating the depletions of a given graph
from a given vertex, in some cases special properties of the graph can come to our assis-
tance.

Theorem 2.1. For a complete bipartite graph,

|dep(Km,n , i )| =
(

n(m +n °2)! if i 2V1

m(m +n °2)! if i 2V2.

Proof. Given i 2 V1, there are n choices for the next vertex in the depletion sequence;
namely, any element of V2. Thereafter any of the remaining m +n ° 2 positions in the
depletion sequence can be filled by any permutation of the remaining m +n °2 vertices,
which gives the proposed formula. The case i 2V2 can be treated similarly. ⇤

Our next example treats a modification of a complete bipartite graph. Let K 0
n,n be the

graph obtained by removing a perfect matching from the complete bipartite graph Kn,n .

Theorem 2.2. For any vertex i ,

|dep(K 0
m+1,m+1, i )| = (2m)!

m(m °1)
m +1

.

For example, the 3-cube is isomorphic to a K 0
4,4; thus, starting from any vertex, there

are 6! ·3 ·2/4 = 1080 depletions of the 3-cube. The problem of enumerating the depletions
of the n-cube is a challenging problem and appears to be beyond the techniques of this
present work.

Proof. Color the two parts, V1 and V2, blue and red and let us assume that we begin our
depletions from a red vertex. A depletion can thus be rendered as a sequence of red and
blue vertices. We can partition the depletions according to the value of the index k ∏ 4 at
which for the first time in the depletion sequence both colors have appeared twice.
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First, let us suppose that the kth element of our depletion sequence is a red vertex.

R

k°2z }| {
B · · ·B R| {z }

k

· · · .

In this case, slots 2 through k°1 must be occupied by blue vertices, and these blue vertices
must necessarily be neighbors of the leading red vertex. The red vertex in the kth position
can be any of the remaining m red vertices. Thereafter, any permutation of the remaining
2m +2°k vertices can fill out the depletion sequence. Thus the count for such an array is

(m)k°2 · (m) · (2m +2°k)!.

Next, let us suppose that the kth element of our depletion sequence is a blue vertex.

R B

k°3z }| {
R · · ·R B| {z }

k

· · · .

In this case slots 3 through k °1 must be occupied by red vertices, and these red vertices
must be neighbors of the blue vertex in position 2. The blue vertex in position k can be any
of the remaining m blue vertices. Thereafter any permutation of the remaining 2m+2°k
vertices can fill out the depletion sequence. Thus the count for such an array is

(m)k°2 · (m) · (2m +2°k)!.

Summing over the range of k yields,

|dep(K 0
m+1,m+1, i )| = 2m

m+2X

k=4
(m)k°2(2m +2°k)!

= 2m
mX

j=2
(m) j (2m ° j )!

= 2m(m!)2
m°2X

i=0

√
m + i

m

!

= 2m(m!)2

√
2m °1
m +1

!

= (2m)!m(m °1)
m +1

,

as was to be shown. ⇤

3. POLYNOMIALS ASSOCIATED WITH PATHS

In this section we develop a natural polynomial associated with the depletions of a
graph relative to a path. In §5 we show how to exploit these polynomials to calculate the
number of depletions of the graph through the techniques of graph reduction and blend-
ing.

Let G = (V ,E) be a connected, simple graph. Given a depletion and x, y 2 V , we will
write x < y (relative to the depletion) if x appears before y in the depletion sequence.
Let æ = s1s2 · · · sk be a path in G . A æ-depletion of G is a depletion of G that begins with
s1 and preserves the ordering of the vertices of æ; thus, si°1 < si for 2 ∑ i ∑ k. We will
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write dep(G ,æ) to denote the set of all æ-depletions of G . Notice that dep(G ,æ) reduces to
dep(G , a) if the path æ consists of the single vertex a.

Given the æ : s1s2 · · · sk in G and nonnegative integers i1, i2, · · · , ik with i1 + i2 +·· ·+ ik =
|V |°k, let ¢æ(i1, i2, . . . , ik ) be the set of æ-depletions of G of the form

s1 . . .|{z}
i1

s2 . . .|{z}
i2

s3 . . .|{z}
i3

. . . sk°1 . . .|{z}
ik°1

sk . . .|{z}
ik

.

Thus the indices i1, i2, · · · , ik measure the size of the gaps between successive occurrences
of the elements of the path æ in the depletion. Let

Næ(i1, i2, . . . , ik ) = |¢æ(i1, i2, . . . , ik )|

and define a polynomial for the æ-depletions of G as follows:

(4) Pæ(x1, x2, · · · , xk ) =
X

i1+i2+···+ik=|V |°k

Næ(i1, i2, . . . , ik )
i1!i2! · · · ik !

xi1
1 xi2

2 · · ·xik
k .

We will write ¢G
æ , NG

æ , and PG
æ when we wish to emphasize the underlying graph.

We can recover |dep(G ,æ)| from PG
æ through differentiation. Given m ∏ 0, we define the

operator Dm on the space of polynomials in the independent variables x1, x2, . . . , xk by

(5) Dm =
X

i1+i2+···+ik=m
i1∏0,i2∏0,...,ik∏0

@m

@xi1
1 @xi2

2 · · ·@xik
k

.

For example D7x2
1 x2x4

3 = 2!1!4!. Our next lemma is an immediate consequence of the def-
inition of D and equation (4).

Lemma 3.1. D |V |°k PG
æ (x1, x2, . . . , xk ) = |dep(G ,æ)|

We will close this section with two theorems concerning the æ-depletion polynomials
for two family of graphs; we will investigate further properties of D in §4.

Theorem 3.2. Let æ= 01 on Cn, the n-cycle on {0,1,2, . . . ,n °1}. Then

Pæ(x1, x2) = 1
2(n °2)!

°
xn°2

1 + (x1 +2x2)n°2¢ .

Proof. For this graph, i1+i2 = n°2. Given i1 and i2, our depletions conform to the pattern

0 . . .|{z}
i1

1 . . .|{z}
i2

.

The i1 vertices between 0 and 1 are fixed; there are 2 choices for each of the i2 vertices
following the 1, save for the last; thus,

Næ(i1, i2) =
(

2i2°1 for 1 ∑ i2 ∑ n °2;

1 for i2 = 0.

Thus

Pæ(x1, x2) = 1
(n °2)!0!

xn°2
1 x0

2 +
n°2X

i2=1

2i2°1

i1!i2!
xi1

1 xi2
2 ,
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and, by the binomial theorem, we obtain

2(n °2)!Pæ(x1, x2) =
√

n °2
0

!

xn°2
1 x0

2 +
n°2X

i2=0

√
n °2

i2

!

xi1
1 (2x2)i2

= xn°2
1 + (x1 +2x2)n°2,

as was to be shown. ⇤

Hereafter, given n,m ∏ 1, let

(6) f (n,m) = |dep(Pn‰Km , (0,0))| and ¡(n,m) = f (n,m)
(nm)!

.

We will present a formula for f (n,m) in Theorem 4.4. At present, this notation is useful in
the statement of our next theorem.

Theorem 3.3. Let æ= (0,0)(0, j1) · · · (0, jm°1) be a path on Pn+1‰Km. Then

P Pn+1‰Km
æ (x1, x2, . . . , xm) =¡(n,m)

mX

`=1
(x`+x`+1 +·· ·+xm)nm ,

where ¡(n,m) is given by equation (6).

Proof. Let P 0
n be the subgraph of Pn+1 induced by the vertex set {1,2, . . . ,n}. A key obser-

vation is that if we take a æ-depletion of Pn+1‰Km and strip out the vertices of the path æ,
the result will be a depletion of P 0

n‰Km . The number of these depletions is determined by
the number of elements of æ that sit at the head of the æ-depletion. To this end, let

I = {(i1, i2, . . . , im) : i1 + i2 +·· ·+ im = nm; i1, i2, . . . , im ∏ 0}

We will partition I according to which of the m indices is first positive. Thus, for 1 ∑ `∑ m,
let I` be the subset of I subject to the following conditions:

i1 = 0, i2 = 0, . . . , i`°1 = 0, i` > 0, i`+1 ∏ 0, . . . , im ∏ 0.

Fix 1 ∑ `∑ m and consider a æ-depletion of Pn+1‰Km with (i1, i2, . . . , im) 2 I`. This deple-
tion must have the form

(0,0)(0, j1) · · · (0, j`°1)(1, x) · · ·| {z }
i`

(0, j`) · · · .

The vertex (1, x) is the first vertex of Pn+1‰Km that is not part of the path æ. There are two
key things to note:

(1) If we strip out the vertices ofæ from this depletion, then we are left with a depletion
of P 0

n‰Km starting from (1, x).
(2) Since there are ` vertices of æ preceding (1, x), there are ` choices for x.
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This shows that Næ(i1, i2, . . . , im) = ` f (n,m) for (i1, i2, . . . , im) 2 I`. With this observation in
place, we may conclude that

(nm)!
f (n,m)

P Pn+1‰Km
æ (x1, x2, . . . , xm) =

mX

`=1

X

(i1,i2,...,im )2I`

`
(nm)!

i1!i2! · · · im !
xi1

1 xi2
2 · · ·xim

m

=
mX

`=1

X

(i1,i2,...,im )2
I`[I`+1[···[Im

(nm)!
i1!i2! · · · im !

xi1
1 xi2

2 · · ·xim
m

=
mX

`=1
(x`+·· ·+xm)nm ,

as was to be shown. ⇤

4. THE OPERATOR D

In this section we present some calculations involving the operator D that will be useful
in the remainder of this paper.

Lemma 4.1. For a set of independent variables x1, x2, . . . , xk ,

D`(x1 +x2 +·· ·+xk )` = (`+k °1)!
(k °1)!

.

for each `∏ 0.

Proof. Let `∏ 0 be given. If i1, i2, . . . , ik is any set of nonnegative integers with i1 + i2 +·· ·+
ik = `, then

@`

@xi1
1 @xi2

2 · · ·@xik
k

(x1 +x2 +·· ·+xk )` = `!.

Since there are
°`+k°1

k°1

¢
ways to choose these indices i1, i2, · · · , ik in this manner, it follows

that

D`(x1 +x2 + . . .+xk )` = `!

√
`+k °1

k °1

!

= (`+k °1)!
(k °1)!

,

as was to be shown. ⇤

The statement of our next lemma is expressed in terms of Gauss’s hypergeometric func-
tion, which is defined as

2F1(a,b;c; z) =
1X

k=0

(a)(k)(b)(k)

(c)(k)k !
zk .

This is but one of a family of hypergeometric functions; see Chapters 15 and 16 of [1].
There are numerous identities related to the hypergeometric functions at specific values
of z; significantly, the Chu-Vandermonde identity asserts that

(7) 2F1(°n,b;c;1) = (c °b)(n)

(c)(n)
,

whenever n is a nonnegative integer; see, for example, (15.4.24) of [1].
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Lemma 4.2. Let x1, x2, . . . , x∫, y1, y2, . . . , yµ be a collection of independent variables, let X =
x1 +x2 +·· ·+x∫, and Y = y1 + y2 +·· ·+ yµ. Let z be a parameter. Then for `+ r = n,

Dn X `(X + zY )r = (n +∫°1)!
(∫°1)! 2F1(°r,µ;°n °∫+1; z).

Proof. By the binomial theorem,

Dn X `(X + zY )r =
rX

i=0

√
r

i

!

DnY i X n°i zi .

Since X and Y contain independent variables,

DnY i X n°i =D i Y i Dn°i X n°i .

Thus, by Lemma 4.1 and some algebra, we obtain

Dn X `(X + zY )r =
rX

i=0

√
r

i

!

D i Y i Dn°i X n°i zi

=
rX

i=0

√
r

i

!
(i +µ°1)!

(µ°1)!
(n +∫°1° i )!

(∫°1)!
zi

=
rX

i=0

(°1)i (°r )(i )

i !
(µ)(i ) (°1)i (n +∫°1)!

(∫°1)!(°n °∫+1)(i )
zi

= (n +∫°1)!
(∫°1)!

rX

i=0

(µ)(i )(°r )(i )

(°n °∫+1)(i )i !
zi

= (n +∫°1)!
(∫°1)! 2F1(°r,µ;°n °∫+1; z),

as was to be shown. ⇤
Our next result can be obtained by specializing Lemma 4.2 to z = 1 and applying equa-

tion (7), the Chu-Vandermonde identity.

Corollary 4.3. In the setting of Lemma 4.2,

Dn X `(X +Y )r = `!r !

√
`+∫°1

`

!√
`+ r +∫+µ°1

r

!

.

Recall that f (n,m) counts the number of depletions of Pn‰Km from the distinguished
vertex (0,0); see (6). We can use the methods of this section to give a simple formula for
f (n,m).

Theorem 4.4. The function f (1,m) = (m °1)! and, for n ∏ 1,

f (n +1,m)
f (n,m)

=
mY

k=2
(nm +k) = (mn +2)(m°1),

In closed form, for n ∏ 1,

f (n,m) = (m °1)!
n°1Y

k=1
(mk +2)(m°1).
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Proof. Let S be the set of all paths in Pn+1‰Km of the form

æ= (0,0)(0, j1) · · · (0, jm°1).

The collection {dep(Pn+1‰Km ,ø) : ø 2 S} partitions dep(Pn+1‰Km , (0,0)). Thus, by symme-
try, for any æ 2 S,

f (n +1,m) = (m °1)!|dep(Pn+1‰Km ,æ)|.
By Theorem 3.3 and Lemma 3.1, we obtain

f (n +1,m)
f (n,m)

= (m °1)!
(nm)!

mX

`=1
Dnm(x`+x`+1 +·· ·+xm)nm .

Finally, by Lemma 4.1 and some algebra,

f (n +1,m)
f (n,m)

= (m °1)!
(nm)!

mX

`=1

(m °`+nm)!
(m °`)!

= (m °1)!
mX

`=1

√
nm +m °`

m °`

!

= (m °1)!
m°1X

j=0

√
nm + j

j

!

= (m °1)!

√
nm +m

m °1

!

=
mY

k=2
(nm +k),

as was to be shown. The closed-form expression for f (n,m) can be obtained from this by
induction. ⇤

5. REDUCTIONS AND BLENDS

Let æ be a path in G with vertex set S. We say that the subgraphs G1 = (V1,E1) and
G2 = (V2,E2) form a æ-reduction of G provided that:

(1) V1 [V2 =V ;
(2) V1 \V2 = S;
(3) G1 and G2 are the subgraphs in G induced by the vertex sets V1 and V2 respectively;

and
(4) if x1 2V1, x2 2V2, and (x1, x2) 2 E in G , then either x1 2 S or x2 2 S.

A æ-reduction of a graph G is pictured in Figure 6.
Let p1 and p2 be æ-depletions of the graphs G1 and G2 respectively. A blend q of p1 and

p2 is an ordering of the vertices of G that preserves the ordering of the vertices in p1 and
p2. Thus if x < y in p1, then x < y in q ; and, if x < y in p2, then x < y in q . It is clear that a
blend is a æ-depletion of G . Our next theorem asserts the converse.

Theorem 5.1. Let {G1,G2} be a æ-reduction of G. Every æ-depletion of G is a blend of æ-
depletions from G1 and G2.

For example, for the graph G and for the pathæ= abc given in Figure 6, theæ-depletion
aedbg c f of G is a blend of the æ-depletions aebc f and adbg c of G1 and G2 respectively.
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c

f

e

G1

G2

FIGURE 6. G1 and G2 form a æ-reduction of G for the path æ= abc.

Proof. Let p be aæ-depletion of G . Let p1 be the list obtained by keeping in p those vertices
from V1 and let p2 be the list obtained by keeping in p those vertices from V2.

First we will show that p1 is a æ-depletion of G1. Note that p1 contains all of the vertices
of V1 and only the vertices of V1. Let x be member of p1 other than its leading element.
Then x is an element of p as well. But this means that there is some element y to the
right of x in the listing of p with (x, y) 2 V . Since x 2 V1 and since (x, y) 2 V , property (4)
of the definition of a æ-reduction shows that y 2 V1 as well. Since x and y are in V1 and
(x, y) 2 V , it follows from property (3) of the definition of a æ-reduction that (x, y) 2 V1.
Finally the elements of æ are members in order of the list p1, since they are not removed
in forming p1. This shows that p1 is a æ-depletion of G1. The same proof shows that p2 is
a æ-depletion of G2.

Finally since the orderings of the vertices in p1 and p2 are inherited from the ordering
in p, it is clear that p is a blend of p1 and p2. ⇤
Theorem 5.2. Let {G1,G2} be a æ-reduction of G. Then

PG
æ (x1, x2, · · · , xk ) = PG1

æ (x1, x2, · · · , xk )PG2
æ (x1, x2, · · · , xk ).

Proof. Set nonnegative integers∫1,∫2, · · · ,∫k with∫1+∫2+·· ·+∫k = |V |°k and consider the
term NG

æ (∫1,∫2, · · · ,∫k ). By Theorem 5.1, we can count the æ-depletions of G by counting
the blends of the æ-depletions of G1 and G2. Let I denote the set of nonnegative integers
i1, i2, · · · , ik , j1, j2, · · · , jk satisfying

i1 + i2 +·· ·+ ik = |V1|°k,

j1 + j2 +·· ·+ jk = |V2|°k

and
i1 + j1 = ∫1, i2 + j2 = ∫2, . . . ik + jk = ∫k ,

Given aæ-depletion of G1 from¢G1
æ (i1, i2, . . . , ik ) and aæ-depletion of G2 from¢G2

æ ( j1, j2, . . . , jk ),
we can create

(i1 + j1)!
i1! j1!

(i2 + j2)!
i2! j2!

· · · (ik + jk )!
ik ! jk !

= ∫1!
i1! j1!

∫2!
i2! j2!

· · · ∫k !
ik ! jk !

.
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blends from these æ-depletions, each one a member of ¢G
æ(∫1,∫2, . . . ,∫k ). This leads to

NG
æ (∫1,∫2, . . . ,∫k )

=
X

I
NG1
æ (i1, i2, . . . , ik )NG2

æ ( j1, j2, . . . , jk )
∫1!

i1! j1!
∫2!

i2! j2!
· · · ∫k !

ik ! jk !

or, equivalently,

NG
æ (∫1,∫2, . . . ,∫k )

∫1!∫2! · · ·∫k !
=

X

I

NG1
æ (i1, i2, . . . , ik )

i1!i2! · · · ik !
NG2
æ ( j1, j2, . . . , jk )

j1! j2! · · · jk !
.

The result follows by comparing coefficients. ⇤

6. SOME EXAMPLES USING REDUCTIONS AND BLENDS

In this section we apply the techniques of the previous sections to two different families
of graphs. Our first family is the class {Bm,n : m,n ∏ 3}, the so-called butterfly graphs; our
second family is the class {Pn‰Km : n,m ∏ 1}. A representative from each of these families
is given in Figure 5. While Theorem 4.4 already gives a formula for |dep(Pn‰Km , (0,0))|, it
only treats depletions from the distinguished vertex (0,0). In this section, we will use the
technique of graph reductions to treat the general case.

We begin by defining a butterfly graph, Bm,n . For m,n ∏ 3, let V` = {0,1,2`, . . . , (m °1)`}
and Vr = {0,1,2r , . . . , (n ° 1)r }. Let E` and Er be the edges of the cycle graphs, taken in
their natural order, on V` and Vr respectively. Let E = E1 [E2 and define Bm,n = (V ,E). We
should think of Bm,n as being composed of a left cycle on m vertices and a right cycle on n
vertices that share the common edge (0,1). A B6,8 butterfly graph is pictured in Figure 5.

Theorem 6.1. Given p, q ∏ 1 and n = p +q, |dep(Bp+2,q+2,0)| is equal to

1
4

n!
p !q !

°
2n+1 + 2F1(°q,1;°n,2)+ 2F1(°p,1;°n,2)

¢
.

Proof. Let G = Bp+2,q+2, let æ= 01, and observe that |dep(G ,0)| = |dep(G ,æ)|. The path 01
produces a æ-reduction of G . Since each of the reduced sub-graphs is a cycle, we can
readily obtain their polynomials from Theorem 3.2; thus, in accord with Theorem 5.2,
PG
æ (x1, x2), the polynomial for G relative to æ, is given by their product, which assumes

the form
1

4p !q !

≥
xp+q

1 +xp
1 (x1 +2x2)q +xq

1 (x1 +2x2)p + (x1 +2x2)p+q
¥

.

Recalling that n = p +q , we have
Dn xp+q

1 = n!

and, by the binomial theorem,

Dn(x1 +2x2)n = n!
nX

i=0
2i = n!(2n+1 °1).

Likewise, by Lemma 4.2,

Dn xp
1 (x1 +2x2)q = n! 2F1(°q,1;°n,2)

and
Dn xq

1 (x1 +2x2)p = n! 2F1(°p,1;°n,2).
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Thus

DnPæ(x1, x2) = 1
4

n!
p !q !

°
2n+1 + 2F1(°q,1;°n,2)+ 2F1(°p,1;°n,2)

¢
.

as was to be shown. ⇤

Our next theorem concerns the number of depletions of Pn+1‰Km from a generic ver-
tex. To state this theorem, it will be helpful to recall that f (n,m) = |dep(Pn‰Km , (0,0))|
and that ¡(n,m) = f (n,m)/(nm)!; see display (6). A formula for f (n,m) is given in The-
orem 4.4. For completeness, it is convenient to attach a meaning to ¡(0,m). Setting
f (0,m) = 1/m is consistent with Theorem 4.4 and gives ¡(0,m) = 1/m.

Theorem 6.2. Let n ∏ 0 and m ∏ 1. For each p1, p2 ∏ 0 with p1 +p2 = n,

|dep(Pn+1‰Km , (p1,0))| = f (n +1,m)
¡(p1,m)¡(p2,m)

¡(n,m)

µ
1+ (m °1)(nm +1)

(p1m +1)(p2m +1)

∂
.

Proof. For ease of notation, let G = Pn+1‰Km . Since ¡(0,m) = 1/m, observe that the result
is true if either p1 or p2 = 0. Thus we can assume hereafter that p1, p2 ∏ 1. Let æ be any
path in G from (p1,0) of the form æ : (p1,0)(p1, j1)(p1, j2) · · · (p1, jm°1). We will concentrate
our efforts on calculating |dep(G ,æ)|; this is not in vain, since, by symmetry,

|dep(G , (p1,0))| = (m °1)!|dep(G ,æ)|.

The path æ creates a reduction, splitting G into two subgraphs that are isomorphic to
G1 = Pp1+1‰Km and G2 = Pp2+1‰Km respectively. For i 2 {1,2}, we can arrange it so that
the isomorphism maps the path æ to æi : (0,0)(0, j1)(0, j2) · · · (0, jm°1) in Gi .

Let Xi = xi +x2 +·· ·+xm , then, by Theorem 3.3,

PGi
æi

(x1, x2, · · · , xm) =¡(pi ,m)
mX

j=1
(X j )pi m , i = 1,2.

Thus, by Theorem 5.2,

1
¡(p1,m)¡(p2,m)

PG
æ (x1, x2, . . . , xm) =

X

1∑i , j∑m
(Xi )p1m(X j )p2m

=
mX

i=1
(Xi )nm +

X

1∑i< j∑m
(Xi )p1m(X j )p2m +

X

1∑ j<i∑m
(Xi )p1m(X j )p2m .

The plan of attack for the rest of the proof is clear: we will find |dep(G ,æ)| by applying Dnm

to each of the terms on the right. Some work is required in each case to achieve a simple
form.

By Lemma 4.1 and some algebra,

Dnm
mX

i=1
(Xi )nm =

mX

i=1
Dnm(Xi )nm =

mX

i=1

(nm +m ° i )!
(m ° i )!

= (nm)!
m°1X

j=0

√
nm + j

j

!

= (nm)!

√
nm +m

m °1

!

.
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If we let Yi j = xi +xi+1 +·· ·x j°1, then we have, by Corollary 4.3,

Dnm
X

1∑i< j∑m
(Xi )p1m(X j )p2m =

X

1∑i< j∑m
Dnm(X j )p2m(X j +Yi j )p1m

= (p2m)!(p1m)!
X

1∑i< j∑m

√
p2m +m ° j

p2m

!√
p1m +p2m +m ° i

p1m

!

= (p2m)!(p1m)!
X

0∑`<k∑m°1

√
p2m +`

`

!√
p1m +p2m +k

p2m +k

!

.

We can simplify the sum as follows:

X

0∑`<k∑m°1

√
p2m +`

`

!√
p1m +p2m +k

p2m +k

!

=
m°1X

k=1

√
p1m +p2m +k

p2m +k

!
k°1X

`=0

√
p2m +`

`

!

=
m°1X

k=1

√
p1m +p2m +k

p2m +k

!√
p2m +k

k °1

!

However
√

p1m +p2m +k

p2m +k

!√
p2m +k

k °1

!

=
√

nm +1
p1m

!√
nm +1+ (k °1)

k °1

!

.

Summing this last term from k = 1 to k = m °1 yields
√

nm +1
p1m

!√
nm +m

m °2

!

=
√

nm

p1m

!√
nm +m

m °1

!
nm +1
p2m +1

m °1
nm +2

.

Since (p1m)!(p2m)!
° nm

p1m

¢
= (nm)!, we may conclude that

Dnm
X

1∑i< j∑m
(Xi )p1m(X j )p2m = (nm)!

√
nm +m

m °1

!
nm +1
p2m +1

m °1
nm +2

.

Likewise

Dnm
X

1∑ j<i∑m
(Xi )p1m(X j )p2m = (nm)!

√
nm +m

m °1

!
nm +1
p1m +1

m °1
nm +2

.

Upon combining terms and simplifying, we obtain

1
¡(p1,m)¡(p2,m)

|dep(G ,æ)| = (nm)!

√
nm +m

m °1

!µ
1+ (m °1)(nm +1)

(p1m +1)(p2m +1)

∂
.

By symmetry |dep(G , (p1,0))| = (m °1)!|dep(G ,æ)| and, by Theorem 4.4,

(m °1)!(nm)!

√
nm +m

m °1

!

= (nm)!
mY

k=2
(nm +k) = f (n +1,m)

¡(n,m)
,

which brings our proof to its conclusion. ⇤
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FIGURE 7. C5 and two of its spanning trees, T1 and T3.

7. SPANNING TREES THAT SPAN THE SET OF DEPLETIONS

For each vertex i of the n-cycle Cn , let Ti denote the sub-tree of Cn obtained by deleting
edge (i , i +1), where the arithmetic is taken modulo n.

Theorem 7.1. Let m = n °2 or n °1, whichever is odd. Then the sets

dep(T1,0), dep(T3,0), dep(T5,0), . . . dep(Tm ,0)

partition the set dep(Cn ,0).

C5 and its spanning trees T1 and T3 are pictured in Figure 7. Since there are 4 ways to
deplete each of the spanning trees, there are 8 ways to deplete the cycle.

Proof. Given a depletion p 2 dep(Cn ,0), let ∫ denote the last element in the list p. We note
that p is a blend of the increasing sub-chain 012 . . . ∫°1∫ and the decreasing sub-chain
n n°1n°2 . . . ∫+1∫, where we have identified n with 0, modulo n. Thus, if ∫ is odd, then
p 2 dep(T∫,0), and, if ∫(p) is even, then p 2 dep(T∫°1,0).

Let i , j 2 {0,1, . . . ,n °1} be odd with i < j , and consider the corresponding trees, Ti and
T j . Any depletion of Ti starting from 0 must end with either i or i +1 and any depletion of
T j starting from 0 must end with either j or j +1. Since i and j are both odd, it follows that
a depletion of Cn starting from 0 cannot be a member of both dep(Ti ,0) and dep(T j ,0),
which completes our proof. ⇤

The real force of this observation is that it gives us a strategy whereby we can enumerate
the depletions of any unicyclic graph. Consider a cycle Cn for which each vertex i is the
root of a tree Ti . The depletion of the resulting necklace of trees can be found by parti-
tioning the cycle in accord with Theorem 7.1 and then enumerating the depletions of the
resulting trees by means of Knuth’s formula, equation (2).
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