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Abstract. Let s, t be any numbers in {0, 1} and let π = π1π2 · · ·πm be any word,
we say that i ∈ [m − 1] is an (s, t) parity-rise if πi ≡ s (mod 2), πi+1 ≡ t (mod 2)
whenever πi < πi+1. We denote the number occurrences of (s, t) parity-rises in π by
risest(π). Also, we denote the total sizes of the (s, t) parity-rises in π by sizest(π), that
is, sizest(π) = ∑πi<πi+1

(πi+1−πi). A composition π = π1π2 · · ·πm of a positive integer
n is an ordered collection of one or more positive integers whose sum is n. The number
of summands, namely m, is called the number of parts of π. In this paper, by using
tools of linear algebra, we found the generating function that count the number of all
compositions of n with m parts according to the statistics risest and sizest, for all s, t.

1. Introduction

A composition π = π1π2 · · ·πm of a positive integer n ∈ N is an ordered collection
of one or more positive integers whose sum is n, i.e., π is a partition of n where the
parts are ordered. The number of summands, namely m, is called the number of parts
of π. Let Cn (Cn,m, C [d]n,m, respectively) be the set of all compositions of n (with exactly m
parts, with exactly m parts in [d] = {1, 2, . . . , d}, respectively). Clearly, the number of
compositions of n is given by |Cn| = 2n−1 (for example, see [14]).

Let π = π1π2 · · ·πm and σ = σ1σ2 · · · σs be any two words of length m and s with
m ≥ s. An occurrence of σ in π is a subword πiπi+1 · · ·πi+s−1 such that πi−1+a < πi−1+b
if and only if σa < σb, for all 1 ≤ a < b ≤ s. Here, σ is called a subword pattern of
length s (or s-letter pattern). We denote the the number of the occurrences of σ in π by
occrσ(π). We define sizeσ(π), the total size of σ in π, to be the sum over all occurrences
πiπi+1 · · ·πi+s−1 of σ in π of the difference ∑i+s−2

j=i πj+1 − πj.
The subject statistics on compositions has been received a lot of attention (for in-

stance, see [14] and references therein). For instance, Alladi and Hoggatt [1] found the
average of rises (number occurrences of 12), descents (number occurrences of 21) and
levels (number occurrences of 11) in compositions of n with parts in {1, 2}. This work
has been extended by Heubach and Mansour [13], where they studied the generating
function for the number of compositions of n with exactly m parts according to the
number of occurrences of the patterns 11, 12 and 21. More recently, Blecher, Brennan
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and Knopfmacher [6] obtained asymptotic expressions for the average size of the de-
scent immediately following the first and the last maximum. Heubach, Knopfmacher,
Mays and Munagi [11] considered the generating function for the number of all compo-
sitions of n with exactly m parts according to the number of the inversions (an inversion
in π1π2 · · ·πm is a pair πiπj of summands such that 1 ≤ i < j ≤ m and πi > πj). More
recently, the authors [3] found the mean and the average of the total size of the rises,
the levels and the descents taken over all compositions of n (see [2, 4, 5]).

Let s, t be any numbers in {0, 1} and let π = π1π2 · · ·πm be any word, we say that
i ∈ [m− 1] is an (s, t) parity-rise if

(1) πi ≡ s (mod 2), πi+1 ≡ t (mod 2) whenever πi < πi+1.

We denote the number occurrences of (s, t) parity-rises in π by risest(π). Also, we
denote the total sizes of the (s, t) parity-rises in π by sizest(π), that is,

sizest(π) = ∑
πi<πi+1

(πi+1 − πi).

For example, if π = 12346263 then occr00(π) = 2 and size00(π) = 6. We denote the
generating function for the number of compositions of n with exactly m parts according
to the number of (s, t) parity-rises and the statistic sizest by Cst = Cst(x, y, q, u), that is,

Cst = ∑
n,m≥0

∑
π∈Cn,m

xnymqrisest(π)usizest(π).

In the case that the m parts are related to the set [d], we define

C[d]
st = ∑

n,m≥0
∑

π∈C [d]n,m

xnymqrisest(π)usizest(π).

In this paper, we will derive explicit formulas for the generating functions Cst, where
s, t ∈ {0, 1}. As consequence, we find an explicit formula for the average of the statistic
sizest in the set of compositions of n, see Table 1.

(s, t) 1
2n−1 ∑π∈Cn sizest(π)

(0, 0) 4
(5n−23

675

)
+ 1

2n+2 + (−1)n
(

6n2−20n+5
27·2n+2

)
+ (−i)n

(
−3i−4
25·2n+1

)
+ in

(
3i−4

25·2n+1

)
, n ≥ 6

(1, 1) 16
(

5n−13
675

)
+ 1

2n+2 + (−1)n
(

6n2+4n−11
27·2n+2

)
+ (−i)n

(
4+3i

25·2n+1

)
+ in

(
4−3i

25·2n+1

)
, n ≥ 4

(0, 1) n−4
27 + 1

2n+2 + (−1)n+1
(

6n2−20n+11
27·2n+2

)
, n ≥ 5

(1, 0) 4
(n−2

27

)
+ 1

2n+2 + (−1)n+1
(

6n2+4n−5
27·2n+2

)
, n ≥ 3

Table 1. Explicit formulas for the average 1
2n−1 ∑π∈Cn sizest(π).
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2. Main results

In order to study the generating function Cst, s, t ∈ {0, 1}, we need the following
general notation. We denote the generating function for the number of compositions
π = π1π2 · · ·πm of n with exactly m parts such that πj = aj for all j = 1, 2, . . . , `
according to the statistics risest and sizest by

Cst(a1 · · · a`) = Cst(x, y, q, u|a1 · · · a`) = ∑
n,m≥0

∑
π=a1···a`π`+1···πm∈Cn,m

xnymqrisest(π)usizest(π).

In the case that the m parts are related to the set [d], we define

C[d]
st (a1 · · · a`) = C[d]

st (x, y, q, u|a1 · · · a`) = ∑
n,m≥0

∑
π=a1···a`π`+1···πm∈C [d]n,m

xnymqrisest(π)usizest(π).

Now, we consider each case of counting (s, t) parity-rises by the following four subsec-
tions.

2.1. Counting (0, 0) parity-rises. By the definitions, we have

C00(x, y, q, u) = 1 + ∑
a≥1

C00(a).(2)

The recurrence relation for the generating function C00(a) can be obtained as follows:

C00(a) = xay +
a

∑
b=1

C00(ab) + ∑
b≥a+1

C00(ab)

= xay + xay
a

∑
b=1

C00(b) + δaxayq ∑
b≥a+1

δbC00(b)ub−a + δaxay ∑
b≥a+1

(1− δa)C00(b)

+ (1− δa)xay ∑
b≥a+1

C00(b),

where δa = 1 when a is even, and δa = 0 otherwise. By (2), we obtain that

C00(a) = xayC00 + δaxay ∑
b≥a+1

δbC00(b)(qub−a − 1).(3)

Now, we focus in studying the generating function C[d]
00 (a). In order to obtain an explicit

formula for the generating function C[d]
00 (a), we need the following lemma.

Lemma 2.1. Let 1 ≤ i ≤ d. Then the determinant∣∣∣∣∣∣∣∣∣∣∣

βi ai,i+1 ai,i+2 · · · ai,d−1 ai,d
βi+1 1 ai+1,i+2 · · · ai+1,d−1 ai+1,d

. . . . . . . . . ...
βd−1 0 0 · · · 1 ad−1,d
βd 0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣
online journal of analytic combinatorics
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is given by
d−i

∑
j=0

βi+j

(
∑

k0=i<k1<k2<···<ks=i+j
(−1)s

s

∏
`=1

ak`−1,k`

)
.

Proof. We proceed the proof by induction on d ≥ i. For d = i, the determinant equals
βi, which agrees with the given formula. Assume that the claim holds for d and let us
prove it for d + 1. By the induction hypothesis we have that the determinant

Di =

∣∣∣∣∣∣∣∣∣∣∣

βi ai,i+1 ai,i+2 · · · ai,d ai,d+1
βi+1 1 ai+1,i+2 · · · ai+1,d ai+1,d+1

. . . . . . . . . ...
βd 0 0 · · · 1 ad,d+1
βd+1 0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣
equals (evaluating by the leftmost column) Di = ∑d+1−i

j=0 (−1)jβi+jDij, where Dij is the
determinant that obtained from Di by removing the leftmost column and the (j + 1)-st
row. By induction hypothesis, we have that Di

Dij = ∑
k0=i<k1<k2<···<ks=i+j

(−1)j−s
s

∏
`=1

ak`−1,k` ,

for j = 0, 1, . . . , d− i. Thus, it remains to find Di(d+1−i), namely,

Di(d+1−i) =

∣∣∣∣∣∣∣∣∣∣∣

ai,i+1 ai,i+2 · · · ai,d ai,d+1
1 ai+1,i+2 · · · ai+1,d ai+1,d+1

0 1 . . . ai+2,d ai+2,d+1
. . . . . . . . . ...
0 0 · · · 1 ad,d+1

∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, by induction hypothesis, we obtain that

Di(d+1−i) = ai,i+1D(i+1)(d−i) −

∣∣∣∣∣∣∣∣∣
ai,i+2 ai,i+3 · · · ai,d ai,d+1
1 ai+2,i+3 · · · ai+2,d ai+2,d+1
. . . . . . . . . ...
0 0 · · · 1 ad,d+1

∣∣∣∣∣∣∣∣∣
= ai,i+1 ∑

k0=i+1<k1<k2<···<ks=d+1
(−1)d+1−i−s

s

∏
`=1

ak`−1,k`

− ∑
k0=i<k1=i+2<k2<···<ks=d+1

(−1)d+1−i−s
s

∏
`=1

ak`−1,k`

= ∑
k0=i<k1<k2<···<ks=d+1

(−1)d+1−i−s
s

∏
`=1

ak`−1,k` .
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Hence,

Di =
d+1−i

∑
j=0

(−1)jβi+j

(
∑

k0=i<k1<k2<···<ks=i+j
(−1)j−s

s

∏
`=1

ak`−1,k`

)
,

which completes the induction step. �

Theorem 2.2. Let i = 1, 2, . . . , d. Then

C[d]
00 (x, y, q, u|i) = piC

[d]
00 (x, y, q, u) and C[d]

00 (x, y, q, u) =
1

1−∑d
i=1 pi

,

where

pi = xiy
d−i

∑
j=0

xj

(
∑

k0=i<k1<···<ks=i+j
ysxk0+···+ks−1

s−1

∏
`=0

δk`

s

∏
`=1

δk`

s

∏
`=1

(quk`−k`−1 − 1)

)
.

Proof. By (3) we have 

C[d]
00 (1) = β1 −∑d

j=2 C00(j)α̂1,j

C[d]
00 (2) = β2 −∑d

j=3 C00(j)α̂2,j
...

C[d]
00 (d− 1) = βd−1 −∑d

j=d C00(j)α̂d−1,j

C[d]
00 (d) = βd.

The above system of equations can be written in a matrix form as follows

A


C[d]

00 (1)
C[d]

00 (2)
...
C[d]

00 (d)

 =


β1
β2
...

βd

 , A =


1 α̂1,2 α̂1,3 α̂1,4 α̂1,5 α̂1,6 α̂1,7 · · · α̂1,d
0 1 α̂2,3 α̂2,4 α̂2,5 α̂2,6 α̂2,7 · · · α̂2,d

. . . . . . ...
0 0 0 0 0 · · · 0 1 α̂d−1,d
0 0 0 0 0 0 · · · 0 1

 .

We solve this system by Cramer’s method and we obtain

C[d]
00 (i) =

∣∣∣∣∣∣∣∣∣∣∣

βi α̂i,i+1 α̂i,i+2 · · · α̂i,d−1 α̂i,d
βi+1 1 α̂i+1,i+3 α̂i+1,i+4 · · · α̂i+1,d

. . . . . . ...
βd−1 0 0 · · · 1 α̂d−1,d
βd 0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣
.

Lemma 2.1 gives

C[d]
00 (i) =

d−i

∑
j=0

βi+j

(
∑

k0=i<k1<k2<···<ks=i+j
(−1)s

s

∏
`=1

α̂k`−1,k`

)
,

online journal of analytic combinatorics
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for all i = 1, 2, . . . , d, where βi = xiyC[d]
00 and α̂i,j = −δixiyδj(quj−i − 1). Thus,

C[d]
00 (i) =

d−i

∑
j=0

xi+jyC[d]
00

(
∑

k0=i<k1<k2<···<ks=i+j

s

∏
`=1

δk`−1
xk`−1yδk`(quk`−k`−1 − 1)

)
,

which is equivalent to C[d]
00 (i) = piC

[d]
00 . By the fact that C[d]

00 = 1 + ∑d
i=1 C[d]

00 (i), we
complete the proof. �

Theorem 2.3. The generating function C00(x, y, q, u) is given by

C00(x, y, q, u) =
1

1−∑i≥1 pi
,

where

pi = xiy ∑
j≥0

xj

(
∑

k0=i<k1<···<ks=i+j
ysxk0+···+ks−1

s−1

∏
`=0

δk`

s

∏
`=1

δk`

s

∏
`=1

(quk`−k`−1 − 1)

)
.

Proof. By taking d→ ∞ in Theorem 2.2, we obtain the result. �

Example 2.4. By substituting q = u = 1 in Theorem 2.3, we get C00(x, y, 1, 1) = 1−x
1−x−y

which is the generating function of all the compositions of n with m parts.

Corollary 2.5. The mean of size00, taken over all compositions of n, for n ≥ 6, is given by
1

2n−1 ∑
π∈Cn

size00(π)

= 4
(

5n− 23
675

)
+

1
2n+2 + (−1)n

(
6n2 − 20n + 5

27 · 2n+2

)
+ (−i)n

(
−3i− 4
25 · 2n+1

)
+ in

(
3i− 4

25 · 2n+1

)
,

where i2 = −1.

Proof. By differentiating the generating function C00(x, y, q, u) with respect to u and
evaluating it at u = 1, we obtain

d
du

C00(x, 1, 1, u) |u=1=
− d

du A
A2 |u=1=

−(1− x)2 d
du A

(1− 2x)2 |u=1,

where

A = 1−∑
i≥1

(
xi ∑

j≥0
xj

(
∑

k0=i<k1<···<ks=i+j
xk0+···+ks−1

s−1

∏
`=0

δk`

s

∏
`=1

δk`

s

∏
`=1

(quk`−k`−1 − 1)

))
.

We denote Aj to be

∑
j≥0

xj ∑
k0=i<k1<···<ks=i+j

xk0+···+ks−1
s−1

∏
`=0

δk`

s

∏
`=1

δk`

s

∏
`=1

(quk`−k`−1 − 1),
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and A0 = 1, which leads to

A = 1−∑
i≥1

xi

(
A0 + ∑

j≥1
Aj

)
= 1−∑

i≥1
xi

(
1 + ∑

j≥1
Aj

)
.

Clearly,

Aj = ∑
k0=i<k1=i+j

xk0δk0δk1(u
j − 1)

+ ∑
s≥2

∑
k0=i<k1<···<ks=i+j

xk0+···+ks−1
s−1

∏
`=0

δk`

s

∏
`=1

δk`

s

∏
`=1

(quk`−k`−1 − 1).

By differentiating Aj with respect to u and substituting u = 1, we get

d
du

Aj |u=1= xiδiδi+j j,

which leads to

d
du

A |u=1= −∑
i≥1

∑
j≥1

x2i+jδiδi+j j = −∑
i≥1

∑
j≥1

x4i+2j2j = − 2x6

(1− x4)(1− x2)2 .

Thus

∑
n≥0

∑
π∈Cn

size00(π)xn =
(1− x)22x6

(1− 2x)2(1− x2)2(1− x4)
.

By using partial fraction decompositions, we have

∑
n≥0

∑
π∈Cn

size00(π)xn =
2

135(1− 2x)2 −
56

675(1− 2x)
+

1
8(1− x)

+
1

18(1 + x)3

− 19
108(1 + x)2 +

31
216(1 + x)

− 4 + 3i
100(1 + ix)

+
3i− 4

100(1− ix)
,

then by comparing the coefficients of xn, we obtain

∑
π∈Cn

size00(π) =
2n+1(5n− 23)

675
+

1
8
+ (−1)n

(
6n2 − 20n + 5

216

)
+ (−i)n

(
−3i− 4

100

)
+ in

(
3i− 4

100

)
with i2 = −1, which completes the proof. �

online journal of analytic combinatorics
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2.2. Counting (1,1) parity-rises. By the definitions, we have

C11(x, y, q, u) = 1 + ∑
a≥1

C11(a).(4)

The recurrence relation for the generating function C11(a) can be obtained as follows:

C11(a) = xay +
a

∑
b=1

C11(ab) + ∑
b≥a+1

C11(ab)

= xay + xay
a

∑
b=1

C11(b) + (1− δa)xayq ∑
b≥a+1

(1− δb)C11(b)ub−a

+ (1− δa)xay ∑
b≥a+1

δbC11(b) + δaxay ∑
b≥a+1

C11(b).

By (4), we obtain that

C11(a) = xayC11 + (1− δa)xay ∑
b≥a+1

(1− δb)C11(b)(qub−a − 1).(5)

Now, we restrict our attention to study the generating function C[d]
11 (a).

Theorem 2.6. For all i = 1, 2, . . . , d,

C[d]
11 (x, y, q, u|i) = piC

[d]
11 (x, y, q, u) and C[d]

11 (x, y, q, u) =
1

1−∑d
i=1 pi

,

where pi is given by

xiy
d−i

∑
j=0

xj

(
∑

k0=i<k1<···<ks=i+j
ysxk0+···+ks−1

s−1

∏
`=0

(1− δk`)
s

∏
`=1

(1− δk`)
s

∏
`=1

(quk`−k`−1 − 1)

)
.

Proof. By (5) we have 

C[d]
11 (1) = β1 −∑d

j=2 C11(j)α̂1,j

C[d]
11 (2) = β2 −∑d

j=3 C11(j)α̂2,j
...

C[d]
11 (d− 1) = βd−1 −∑d

j=d C11(j)α̂d−1,j

C[d]
11 (d) = βd.

The above system of equations can be written in a matrix form as follows

A


C[d]

11 (1)
C[d]

11 (2)
...
C[d]

11 (d)

 =


β1
β2
...

βd

 , A =


1 α̂1,2 α̂1,3 α̂1,4 α̂1,5 α̂1,6 α̂1,7 · · · α̂1,d
0 1 α̂2,3 α̂2,4 α̂2,5 α̂2,6 α̂2,7 · · · α̂2,d

. . . . . . ...
0 0 0 0 0 · · · 0 1 α̂d−1,d
0 0 0 0 0 0 · · · 0 1

 .
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We solve this system by Cramer’s method and we obtain

C[d]
11 (i) =

∣∣∣∣∣∣∣∣∣∣∣

βi α̂i,i+1 α̂i,i+2 · · · α̂i,d−1 α̂i,d
βi+1 1 α̂i+1,i+3 α̂i+1,i+4 · · · α̂i+1,d

. . . . . . ...
βd−1 0 0 · · · 1 α̂d−1,d
βd 0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣
.

Lemma 2.1 gives

C[d]
11 (i) =

d−i

∑
j=0

βi+j

(
∑

k0=i<k1<k2<···<ks=i+j
(−1)s

s

∏
`=1

α̂k`−1,k`

)
,

for all i = 1, 2, . . . , d, where βi = xiyC[d]
11 and α̂i,j = −(1 − δi)xiy(1 − δj)(quj−i − 1).

Thus,

C[d]
11 (i) =

d−i

∑
j=0

xi+jyC[d]
11

(
∑

k0=i<k1<···<ks=i+j

s

∏
`=1

(1− δk`−1
)xk`−1y(1− δk`)(quk`−k`−1 − 1)

)
,

which is equivalent to C[d]
11 (i) = piC

[d]
11 . By using (4), we complete the proof. �

By taking d→ ∞ in Theorem 2.6, we obtain the main result of this subsection.

Theorem 2.7. The generating function C11(x, y, q, u) is given by

C11(x, y, q, u) =
1

1−∑i≥1 pi
,

where pi is given by

xiy ∑
j≥0

xj

(
∑

k0=i<k1<···<ks=i+j
ysxk0+···+ks−1

s−1

∏
`=0

(1− δk`)
s

∏
`=1

(1− δk`)
s

∏
`=1

(quk`−k`−1 − 1)

)
.

Corollary 2.8. The mean of size11, taken over all compositions of n, for n ≥ 4, is given by

1
2n−1 ∑

π∈Cn

size11(π) =

16
(

5n− 13
675

)
+

1
2n+2 + (−1)n

(
6n2 + 4n− 11

27 · 2n+2

)
+ (−i)n

(
4 + 3i

25 · 2n+1

)
+ in

(
4− 3i

25 · 2n+1

)
,

where i2 = −1.

Proof. By differentiating the generating function C11(x, y, q, u) with respect to u and
evaluating it at u = 1, we obtain

d
du

C11(x, 1, 1, u) |u=1=
− d

du A
A2 |u=1=

−(1− x)2 d
du A

(1− 2x)2 |u=1,

online journal of analytic combinatorics
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where A = 1−∑i≥1 xi Aj,

Aj = ∑
j≥0

xj ∑
k0=i<k1<···<ks=i+j

xk0+···+ks−1
s−1

∏
`=0

(1− δk`)
s

∏
`=1

(1− δk`)
s

∏
`=1

(quk`−k`−1 − 1),

and A0 = 1, which leads to

A = 1−∑
i≥1

xi

(
A0 + ∑

j≥1
Aj

)
= 1−∑

i≥1
xi

(
1 + ∑

j≥1
Aj

)
.

Clearly, Aj is equal to

∑
k0=i<k1=i+j

xk0(1− δk0)(1− δk1)(u
j − 1)

+ ∑
s≥2

∑
k0=i<k1<···<ks=i+j

xk0+···+ks−1
s−1

∏
`=0

(1− δk`)
s

∏
`=1

(1− δk`)
s

∏
`=1

(quk`−k`−1 − 1),

by differentiating Aj with respect to u and substituting u = 1 we get

d
du

Aj |u=1= xi(1− δi)(1− δi+j)j,

which leads to

d
du

A |u=1 = −∑
i≥1

∑
j≥1

x2i+j(1− δi)(1− δi+j)j

= −∑
i≥1

∑
j≥1

x4i−2+2j2j = − 2x4

(1− x4)(1− x2)2 .

So

∑
n≥0

∑
π∈Cn

size11(π)xn =
(1− x)22x4

(1− 2x)2(1− x2)2(1− x4)
.

By comparing the coefficients of xn, we have

∑
π∈Cn

size11(π) =
2n+3(5n− 13)

675
+

1
8
+ (−1)n

(
6n2 + 4n− 11

216

)
+ (−i)n

(
3i + 4

100

)
+ in

(
4− 3i

100

)
with i2 = −1, which completes the proof. �
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2.3. Counting (0,1) parity-rises. By the definitions, we have

C01(x, y, q, u) = 1 + ∑
a≥1

C01(a).(6)

The recurrence relation for the generating function C01(a) can be obtained as follows:

C01(a) = xay +
a

∑
b=1

C01(ab) + ∑
b≥a+1

C01(ab)

= xay + xay
a

∑
b=1

C01(b) + δaxayq ∑
b≥a+1

(1− δb)C01(b)ub−a + δaxay ∑
b≥a+1

δaC01(b)

+ (1− δa)xay ∑
b≥a+1

C01(b).

By (6), we obtain that

C01(a) = xayC01 + δaxay ∑
b≥a+1

(1− δb)C01(b)(qub−a − 1).(7)

Again, we focus on the generating function C[d]
01 (a).

Theorem 2.9. For all i = 1, 2, . . . , d,

C[d]
01 (x, y, q, u|i) = piC

[d]
01 (x, y, q, u) and C[d]

01 (x, y, q, u) =
1

1−∑d
i=1 pi

,

where

pi = xiy
d−i

∑
j=0

xj

(
∑

k0=i<k1<···<ks=i+j
ysxk0+···+ks−1

s−1

∏
`=0

δk`

s

∏
`=1

(1− δk`)(quk`−k`−1 − 1)

)
,

Proof. By (7) and Lemma 2.1, we obtain

C[d]
01 (i) =

d−i

∑
j=0

xi+jyC[d]
01

(
∑

k0=i<k1<···<ks=i+j

s

∏
`=1

δk`−1
xk`−1y(1− δk`)(quk`−k`−1 − 1)

)
,

where, βi = xiyC[d]
01 and α̂i,j = −δixiy(1− δj)(quj−i − 1). Thus C[d]

01 (i) = piC
[d]
01 (x, y, q, u).

Hence, by the fact that C[d]
01 = 1 + ∑d

i=1 C[d]
01 (i), we complete the proof. �

By taking d→ ∞ in Theorem 2.9, we obtain the main result of this subsection.

Theorem 2.10. The generating function C01(x, y, q, u) is given by,

C01(x, y, q, u) =
1

1−∑i≥1 pi

where

pi = xiy ∑
j≥0

xj

(
∑

k0=i<k1<···<ks=i+j
ysxk0+···+ks−1

s−1

∏
`=0

δk`

s

∏
`=1

(1− δk`)(quk`−k`−1 − 1)

)
,

online journal of analytic combinatorics
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Corollary 2.11. The mean of size01, taken over all compositions of n, for n ≥ 5 is given by

1
2n−1 ∑

π∈Cn

size01(π) =
n− 4

27
+

1
2n+2 + (−1)n+1

(
6n2 − 20n + 11

27 · 2n+2

)
.

Proof. By differentiating the generating function C01(x, y, q, u) with respect to u and
evaluating it at u = 1, we obtain

d
du

C01(x, 1, 1, u) |u=1=
− d

du A
A2 |u=1=

−(1− x)2 d
du A

(1− 2x)2 |u=1,

where A = 1−∑i≥1 xi Aj,

Aj = ∑
j≥0

xj ∑
k0=i<k1<···<ks=i+j

xk0+···+ks−1
s−1

∏
`=0

δk`

s

∏
`=1

(1− δk`)
s

∏
`=1

(quk`−k`−1 − 1),

and A0 = 1, which leads to

A = 1−∑
i≥1

xi

(
A0 + ∑

j≥1
Aj

)
= 1−∑

i≥1
xi

(
1 + ∑

j≥1
Aj

)
.

Obviously,

Aj = ∑
k0=i<k1=i+j

xk0δk0(1− δk1)(u
j − 1)

+ ∑
s≥2

∑
k0=i<k1<···<ks=i+j

xk0+···+ks−1
s−1

∏
`=0

δk`

s

∏
`=1

(1− δk`)
s

∏
`=1

(quk`−k`−1 − 1).

By differentiating Aj with respect to u and substituting u = 1 we get

d
du

Aj |u=1= xiδi(1− δi+j)j,

which leads to

d
du

A |u=1= −∑
i≥1

∑
j≥1

x2i+jδi(1− δi+j)j = −∑
i≥1

∑
j≥1

x4i+2j−1(2j− 1) = − x5

(1− x2)3 .

Thus

∑
n≥0

∑
π∈Cn

size01(π)xn =
(1− x)2x5

(1− 2x)2(1− x2)3 .

By comparing the coefficients of xn, we have

∑
π∈Cn

size01(π) =
2n−1(n− 4)

27
+

1
8
+ (−1)n+1

(
6n2 − 20n + 11

216

)
,

which completes the proof. �
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2.4. Counting (1,0) parity-rises. By the definitions, we have

C10(x, y, q, u) = 1 + ∑
a≥1

C10(a).(8)

The recurrence relation for the generating function C10(a) can be obtained as follows:

C10(a) = xay +
a

∑
b=1

C10(ab) + ∑
b≥a+1

C10(ab)

= xay + xay
a

∑
b=1

C10(b) + (1− δa)xayq ∑
b≥a+1

δbC10(b)ub−a

+ (1− δa)xay ∑
b≥a+1

(1− δa)C10(b) + δaxay ∑
b≥a+1

C10(b).

By (8), we obtain that

C10(a) = xayC10 + (1− δa)xay ∑
b≥a+1

δbC10(b)(qub−a − 1).(9)

Now, we consider the generating function C[d]
10 (x, y, q, u).

Theorem 2.12. For all i = 1, 2, . . . , d,

C[d]
10 (x, y, q, u|i) = piC

[d]
10 (x, y, q, u) and C[d]

10 (x, y, q, u) =
1

1−∑d
i=1 pi

,

where

pi = xiy
d−i

∑
j=0

xj

(
∑

k0=i<k1<···<ks=i+j
ysxk0+···+ks−1

s−1

∏
`=0

(1− δk`)
s

∏
`=1

δk`(quk`−k`−1 − 1)

)
,

Proof. By (9)and using Lemma 2.1 we obtain,

C[d]
10 (i) =

d−i

∑
j=0

xi+jyC[d]
10

(
∑

k0=i<k1<···<ks=i+j

s

∏
`=1

(1− δk`−1
)xk`−1yδk`(quk`−k`−1 − 1)

)
,

where, βi = xiyC[d]
10 and α̂i,j = −(1− δi)xiyδj(quj−i − 1). Thus, C[d]

10 (i) = piC
[d]
10 . Hence,

by the fact that C[d]
10 = 1 + ∑d

i=1 C[d]
10 (i), we complete the proof. �

By taking d→ ∞ in Theorem 2.12, we obtain the main result of this subsection.

Theorem 2.13. The generating function C10(x, y, q, u) is given by,

C01(x, y, q, u) =
1

1−∑i≥1 pi

where

pi = xiy ∑
j≥0

xj

(
∑

k0=i<k1<···<ks=i+j
ysxk0+···+ks−1

s−1

∏
`=0

(1− δk`)
s

∏
`=1

δk`(quk`−k`−1 − 1)

)
,

online journal of analytic combinatorics
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Corollary 2.14. The mean of size10, taken over all compositions of n, for n ≥ 3, is given by

1
2n−1 ∑

π∈Cn

size10(π) = 4
(

n− 2
27

)
+

1
2n+2 + (−1)n+1

(
6n2 + 4n− 5

27 · 2n+2

)
.

Proof. By differentiating the generating function C10(x, y, q, u) with respect to u and
evaluating it at u = 1, we obtain

d
du

C10(x, 1, 1, u) |u=1=
− d

du A
A2 |u=1=

−(1− x)2 d
du A

(1− 2x)2 |u=1,

where A = 1−∑i≥1 xi Aj,

Aj = ∑
j≥0

xj ∑
k0=i<k1<···<ks=i+j

xk0+···+ks−1
s−1

∏
`=0

(1− δk`)
s

∏
`=1

δk`

s

∏
`=1

(quk`−k`−1 − 1),

and A0 = 1, which leads to

A = 1−∑
i≥1

xi

(
A0 + ∑

j≥1
Aj

)
= 1−∑

i≥1
xi

(
1 + ∑

j≥1
Aj

)
.

Evidently,

Aj = ∑
k0=i<k1=i+j

xk0(1− δk0)δk1(u
j − 1)

+ ∑
s≥2

∑
k0=i<k1<···<ks=i+j

xk0+···+ks−1
s−1

∏
`=0

(1− δk`)
s

∏
`=1

δk`

s

∏
`=1

(quk`−k`−1 − 1).

By differentiating Aj with respect to u and substituting u = 1 we get

d
du

Aj |u=1= xi(1− δi)δi+j j,

which gives

d
du

A |u=1= −∑
i≥1

∑
j≥1

x2i+j(1− δi)δi+j j = −∑
i≥1

x4i−2 ∑
j≥1

x2j−1 = − x3

(1− x2)3 .

Thus

∑
n≥0

∑
π∈Cn

size10(π)xn =
(1− x)2x3

(1− 2x)2(1− x2)3 .

Hence, by comparing the coefficients of xn, we have

∑
π∈Cn

size10(π) = 2n+1
(

n− 2
27

)
+

1
8
+ (−1)n+1

(
6n2 + 4n− 5

216

)
,

which completes the proof. �
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