ENUMERATION RISES ACCORDING TO PARITY IN COMPOSITIONS
WALAA ASAKLY AND TOUFIK MANSOUR

ABSTRACT. Let s,t be any numbers in {0,1} and let 7 = mymy - - - 71y, be any word,
we say that i € [m — 1] is an (s, t) parity-rise if 7; = s (mod 2), m;1 = t (mod 2)
whenever 71; < 7;,1. We denote the number occurrences of (s, t) parity-rises in 7 by
risest (7). Also, we denote the total sizes of the (s, t) parity-rises in 7 by sizes(7r), that
is, sizest(71) = L, <, (7Tix1 — 71). A composition T = 711773 - - - 7T of a positive integer
n is an ordered collection of one or more positive integers whose sum is n. The number
of summands, namely m, is called the number of parts of 7. In this paper, by using
tools of linear algebra, we found the generating function that count the number of all
compositions of n with m parts according to the statistics rises; and sizeg;, for all s, t.

1. INTRODUCTION

A composition 7T = 71177 - - - 7Ty Of & positive integer n € IN is an ordered collection
of one or more positive integers whose sum is 7, i.e., 7 is a partition of n where the
parts are ordered. The number of summands, namely m, is called the number of parts

of 7. Let Cy, (Cpim, C,[q%, respectively) be the set of all compositions of n (with exactly m
parts, with exactly m parts in [d] = {1,2,...,d}, respectively). Clearly, the number of
compositions of 7 is given by |C,| = 2"~ (for example, see [14]).

Let 1 = mymp -+ - 1ty and 0 = 0902 - - - 05 be any two words of length m and s with
m > s. An occurrence of o in 7 is a subword 71,7111 - - - 7151 such that 71;_1,, < 71714y
if and only if 0, < 03, forall 1 < a < b < s. Here, o is called a subword pattern of
length s (or s-letter pattern). We denote the the number of the occurrences of ¢ in 7t by
occry(7r). We define size, (), the total size of o in 7, to be the sum over all occurrences
T4 - -+ Tips—1 of 0 in 7t of the difference 2;4;?—2 Ty — 7).

The subject statistics on compositions has been received a lot of attention (for in-
stance, see [14] and references therein). For instance, Alladi and Hoggatt [1] found the
average of rises (number occurrences of 12), descents (number occurrences of 21) and
levels (number occurrences of 11) in compositions of n with parts in {1,2}. This work
has been extended by Heubach and Mansour [13], where they studied the generating
function for the number of compositions of n with exactly m parts according to the
number of occurrences of the patterns 11, 12 and 21. More recently, Blecher, Brennan
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and Knopfmacher [6] obtained asymptotic expressions for the average size of the de-
scent immediately following the first and the last maximum. Heubach, Knopfmacher,
Mays and Munagi [11] considered the generating function for the number of all compo-
sitions of n with exactly m parts according to the number of the inversions (an inversion
in 711713 - - - 7y is @ pair 77;77; of summands such that 1 < i < j < m and 71; > 71j). More
recently, the authors [3] found the mean and the average of the total size of the rises,
the levels and the descents taken over all compositions of n (see [2, 4, 5]).

Let s, t be any numbers in {0,1} and let w = w7y - - - 71, be any word, we say that
i € [m—1]isan (s,t) parity-rise if

(1) i =s (mod?2), miyy =t (mod?2) whenever 7; < 7Tiy1.

We denote the number occurrences of (s,t) parity-rises in 7w by rises:(7). Also, we
denote the total sizes of the (s, t) parity-rises in 7t by sizes(77), that is,

sizest(71) = Z (71 — 775).

T <TTit1

For example, if 7w = 12346263 then occrop(7r) = 2 and sizegy(7r) = 6. We denote the
generating function for the number of compositions of n with exactly m parts according
to the number of (s, t) parity-rises and the statistic sizes; by Cst = Cst(x,y,q,u), that is,

n m rzse sizegt (7T
I o

n,mZO HGCn m

In the case that the m parts are related to the set [d], we define

Cs[?] — Z Z xnqurzsest ) szzest(n).

M e

In this paper, we will derive explicit formulas for the generating functions Cy;, where
s,t € {0,1}. As consequence, we find an explicit formula for the average of the statistic
sizeg in the set of compositions of 7, see Table 1.

(5,8) || v Enee, Sizest(7)
_ 2_ . _3i— . i
(0,0) || 4 (%58) + 5 + (—1)" (9572252 + (—i)" () +1 (255 ) n 2 6
2 _ . i . i
(1L1) | 16 (72) + gt + (1) (Oma) + (=) (255 ) + i (550 ) n = 4

2_
(0,1) || 252 + gz + (-1 (©5-210) 5 > 5

i 2 _
(%572) + g + (—1)"1 (O550), n > 3

TaBLE 1. Explicit formulas for the average 2,11—,1 Y rec, Sizest(7T).

S

(1,0)
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2. MAIN RESULTS

In order to study the generating function Cy, s,t € {0,1}, we need the following
general notation. We denote the generating function for the number of compositions
T = My - Ty of n with exactly m parts such that T = aj forall j = 1,2,...,¢
according to the statistics rises; and sizes; by

CSf(al e ag) — Cst(x’y’ qlu|al . ag) — Z Z xnqurises[(n)usizest(n).

n,m>0 w=ay---apmp11- T €Copm
In the case that the m parts are related to the set [d], we define

Cg] (a1---ap) = CS[‘Z] (x,y,q,ulay - --a;) = Z Z xnqurisest(ﬂ)usizest(n)_

n,mZO n:al...agﬂ/+1"'7fmecr[flﬂ

Now, we consider each case of counting (s, t) parity-rises by the following four subsec-

tions.

2.1. Counting (0,0) parity-rises. By the definitions, we have
(2) Coo(x,y,9,u) =1+ ) Coo(a).

a>1
The recurrence relation for the generating function Cyp(a) can be obtained as follows:

a
Coo(a) = x”y + Z C()o(ab) + Z Co()(ab)
b=1 b>a+1

a
= x”y + x”y Z C()()(b) + (ngayq Z (5bC00(b)ub_” —+ (5ax”y Z (1 — (Sa)C()o(b)
b=1

b>a+1 b>a+1
+(1—=38)x"y Y Coo(b),
b>a+1

where J; = 1 when a is even, and §, = 0 otherwise. By (2), we obtain that

3) Coo(a) = x"yCoo + 6ax"y Y yCoo(b)(qu’~" —1).
b>a+1
Now, we focus in studying the generating function C([;é] (a). In order to obtain an explicit

formula for the generating function Cgé] (a), we need the following lemma.

Lemma 2.1. Let 1 < i < d. Then the determinant

Bi  @iit1 Aiiy2 v Aig—1 fig
Biy1 1 Ait1i42 0 Aipld—1 Ait1d
Pa1 O 0 e 1 ag-1,4
Ba O 0 .0 1
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is given by

d—i s
Zﬁi-"—j Z (_1)S Hakgfl,kg .
i ko=i<ky<ky<---<ks=i+j /=1

Proof. We proceed the proof by induction on d > i. For d = i, the determinant equals
Bi, which agrees with the given formula. Assume that the claim holds for 4 and let us
prove it for d + 1. By the induction hypothesis we have that the determinant

Bi  aii1 @iiv2 o Gig Gigid

Biv1 1 Aivli+2 ° Aitld Ait1,d+1
D; = :

Ba O 0 e 1 4,441

Bi+1 O 0 - 0 1

equals (evaluating by the leftmost column) D; = Z;.i:()l_i(—l)j Bi+iDij, where Dj; is the
determinant that obtained from D; by removing the leftmost column and the (j + 1)-st
row. By induction hypothesis, we have that D;

. S
D;j = Y. (=1 T Tk, e
ko=i<ky<ky<---<ks=i+j (=1

forj=0,1,...,d —i. Thus, it remains to find Di(d+1_i), namely,

Aji+1 Aijit2 T Aig aid+1

1 Aiy1i42 *° Bix1d Giy1,d+1
Digy1-iy =10 1 e fit2d Aiv2,d+1

0 0 R | ag d+1

Therefore, by induction hypothesis, we obtain that

Ajit2  Aiit3 Tt Aid Ajd+1
B 1 Ait2i43 "0 Aigdd Bit2d+1
Dig+1-i) = @ii+1D(i11)(a-i) — . . :
0 0 | agd+1
d+1—ies T
— +1—i—s
= ajit+1 (_1) Ay 1,k
ko=i+1<ki<ky<---<ks=d+1 (=1
S
d+1—i—s
- D (=1) | Y
ko=i<ki=i+2<ky<-<ks=d+1 =1

, s
— Z (_1)d+1—1—s Hak Y
ko=i<ki<kp<---<ks=d+1 (=1 o
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Hence,
d+1—i , . s
Di= ) (=1)Biy; Y (=0T Tax_,x, |-
j=0 ko=i<ki<kp<---<ks=i+j (=1

which completes the induction step.

Theorem 2.2. Leti=1,2,...,d. Then

d . d 1
Cool (x,y,4,uli) = piCig (x,y,q,u) and Cig (x,y,4,u) = —————
1- Zz 1 pl
where
. d_i .
pi=x'y Y. o ( L yratoths 1l_[% H%H e = 1)> |
j=0 kO:i<k1<-~~<k5:i+] (=1

Proof. By (3) we have

Clo(1) =p1— ©7 Coo(j)as
Cé‘é](z) = B2 — ]:3(300(]) 2,

Cog(d—1) =pg1— Y4 Coo ()41,
\ C([)lé] (d) = Ba

The above system of equations can be written in a matrix form as follows

C([)%](l) B 1 Qo ?1,3 21,4 ?1,5 21'6 %’7 . E L

C[d] (2) ‘32 01 Np3 Npg4 Kos5 Mo Moy -+ Npg
A 00 — A= ot

cl(ay Ba o0 8 0 0 e 01 By

We solve this system by Cramer’s method and we obtain

Bi  Wiiy1 Rijsn Rig_1 Big
. Bir1 1 Nit1,i+3 Kiglitda - Rip1g
COO (i) — : . ' . :

Bi-1 O 0 1 Xg—1,4

Bi 0 0 01

Lemma 2.1 gives

d—i s
a i)=Y Biij ( Y. (—1)° akg_l,ké> ,
j=0 1

ko=i<ki<ky<---<ks=i+j {=
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foralli=1,2,...,d, where B; = x yC[ J and ;= —6;x'ysj(qu/~" — 1). Thus,

cili) = ¥ xiycl < L [T 0k, x 1o, (quie e — 1)> :

jZO k0:i<k1 <k2<~"<ks:i+j /=1

which is equivalent to C([f(l)](i) = piC([;g. By the fact that C([;g =1+y%, ng(i), we
U

complete the proof.

Theorem 2.3. The generating function Coy(x,y,q,u) is given by

1
COO X, y,q,u)= ’
oyt = 1= Li>1 Pi
where
pi=x'yy ¥ ( D yraot e 11_[%1—[%1_[ e - 1)> |
j=>0 kO:i<k1<-~~<kS:i+] =1
Proof. By taking d — oo in Theorem 2.2, we obtain the result. O

Example 2.4. By substituting q = u = 1 in Theorem 2.3, we get Coo(x,y,1,1) =
which is the generating function of all the compositions of n with m parts.

—X
1—x—y

Corollary 2.5. The mean of sizegy, taken over all compositions of n, for n > 6, is given by

1
TS Y sizego ()

welCy,

5n — 23 1 . (612 —20n+5
_4< 675 )+2n+2+(_1) ( 27 . 2n+2 )

—3i—4 a( 3i—4
D et ) F 5t )

Proof. By differentiating the generating function Cpo(x,y,q,u) with respect to u and
evaluating it at u = 1, we obtain

where i = —1.

d —4A —(1-x)24A
el 1.1 L _dut du B
du COO (x/ ’ ,1/[) ’u—l A2 ’u—l (1 — 2x)2 ’u—lr
where
) ) s—1 s s
A=1-) ()Y ¥ ) otk T o T ok, [T(quke e —1) | ).
i>1 >0 ko=i<ki<--<ks=i+j =0 =1 (=1

We denote A]- to be

-1
2 v Z xk0+...+ks_1 i—I 5ké Ii[ 5}([ ﬁ(mlk[*kz—l — 1),

20 ko=i<ky<---<ks=i+j (=0 (=1 (=1
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and Ag = 1, which leads to

A=1-Y« <A0+2Aj) =1-Y & <1+2Aj>.

i>1 i>1 i>1 i>1

A= Y xMg 6, (W —1)
ko=i<ky=i+j

s—1 s S
+2 2 otk Ty, [T o, [ T(qu ™ e = 1),
§2>2 ko=i<ky <---<ks=i+j {=0 (=1 /=1

By differentiating A; with respect to u and substituting u = 1, we get

d ; .
EAj lu=1= x15i5i—|—j]/

which leads to

d o S 2x6
——A |y=1= — X255 = — xHT200 = — :
du” ™ ; ; O] ; ; / (1—at)(1—x2)2
Thus
: (1— x)22x°
sizego(77)x" = :
n; n;n (1= 2x)2(1 = 2?)2(1 — x%)

By using partial fraction decompositions, we have

2 Z sizeoo(n)x" = 2 _ 56 + 1 + 1
n>0 7eC, 135(1 —2x)2  675(1—2x) 8(1—x) 18(1+x)3
19 31 4+ 3i 3i—4

©108(1 + x)2 + 216(1+x) 100(1 + ix) * 100(1 — ix)’

then by comparing the coefficients of x", we obtain

: 215 —23) 1 6n> —20n +5
Y sizego(7r) = +—+(—1)”< )
= 675 8 216
~3i—4 3i — 4
_A\n 1
(=) ( 100 )+l ( 100)
with 2 = —1, which completes the proof.
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2.2. Counting (1,1) parity-rises. By the definitions, we have
(4) C11(x,y,q,u) =1+ ZCH(Q).
a>1

The recurrence relation for the generating function Cy1(a) can be obtained as follows:

a

Ci1(a) = x"y+ ) Ciy(ab) + Y Cyi(ab)

b=1 b>a+1
a
=x"y+x% ) Ciu(b)+ (1—da)x"yq ) (1— 6p)C1(D)ub"
b=1 b>a+1
+ (1 — (5a)x“y Z §bC11(b) + (5ax“y Z Cll(b).
b>a+1 b>a+1
By (4), we obtain that
(5) Ci1(a) = x"yC11 + (1 — 6,)x"y Z (1-— (5b)C11(b)(qub*“ —1).
b>a+1

Now, we restrict our attention to study the generating function Cﬁ] (a).

Theorem 2.6. Foralli=1,2,...,d,

d . d d 1
Ci} (x,y,q,uli) = piCY} (x,v,q,u) and C} (x,y,4,u) = ——7——,
1= pi
where p; is given by
d=i L . s—1 s s P
Xy ) ¥ ( Y. Yot e TT( = 6,) [ J(1 = 6k,) [ J(qu™ " — 1)) :
j=0  \ko=i<ky<-<ks=i+j (=0 (=1 (=1

Proof. By (5) we have

Cﬁ] (1) =p1— 27:2 Ci1(j)ay,)
d o\ AN
CH (2) =pB2— 27:3 C1(j)a,

Clld—1) =pas— Ty Cuu(j)Raos,
\ Cﬁ](d) :,Bd-

The above system of equations can be written in a matrix form as follows

Cﬁ] 1) B 1 @ @,3 §1,4 §1,5 21,6 %’7 21’ p

C[d}(z) Bo 0 1 W3 Wpg A5 Ape Npy -+ oy
Al _ | PP A= e

cl(a) Ba o0 2 00 e 81 Ry
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We solve this system by Cramer’s method and we obtain

Bi  Wijy1 Rjjyo - Wijg_1 Wig

. Bir1 1 Nit1,i43 Kiglita - Ripig
Ba1 O 0 e 1 D14
Ba 0 0 01

Lemma 2.1 gives

5 d—i s
Ch (i) = Zﬁi—l—j Z (—1)° Rky_1ke | 7
j=0 ko=i<ky<ky<:--<ks=i+j (=1
foralli = 1,2,...,d, where B; = xinﬁ] and @;; = —(1—6;)x'y(1 —6;)(qu/~" —1).
Thus,

S

d—i
d‘?(i>=z(;)xl+fyc¥?< )3 H(l—%_nxkf1y<1—fskl><qu’<f—kf1—1)),

j ko=i<ky<---<ks=i+j =1

which is equivalent to Cﬁ] (i) = piCﬁ]. By using (4), we complete the proof. g

By taking d — oo in Theorem 2.6, we obtain the main result of this subsection.

Theorem 2.7. The generating function C11(x,y,q,u) is given by
1

C Xy, qu) = —

nlx g, I=Yi>1pi

where p; is given by

) ) s—1 s s
xzy Z x/ ( Z ysxk0+...+ks,1 H(l . 5’%) (1 . 5k£) (qukg*kg_l _ 1)) )

i>0 ko=i<ky<--<ks=i+j =0 =1 =1

Corollary 2.8. The mean of sizeq1, taken over all compositions of n, for n > 4, is given by

1 .
= Z sizey1 (71) =

meCy

5n—13 1 L [(6n% +4n —11 [ 4+3i a 4—3i
16 (Vg )+t 0 (T )+ 0 () 7 ()

where i = —1.

Proof. By differentiating the generating function Ci;(x,y,q,u) with respect to u and
evaluating it at u = 1, we obtain

d — LA —(1—x)24 4
(v 1L Lu) == du ( )"

Az 1= (1—2x)2 Ju=1,

ONLINE JOURNAL OF ANALYTIC COMBINATORICS
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where A =1— Y5 x'4;,
) " ' s—1 s s ek
A=YA Y et [T -6 [T - o) [ [(qu bt — 1),
>0 ko=i<k <o <ks=i+j =0 (=1 (=1
and Ag = 1, which leads to
A=1-Y <A0+2Aj) =1-Y « <1+2AJ~>.
i>1 i>1 i>1 i>1

Clearly, A; is equal to

Y, X1 —=6) (1 =6 - 1)

ko=i<ky=i+j
s—1 s s
+ Z Z xk0+.,.+ks,1 H(l o 5k5) (1 o 5“) (quk[—kg_l o 1)’
§2>2 ko=i<ky<:--<ks=i+j (=0 /=1 /=1

by differentiating A; with respect to u and substituting u = 1 we get

d

R lu=1= ' (1= &;) (1 = b;19)],

which leads to

d » |
A== =) Y (1= 6) (1= 6iyy)]

du i>1j>1
. . 214

— _sz4z—2+2]2j: . X .

i>1j>1 (T—x*)(1—x%)

So
. (1—x)22x*
sizeqq (71)x" = :
ng() neZCn (1-2x)(1 = x%)2(1 — x*%)

By comparing the coefficients of x", we have

: 2" 3(5n —13) 1 6n> +4n — 11
Y sizeyy () = 75 + 3 + (—=1)" ( 16 )

meCy
344\ . [4—3i
_n\n n
+ (=) (100)“ (100)

with 2 = —1, which completes the proof.
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2.3. Counting (0,1) parity-rises. By the definitions, we have
(6) Co1(x,y,q,u) =1+ ) Coi(a)

a>1

The recurrence relation for the generating function Cy; (2) can be obtained as follows:

COl( )—xy—i—ZCOl ab —f— Z Co1 ab)

b=1 b>a+1
=X ]/+ x* y Z Cm —|— 5axayq Z (1 _ 5b)C01(b)ub—a + 5axa]/ Z 5aC01(b)
b>a+1 b>atl
)xy 2 Coi1(b
b>a+1

By (6), we obtain that

d Cor(a) = x"yCor +0ax"y Y, (1=8)Con(b) (qu"" —1).
b>a+1

Again, we focus on the generating function C([ﬁ] (a).

Theorem 2.9. Foralli=1,2,...,d,

d . d 1
Col(x,y, 4, uli) = piCor (x,y,q,u) and Cio (x,y,4,u) = —————
1- Zz 1 pl
where
. d_i .
pi=xy) v ( )3 yoaforth H(Sk[ H (1= &) (quie ke — 1)) ,
j=0 kO:i<k1<~--<k5=i+] (=1

Proof. By (7) and Lemma 2.1, we obtain

S
[d] Z XH_]]/C(H] ( Z H 5k5_1xk€71y(1 - 5kg)(quke_keil - 1)) s

j= ko=i<ki<---<ks=i+j (=1
where, B; = xin([n] and ®;; = —6;x'y(1—6;)(qu/~" —1). Thus C([ﬁ](i) = piC([)‘i](x, Yy, q,u).
Hence, by the fact that C([ﬁ] =1+Y7, C([ﬁ] (i), we complete the proof. g
By taking d — oo in Theorem 2.9, we obtain the main result of this subsection.
Theorem 2.10. The generating function Cy1(x,y,q, u) is given by,
1

Cor(x,y,q,u) = m

where

pi = xinyf< ) yaot ke 1H5keH — O,) (qut R —1)),

j>0 k0=i<k1<~--<k5=i+]

ONLINE JOURNAL OF ANALYTIC COMBINATORICS
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Corollary 2.11. The mean of sizey, taken over all compositions of n, for n > 5 is given by

1 , n—4 1 L1 [(6n* —20n+11
F Z SZZ€01(7T) = 27 +W+(_1)n ( 27 .on+2 )

7I€Cn

Proof. By differentiating the generating function Cy(x,y,q,u) with respect to u and
evaluating it at u = 1, we obtain

d —dA —(1-x)%4LA
—C ’ 1/ 1/ =1= G =1= i =1,
au 01(x u) |u=1 A2 lu=1 (1 - 2x)2 |lu=1
where A =1-Y 54 xiA]',
) ’ . s—1 s S ok
Aj=).¥ L o0 [0 [T = 0¢) [ T(qu 1 = 1),
>0 ko=i<k<---<ks=i+j (=0 (=1 (=1

and Ay = 1, which leads to

A=1-Y <A0+2Aj) =1-Y <1+2Aj>.

i>1 j>1 i>1 i>1
Obviously,
Ai= Y Mg (1—6) (W 1)
ko=i<ky=i+j
. ¢ s—1 S S -
+ Z Z 01 H(Ske H(l — 5ké) (qutt™r-1 —1).
§>2 kg=i<ky <---<ks=i+j =0 (=1 =1

By differentiating A; with respect to u and substituting u = 1 we get

d ; .
%Aj lu=1= x'6;(1 = 6; )],
which leads to
d " . 201 /m x°
A== =) ) X (1= biyg)j = — ) ) ¥ - 1) = T2y
i>1j>1 i>1j>1
Th
" Y ) sizeg (m)x" (-2
01 = :
130 el (1—2x)%2(1 —x2)3

By comparing the coefficients of x", we have

21 (n—4) 1 6n? —20n + 11
. = \"r =% - -1 n+1 ,

which completes the proof. U
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2.4. Counting (1,0) parity-rises. By the definitions, we have
(8) Cio(x,y,q,u) =1+ ) Cio(a)

a>1

The recurrence relation for the generating function Cjp(a) can be obtained as follows:

Cro(a )—xy+ZC10 (ab) + Z Cyo(ab)

b=1 b>a+1
= xy +x"y Z Cio(b) + (1= 6a)x"yq Y 8,Cio(b)u""
b= b>a+1
x Y Z (1 — C10 )+(5ax”y 2 ClO(b)
b>a+1 b>a+1
By (8), we obtain that
9) Clo(ﬁl) = x“yClo + (1 — (5a)x”y Z 5bC10(b)(qubia — 1)
b>a+1

4]

Now, we consider the generating function Cy, (x,y,q,u).

Theorem 2.12. Foralli=1,2,...,4d,

(4]

d . 1
Cll(x,y,q,uli) = piC(x,y,4,u) and C% (x,y,q,u) =

1- Zz 1 pl
where

. d_i .
Pz:xlny]( Yoy +k“l—[ (1-6,) H(Ske (qut e =1 ))'
j=0 kO:i<k1<~--<k5=i+]
Proof. By (9)and using Lemma 2.1 we obtain,
S
d : —
C[ ] Z xl+]yC10] ( Z H(l - 5k5_1)xké71y5k5(quké K1 — 1)) s
j= ko=i<ki<---<ks=i+j =1
where, B; = x'yC[O] and @;; = —(1— 6;)x'y6;(qu/~" — 1). Thus, C%]( ) = p;C [ ] . Hence,
by the fact that Cgo] =1+3y7 do (i), we complete the proof. O
By taking d — oo in Theorem 2.12, we obtain the main result of this subsection.

Theorem 2.13. The generating function C1o(x,y, g, u) is given by,

1
C XYy, qu) = —
o(% ¥, q,1) 1=Yi>1pi
where
) ) s—1 s
pi =x'y Z x! ( Z ysxk0+ ks H(l — 5;%) H&Q(quk‘f_kf*l — 1)) ,
j>0 ko=i<k;<---<ks=i+j (=0 /=1
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Corollary 2.14. The mean of sizeyy, taken over all compositions of n, for n > 3, is given by

1 , -2 1 L1 [(6n*+4n—5
21’1—71 Z SZZ€10( )—4:( 57 )"’W"‘(—l)n <W>

meCy

Proof. By differentiating the generating function Cijo(x,y,q,u) with respect to u and
evaluating it at u = 1, we obtain

a — A —(1—x)24 A
Eclo(x’ 1’1’u) |u:1: du ( ) du

Az == (1—2x)2 lu=t,

where A =1—3 54 xiA]-,

) s—1 s s
Aj= Z X! Z alotth H(l — %) H Ok, kukﬁkz_l - 1),
j20  ko=i<ky < --<ks=i+j (=0 /=1 (=1

and Ay = 1, which leads to

A=1-Y (A0+2Aj> =1-Y « <1+2A]->.

i>1 i>1 i>1 i>1
Evidently,
A= Y xRl —6,) 0, (1 — 1)
ko=i<k=i+j
s—1 S S
+) Y dhot TR T = o,) [T 0k, [T (quke 1 —1).
§>2 ko=i<ky<---<ks=i+j (=0 /=1 (=1

By differentiating A; with respect to u and substituting u = 1 we get

d .
2 lu= 1= x (1= 6)di4jj,

d
which gives
iA _ 2i+j(1 — g, 4i—2 2j—1 _ x—3
Ju == =3 Y ¥ ( )0ivjj = — Y Y x (1—x2)3
i>1j>1 i>1 ji>1
Thus
. (1—x)%x3
sizejp(mm)x" = :
ok (20712

Hence, by comparing the coefficients of x", we have

. -2 1 6n2+4n —>5
o 21/1-1-1 1 n+1
Z sizeo(71) = < 57 ) + = 5 +(—-1) 16 )

neCy,

which completes the proof. U
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