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ABSTRACT. By extending former results of Ehrhart, it was shown by Peter McMullen that
the number of lattice points in the Minkowski-sum of dilated rational polytopes is a quasi-
polynomial function in the dilation factors. Here we take a closer look at the coefficients
of these quasi-polynomials and show that they are piecewise polynomials themselves and
that they are related to each other by a simple differential equation. As a corollary, we
obtain a refinement of former results on lattice points in vector dilated polytopes.

1. INTRODUCTION

LetRn = {x = (x1, . . . , xn)ᵀ : xi ∈R} be the n-dimensional Euclidean space and letZn ⊂Rn

be the integral lattice consisting of all points with integral coordinates. The origin of an ap-
propriate dimension will be denoted by 0. The volume, i.e., the n-dimensional Lebesgue
measure of a subset X ⊂Rn is denoted by vol(X ), and by voldim(X )(X ) we mean the dim(X )-
dimensional volume of X measured with respect to its affine hull.

A polytope P ⊂ Rn is the convex hull of finitely many points, i.e., P = conv{v1, . . . , vk }
with vi ∈ Rn , 1 ≤ i ≤ k. It is called integral if the points vi can be chosen to be in Zn , and
it is called rational if vi can be chosen to be in Qn . Equivalently, P is a rational polytope if
and only if there are A ∈Qm×n and b ∈Qm with P = {x ∈Rn : A x ≤ b}. It is clear that A and
b can also be chosen to be integral.

For a rational polytope P , the smallest positive integral (resp. rational) number ρ such
that ρP is an integral polytope is called the (rational) denominator of P and it is denoted
by τZ(P ) (resp. τQ(P )). A function p : Z≥0 → R (p : Q≥0 → R) is called a (rational) quasi-
polynomial with period τ ∈Z (τ ∈Q) of degree (at most) n if there exist periodic functions
pi :Z≥0 →R (pi :Q≥0 →R), i = 0, . . . ,n, with period τ such that p(r ) =∑n

i=0 pi (r )r i .
Now, for given rational polytopes P1, . . . ,Pk ⊂Rn , k ∈N≥1, we are interested in the num-

ber of lattice points contained in their (non-negative) rational Minkowski-sums, i.e., we
consider the function Q(P1, . . . ,Pk , ·) :Qk

≥0 →N given by

Q(P1, . . . ,Pk ,r ) = #

((
k∑

i=1
ri Pi

)
∩Zn

)
, for r = (r1, . . . ,rk ) ∈Qk

≥0 .

For one polytope P , i.e., k = 1, such considerations go back to Ehrhart [8]. One of
Ehrhart’s fundamental theorems states that Q(P1, l ), for integers l ∈ N≥1, is a quasi-poly-
nomial with period τZ(P ) of degree dim(P ). The leading coefficient of this quasi-poly-
nomial is given by voldim(P )(P ) for all integers l ∈ N≥1 such that aff(l P ) contains integral
points. Thus, if P is full-dimensional, the leading coefficient is constant and equals vol(P ).
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For more information on all of the fascinating aspects of Ehrhart theory we refer to the
book by Beck and Robins [6].

This univariate case was generalized to more than one polytope and to non-negative
rational dilates by Peter McMullen [12, Theorem 7]. Actually, [12, Theorem 7] is proven
only for integral dilates, but the proof carries easily over to the rational case and we have
learnt, that this fact seems to be folklore. For an explicit treatment of rational dilates in the
case of one polytope we refer to [10]. For another approach to this rational Ehrhart theory
we refer to Baldoni et al. [1, 2, 3]. They study intermediate sums, interpolating between
integrals and discrete sums over certain integral points in polytopes which also results in
a rational version of Ehrhart’s Theorem for such intermediate valuations.

In order to present McMullen’s result we need some more notation. For x ∈ Rk and a
non-negative integral vector a ∈Nk we denote by x a the monomial x a = ∏k

i=1 xai
i , and as

an abbreviation we set I (k,n) = {l ∈ Nk : |l |1 ≤ n}, where | · |1 denotes the 1-norm. The
Hadamard product r ¯ s of two rational vectors r , s ∈ Qk is the coordinate-wise product
r ¯ s = (r1s1, . . . ,rk sk ).

Definition 1.1 (Multivariate Rational Quasi-polynomial). Let k ∈N≥1. A function p :Qk
≥0 →

Q is called a rational quasi-polynomial of degree (at most) n with (rational) period τ =
(τ1, . . . ,τk ) ∈Qk if for all l ∈ I (k,n) there exist periodic functions pl :Qk

≥0 →Q with period
τi in the i th argument, 1 ≤ i ≤ k, such that

p(r ) = ∑
l∈I (k,n)

pl (r )r l .

We call pl (·) the l th coefficient of p.

With these notations McMullen’s result can be stated as

Theorem 1.2 ([12, Theorem 7]). Let P1, . . . ,Pk ⊂Rn be rational polytopes. Then the function
Q(P1, . . . ,Pk , ·) : Qk

≥0 → N is a rational quasi-polynomial of degree dim(P1 + . . .+Pk ) with
period τ= (τQ(P1), . . . ,τQ(Pk )).

Q(P1, . . . ,Pk , ·) is called the rational Ehrhart quasi-polynomial of P1, . . . ,Pk , and the l th
coefficient of Q(P1, . . . ,Pk , ·) is denoted by Ql (P1, . . . ,Pk , ·).

As in the univariate case, the leading coefficients are constants and admit a nice geo-
metric interpretation; namely, for all l ∈ I (k,n) with |l |1 = dim(P1 + . . .+Pk ) = d and for all
r ∈Qk

>0 such that aff
(∑k

i=1 ri Pi
)∩Zn 6= ; we have

(1.1) Ql (P1, . . . ,Pk ,r ) = d !

l1! · · · lk !
Vl (P1, . . . ,Pk ).

Here, Vl (P1, . . . ,Pk ) is the l th mixed volume of the polytopes P1, . . . ,Pk , and it depends
only on those polytopes with li > 0. For a detailed introduction to mixed volumes we
refer to Schneider [14, Chapter 5]. Here we just mention that the d-dimensional vol-
ume of

∑k
i=1 ri Pi is a homogenous polynomial in r of degree d , and its coefficients are

the so-called mixed volumes Vl (P1, . . . ,Pk ) – up to the constant d !
l1!···lk ! . Since the leading

term of the Ehrhart quasi-polynomial Q(P1, . . . ,Pk ,r ) is the volume of r1P1 + . . . + rk Pk ,
the mixed volumes appear as coefficients of Q(P1, . . . ,Pk , ·). We remark that the leading
term of a multivariate polynomial p(r ) = ∑

l∈I (k,d) pl (r )r l of degree d is the polynomial∑
l∈I (k,d),|l |1=d pl (r )r l .
Our main result is the following structural statement about the coefficients of the ratio-

nal Ehrhart quasi-polynomial.
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Theorem 1.3. Let k ∈N≥1, let P1, . . . ,Pk ⊂Rn be rational polytopes with dim(P1+ . . .+Pk ) =
n and let l ∈ I (k,n). Then Ql (P1, . . . ,Pk , ·) is a piecewise polynomial function of degree at
most n −|l |1. Moreover, for all l ∈ I (k,n −1) and for all r ∈Qk

>0 such that Q(P1, . . . ,Pk , ·) is
continuous at r +u ¯ (τQ(P1), . . . ,τQ(Pk ))ᵀ, u ∈Nk , it holds

(1.2) (l j +1)Ql+e j
(P1, . . . ,Pk ,r )+ ∂

∂r j
Ql (P1, . . . ,Pk ,r ) = 0,

where e j ∈Rk denotes the j th unit vector.

In words, the coefficients of the rational quasi-polynomial are piecewise polynomials
themselves and they are related to each other by a simple differential equation. In partic-
ular, the theorem implies that knowing Q0(P1, . . . ,Pk ,r ) is equivalent to knowing all coef-
ficients of the Ehrhart quasi-polynomial. For k = 1 this result was proven by Linke [10]. In
Section 2 we give an example (cf. Example 2.1) illustrating the above theorem.

As a corollary of Theorem 1.3 we can slightly extend a statement about lattice points in
vector dilations of polytopes. In order to state the result, we introduce some more nota-
tion: For a given integral (m ×n)-matrix A, let P A(b) :={x ∈ Rn : Ax ≤ b}, b ∈Qm . We want
to count the number of lattice points in P A(b) as a function in b for a fixed matrix A.

To this end, we may consider only matrices A ∈ Zm×n such that P A(b) is bounded for
all b ∈ Qm , that is, we always assume pos(Aᵀ) = Rn . Here, pos(Aᵀ) is the cone generated
by the rows of A, that is, the set of all nonnegative linear combinations of rows of A. We
denote the number of lattice points in P A(b) by

Φ(A,b) = #(P A(b)∩Zn), b ∈Qm .

Since we cannot expect uniform behavior of Φ(A,b) when the combinatorics of the
polytope P A(b) changes, we consider subsets of Qm on which the polytopes P A(·) are so-
called locally similar. To introduce this notation, we have to consider the possible normal
fans of P A(b) which we define next.

For a fixed vertex v of a polytope P A(b), the normal cone Uv of v is the set of all directions
u ∈ Rn , such that the function x 7→ uᵀx , x ∈ P A(b), is maximized by the vertex v . By the
definition of vertices as 0-dimensional faces of a polytope, the normal cone Uv of a vertex
v is full-dimensional.

We call the set of the normal cones of P A(b) the normal fan, denoted by NA(b). This
notation differs from the usual definition of the normal fan, which is a polyhedral subdi-
vision of Rn and hence also contains lower dimensional normal cones. In our case it is
enough to only consider the maximal cells. Still, the union of all normal cones in NA(b) is
Rn , and the interiors of two normal cones in NA(b) have no points in common. We refer
to Ziegler [19, Chapter 7] for an introduction to polyhedral fans.

Now, two polytopes are called locally similar, if their normal fans coincide. For a given
matrix A and varying b there are only finitely many possible normal fans and in the fol-
lowing let N be an arbitrary, but fixed normal fan, and let

CN = cl
{

b ∈Rm : NA(b) = N
}

be the closure of all right hand side vectors b having the same fixed normal fan N . Then
CN is a rational polyhedral cone (cf. Lemma 3.1).

Dahmen and Micchelli, 1988, [7, Theorem 3.1] gave a structural result for Φ(A,b) for
a fixed matrix A and suitable integral vectors b ∈ CN . As a corollary [7, Corollary 3.1],
they obtained that Φ(A, ·) is a polynomial in the integral variable b ∈ CN ∩Zm , if P A(b)
is integral. Sturmfels, 1995, [15] gave a formula for Φ(A,b), which is also valid if P A(b)
is not integral. He uses tools from the theory of polyhedral splines and representation
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techniques of groups. Altogether, the mentioned references lead to the following well-
known theorem:

Theorem 1.4 ([7, 15]). Let CN = pos{h1, . . . ,hk } with hi ∈ Qm , 1 ≤ i ≤ k. Then Φ(A,b) is a
rational quasi-polynomial in b ∈CN ∩Qm , that is,

Φ(A,b) = ∑
l∈I (m,n)

Φl (A,b)bl ,

whereΦl (A,b) =Φl (A,b + [τZ(P A(hi ))] hi ) for l ∈ I (m,n) and 1 ≤ i ≤ k.

For an approach to this parametric problem via generating functions as well as for al-
gorithmic questions related to computing the function Φ(A,b), we refer to the work of
Köppe&Verdoolaege [9], Verdoolaege&Woods [17], Verdoolaege et al. [16] and the refer-
ences within. Mount, 1998, [13] described methods for actually calculating the polynomi-
als Φ(A,b) and normal cones, if A is unimodular and b integral. To this end, Mount gave
an alternative argument for the result [7, Corollary 3.1] by Dahmen and Micchelli. His
approach makes use of known results on lattice points in Minkowski-sums of polytopes.
We will adopt this approach in order to obtain (via Theorem 1.3) the following structural
refinement of the theorem above:

Corollary 1.5. In addition to Theorem 1.4 it holds: Φl (A,b) is a piecewise polynomial func-
tion of degree n −|l |1 in b. Moreover, for all l ∈ I (m,n −1) we have

(l j +1)Φl+e j (A,b)+ ∂

∂b j
Φl (A,b) = 0.

Beck [4, 5] gave a more elementary proof of the quasi-polynomiality of Φ(A,b), if b is
integral. He also proved an Ehrhart reciprocity law for vector dilated polytopes, that is,
Φ(A,−b) = #(int(P A(b))∩Zn), for b ∈ Zn ; here, int(·) denotes the interior. Since Φ(A,b) =
Φ(t A, tb) for all t ∈Q≥0, A ∈Zm×n and b ∈Qm , this statement immediately carries over to
rational vectors b and we have

Φ(A,−b) = #(int(P A(b))∩Zn)

for all b ∈Qm .

Remark 1.6. Theorem 1.2 and Corollary 1.5 can be extended to real r ∈Rk
≥0 or b ∈CN ∩Rm

via approximation by rationals (cf. [10, Remark 2.7]), and therefore they may be consid-
ered as part of a real Ehrhart theory in the spirit of [1, 2, 3]. Observe, however, the main
underlying structure, i.e., the normals of the polytopes are still rational vectors and so lat-
tice points may enter or leave only at rational dilates.

The paper is organized as follows. The proof of our main Theorem 1.3 is given in the
next section, and in Section 3 we only outline the proof of Corollary 1.5 since it follows
pretty much the approach of Mount [13, Theorem 2] in the integral case b ∈ Zm . In both
sections we give examples, illustrating the associated quasi-polynomial structures.

2. PROOF OF THEOREM 1.3

First, in order to make the statement of Theorem 1.3 more transparent and in order to
give a flavour of the structure of the coefficients we start with an example. To this end, for
r ∈Qwe denote by {r } its fractional part, that is, {r } = r −br c where b·c is the floor-function.

Example 2.1. We consider the origin-symmetric square P1 = conv
{(1

1

)
,
(−1

1

)
,
(−1
−1

)
,
( 1
−1

)}
of

edge length 2 and the triangle P2 = {
(0

1

)
,
( 1
−1

)
,
(−1
−1

)
} (see Figure 1). Obviously, the rational
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•
P1

•
P2

•
r1P1 + r2P2

FIGURE 1. P1, P2 and r1P1 + r2P2.

denominators are given by τQ(P1) = 1 and τQ(P2) = 1. For r = (r1,r2)ᵀ ∈ Q2
>0, the sum

r1 P1 + r2 P2 can be written as

r1P1 + r2P2 = conv

{(
r1

r1 + r2

)
,

(
−r1

r1 + r2

)
,

(
−(r1 + r2)

r1 − r2

)
,(

−(r1 + r2)

−(r1 + r2)

)
,

(
(r1 + r2)

−(r1 + r2)

)
,

(
r1 + r2

r1 − r2

)}
= {x ∈R2 : −(r1 + r2) ≤ x1 ≤ r1 + r2,

−(r1 + r2) ≤ x2 ≤ r1 + r2,
±2x1 +x2 ≤ 3r1 + r2}.

After some elementary calculations one obtains:

Q(2,0)(P1,P2,r ) = 4,

Q(1,1)(P1,P2,r ) = 8,

Q(0,2)(P1,P2,r ) = 2,

Q(1,0)(P1,P2,r ) =−8{r1 + r2}+4,

Q(0,1)(P1,P2,r ) =−2{3r1 + r2}−2{r1 + r2}+2,

Q(0,0)(P1,P2,r ) =−1

2

(
{3r1 + r2}2 + {r1 + r2}2)+3{3r1 + r2} {r1 + r2}− {r1 + r2}

− {3r1 + r2}+1−
{

1
2 , b3r1 + r2c−br1 + r2c odd,

0, otherwise.

Observe that Q(2,0)(P1,P2,r ) and Q(0,2)(P1,P2,r ) are the areas (volumes) of P1 and P2, re-
spectively, i.e., Q(2,0)(P1,P2,r ) = V(2,0)(P1,P2), Q(0,2)(P1,P2,r ) = V(0,2)(P1,P2), and the coef-
ficient Q(1,1)(P1,P2,r ) is up to the factor 2 the mixed volume V(1,1)(P1,P2) (cf. (1.1)).

Moreover, all of the coefficients Ql (P1,P2,r ) are piecewise polynomials of degree 2−|l |1
with period τ = (τQ(P1),τQ(P2)) = (1,1), and, for instance, regarding the derivatives we
have for r1,r2 > 0 with 3r1 + r2 < 1

∂

∂r1
Q(0,0)(P1,P2,r ) =−(3(3r1 + r2)+ (r1 + r2))+3(3(r1 + r2)+ (3r1 + r2))−4

= 8(r1 + r2)−4 =−Q(1,0)(P1,P2,r )

∂

∂r2
Q(0,1)(P1,P2,r ) =−4 = (−2) Q(0,2)(P1,P2,r ).

The main ingredient of the proof of Theorem 1.3 is the following rather technical lemma.
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Lemma 2.2. Let p : Qk → Q be a rational quasi-polynomial of degree n ≥ 1 with period
τ ∈Qk

>0 and constant leading coefficients, that is,

(2.1) p(r ) = ∑
l∈I (k,n)

pl (r )r l ,r ∈Qk ,

with pl (r ) ∈ Q for all l ∈ I (k,n) with |l |1 = n, and pl : Qk → Q are periodic functions with
period τ. Suppose there exist a k-dimensional open subset S ⊂ Rk such that for (r ,u) ∈
(S ∩Qk )×Nk the value of p(r +u ¯τ) depends only on u, i.e., there exists cu ∈Q for u ∈Nk

such that

(2.2) p(r +u ¯τ) = cu , for all r ∈ S ∩Qk , u ∈Nk .

Then for l ∈ Nk with |l |1 < n, the coefficient pl : S → Q is a polynomial of degree n − |l |1
satisfying the differential equation

(2.3) (l j +1)pl+e j (r )+ ∂

∂r j
pl (r ) = 0.

First we will show how Theorem 1.3 can be deduced from Lemma 2.2. Afterwards we
will proceed with the proof of Lemma 2.2.

Proof of Theorem 1.3. By Theorem 1.2 and (1.1) we know that Q(P1, . . . ,Pk , ·) :Qk
≥0 →N is a

rational quasi-polynomial with period τ= (τQ(P1), · · · ,τQ(Pk )) and constant leading coef-
ficients, and we may assume that it is of degree n.

For a polytope P ⊂Rn , let h(P, ·) :Rn →R be its support function, i.e., h(P, v ) = max{vᵀx :
x ∈ P }. We refer to [14, Section 1.7.1] for more information on support functions. Let
v j ∈ Zn , 1 ≤ j ≤ q , be integral outer unit normals of the facets of the rational polytope
P1 + . . .+Pk . Observe that for all r ∈ Rk

>0 the facets of the polytope r1 P1 + . . .+ rk Pk have
the same outer normals v j , 1 ≤ j ≤ q .

Now, for r ∈Rk
>0 and z ∈Zn we know z ∈∑k

i=1 ri Pi if and only if vᵀ
j z ≤∑k

i=1 ri h(Pi , v j ) for
1 ≤ j ≤ q . Thus Q(P1, . . . ,Pk ,r ) is a constant function on the interior of the k-dimensional
cells induced by the hyperplane arrangement{{

r ∈Rk
≥0 :

k∑
i=1

ri h(Pi , v j ) = vᵀ
j z

}
: z ∈Zn , j = 1, . . . , q

}
.

Let S be the interior of a fixed k-dimensional cell given by this section. Then Q(P1, . . . ,Pk , ·)
is constant on S. Moreover, due to the definition of τ we have that S +u ¯τ, u ∈ Nk , lies
also inside the interior of a cell of the arrangement. Hence Q(P1, . . . ,Pk , ·) is constant on
S +u ¯τ for a given u ∈ Nk . Thus, according to Lemma 2.2, we know that for l ∈ I (k,n),
|l |1 < n, and for r in the interior of an arbitrary k-dimensional cell of the above hyperplane
arrangement the coefficient Ql (P1, . . . ,Pk ,r ) is a polynomial of degree n−|l |1 satisfying the
partial differential equation (1.2). Finally, we observe that the assumption in Theorem 1.3
on the continuity of Ql (P1, . . . ,Pk ,r ) implies that r lies in the interior of a k-dimensional
cell of the arrangement. �

The proof of Lemma 2.2 is done by induction on the degree, and for readability we out-
source a part of the induction step to the next lemma. It just says that if a kind of chain of
certain functions is a polynomial, then each of these function has to be a polynomial.
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Lemma 2.3. Let k ≥ 1, S ⊂ Rk open, and for l ∈ I (k,n) let pl : S → R functions. For j ∈
{1, . . . ,k} and g ∈ I (k,n −1) let qg , j : S →R be given by

qg , j (r ) =
n−|g |1∑

i=1
c(g ,i , j ) pg+i e j (r ),

where c(g ,i , j ) ∈ R are constants. If qg , j is a polynomial of degree n − 1− |g |1 in r , for all
j ∈ {1, . . . ,k}, g ∈ I (k,n −1), then pl is a polynomial of degree n −|l |1 in r , for all l ∈ I (k,n),
|l |1 > 0.

Proof. We proceed by induction on |l |1 and start with |l |1 = n. Then for lm 6= 0 we have

ql−em ,m(r ) = c(l−em ,1,m) pl (r ).

Hence pl (r ) is constant. In the same way we find for |l |1 ≤ n −1 and lm 6= 0

ql−em ,m(r ) =
n−|l |1+1∑

i=1
c(l−em ,i ,m) pl−em+i em (r )

= c(l−em ,1,m) pl (r )+
n−|l |1+1∑

i=2
c(l−em ,i ,m) pl−em+i em (r ).

By our inductive approach the sum on the right hand side is a polynomial of degree n −
|l |1 −1 and by assumption the left side is a polynomial of degree n − |l |1. Hence pl (r ) is
also a polynomial of degree n −|l |1.

�

Now we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. First we will prove the polynomiality of the functions pl by induction
on n. Let n = 1. By (2.2) and (2.1) we have

c0 = p(r ) = p0(r )+ ∑
l∈I (k,1),|l |1=1

pl (r )r l

By assumption, for |l |1 = n = 1 the functions pl (r ) are constants and so p0(r ) is a polyno-
mial of degree 1.

Now let n ≥ 2. To shorten notation, we denote for l ∈ I (k,n) by l ∈ I (k −1,n) the vector
consisting of the first k−1 coordinates of l , i.e., l = (l1, . . . , lk−1). In order to apply induction
we consider the function

(2.4) q(r ) = p(r +τk ek )−p(r ).

Due to (2.2) we have

(2.5) q(r +u ¯τ) = p(r + (u +ek )¯τ)−p(r +u ¯τ) = cu+ek − cu

for all r ∈ S ∩Qk , u ∈Nk .
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Next we observe that q(·) is a polynomial of degree n −1:

q(r ) = p(r ,rk +τk )−p(r ) = ∑
l∈I (k,n)

pl (r )r l
(
(rk +τk )lk − r lk

k

)
= ∑

l∈I (k,n)
pl (r )

(
lk−1∑
i=0

(
lk

i

)
τ

lk−i
k r l r i

k

)

= ∑
(l ,m)∈I (k,n−1)

r l r m
k

n−|l |∑
i=m+1

p(l ,i )(r )

(
i

m

)
τi−m

k

= ∑
l∈I (k,n−1)

ql (r )r l ,

with

ql (r ) =
n−|l |1+lk∑

i=lk+1
p(l ,i )(r )

(
i

lk

)
τ

i−lk
k =

n−|l |1∑
i=1

pl+i ek (r )

(
i + lk

lk

)
τi

k .

In particular, for |l |1 = n −1 we get ql (r ) = p(l ,lk+1)(r )(lk +1)τk , which by assumption is a

constant. Thus we know that q :Qk →Q is a rational quasi-polynomial of degree n−1 with
period τ and constant leading coefficients. In view of (2.5) we get by our induction that
ql (r ) is a polynomial of degree n −1−|l |1 in r .

Obviously, this is also true if we replace the index k in the definition of q (cf. (2.4)) by
any other index j ∈ {1, . . . ,k}. Hence, for j ∈ {1, . . . ,k} and l ∈ I (k,n −1) the functions

ql , j (r ) =
n−|l |1∑

i=1
pl+i e j (r )

(
i + l j

l j

)
τi

j

are polynomials of degree n −1−|l |1 in r . According to Lemma 2.3 this implies that pl (r )
is a polynomial of degree n − |l |1 in r for all l ∈ I (k,n), |l |1 > 0. The missing case p0(r )
follows immediately from the identity (2.2)

c0 = p0(r )+ ∑
l∈I (k,n)\{0}

pl (r )r l .

It remains to show (2.3), i.e.,

(l j +1)pl+e j (r )+ ∂

∂r j
pl (r ) = 0.

for l ∈ I (k,n) with |l |1 < n, and for all r ∈ S. To this end we are looking for an explicit
formula for pl (r ). Since we already know that pl (r ) is a polynomial of degree n − |l |1 we
may write it as

pl (r ) = ∑
g∈I (k,n−|l |1)

pl ,g r g ,

for some coefficients pl ,g ∈Q.
By the periodicity of pl (r ) and (2.2) we have for u ∈Nk

cu = p(r +u ¯τ) = ∑
l∈I (k,n)

pl (r )(r +u ¯τ)l

= ∑
l∈I (k,n)

( ∑
g∈I (k,n−|l |1)

pl ,g r g

)
(r +u ¯τ)l .

(2.6)
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Since the right hand side regarded as a polynomial in r ∈ S ∩Qk is constant, all powers of
the variables r j have to vanish and thus

cu = p(r +u ¯τ) = ∑
l∈I (k,n)

pl ,0 (u ¯τ)l .

Setting r̃ = r +u ¯τwe may write

cu = p(r +u ¯τ) = ∑
l∈I (k,n)

pl ,0 (r̃ − r )l

= ∑
l∈I (k,n)

pl ,0
∑

g∈I (k,n)
g≤l

(
k∏

i=1

(
li

gi

)
(−1)li−gi

)
r̃ g r l−g

= ∑
g∈I (k,n)

 ∑
l∈I (k,n)

l≥g

(
k∏

i=1

(
li

gi

)
(−1)li−gi

)
pl ,0r l−g

 r̃ g

= ∑
g∈I (k,n)

 ∑
l∈I (k,n)

|l |1≤n−|g |1

(
k∏

i=1

(
li + gi

gi

)
(−1)li

)
pl+g ,0r l

 r̃ g .

Compared with the first equation in (2.6) we conclude

pg (r ) = ∑
l∈I (k,n)

|l |1≤n−|g |1

(
k∏

i=1

(
li + gi

gi

)
(−1)li

)
pl+g ,0r l ,

or by interchanging the role of g and l

pl (r ) = ∑
g∈I (k,n)

|g |1≤n−|l |1

(
k∏

i=1

(
gi + li

li

)
(−1)gi

)
pl+g ,0r g .

It remains to calculate the partial derivative. To this end let |l |1 < n and for short we set
α(i , j ) :=(i+ j

j

)
(−1)i . Then

∂

∂r j
pl (r ) = ∑

g∈I (k,n)
|g |1≤n−|l |1,g j≥1

(
k∏

i=1
α(gi , li )

)
pl+g ,0 g j r g−e j

= ∑
g∈I (k,n)

|g |1≤n−|l |1−1

 k∏
i=1
i 6= j

α(gi , li )

 (−1)g j+1

(
g j + l j +1

l j

)
pl+g+e j ,0(g j +1)r g

=−(l j +1)
∑

g∈I (k,n)
|g |1≤n−|l |1−1

 k∏
i=1
i 6= j

α(gi , li )

 (−1)g j

(
g j + l j +1

l j +1

)
pl+g+e j ,0r g

=−(l j +1)pl+e j (r ),

which finishes the proof. �
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3. SKETCH OF THE PROOF OF COROLLARY 1.5

The proof of Corollary 1.5 follows the general approach of Mount [13, Theorem 2] in the
integral case b ∈Zm . Therefore, we will only describe the main steps here in order to prove
Corollary 1.5.

First we recall some notation. For A ∈Zm×n , b ∈Qm let P A(b) = {x ∈Rn : Ax ≤ b}, where
we assume that the polytope P A(b) is bounded for all right hand sides. For given b ∈Qm ,
the number of lattice points P A(b) is denoted byΦ(A,b), i.e.,Φ(A,b) = #(P A(b)∩Zn).

Furthermore, N was a fixed, but arbitrary, normal fan of P A(b), and CN is the rational
cone consisting of all vectors b ∈ Rm for which all the polytopes P A(b), b ∈ CN , have the
normal fan N , i.e., for which the polytopes are locally similar. Moreover, it is known that

Lemma 3.1 (McMullen [11, Section 2, Section 6]). CN is a polyhedral cone, and for b,c ∈CN

we have that P A(b)+P A(c) = P A(b +c).

Sketch of the proof of Corollary 1.5. Due to Lemma 3.1 let CN = pos{h1, . . . ,hk } with hi ∈
Qm , 1 ≤ i ≤ k. In order to get results on lattice points in vector dilated polytopes via
Minkowski-sums of polytopes we just follow the approach of Mount [13, Theorem 2] in
the integral case, i.e., we perform the following steps

• Fix b ∈CN ∩Qm and write
∑k

i=1λi hi = b with λi ∈Q≥0, 1 ≤ i ≤ k. By Lemma 3.1 we
have

Φ(A,b) = #(P A(b)∩Zn) = #

(
m∑

i=1
λi P A(hi )∩Zn

)
.

• Apply statements on lattice points in Minkowski-sums to the latter sum.
• Make the relation between b and scalars λ = (λ1, . . . ,λm) one-to-one by fixing a

certain canonical choice for λ. With this bijection, the statements about lattice
points in Minkowski-sums can be transformed into statements with right-hand-
side variable b.

Using this strategy, Theorem 1.2 yields Theorem 1.4. Analogously, combining Theo-
rem 1.2 with Theorem 1.3 gives the refinement stated in Corollary 1.5.

Since the leading term of Q(P A(h1), . . . ,P A(hk ),λ) is the volume of the Minkowski-sum∑k
i=1λi P A(vhi ) we also get that the leading term of ΦA(b) is the volume of P A(b). This

implies, in particular, that vol(P A(b)) is a homogeneous polynomial of degree n in b (see
also the next example). We refer to [18] for a closed formula of this polynomial. �

Example 3.2. As an example, we consider the following polytope P A(b) in dimension n = 2
with m = 4 inequalities (see Figure 2):

P A(b) = {xᵀ ∈R2 : 2x1 +x2 ≤ b1,
−2x1 +x2 ≤ b2,

x2 ≤ b3,
−x2 ≤ b4 }.

•

FIGURE 2. P A((2, 7
2 ,1, 1

2 ))
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The intersection point of both non-horizontal inequalities is v =
(

b1−b2
4 , b1+b2

2

)
. This

polytope is nonempty, whenever −b4 ≤ b3 and v2 ≥−b4, that is b1+b2+2d4 ≥ 0. If v2 ≤ b3,
that is b1+b2−2b3 ≤ 0, then P (b) is a triangle. Otherwise, that is, if b1+b2−2b3 > 0, P is a
proper quadrangle. Hence, there are the following possible normal fans:

Cpoint = {b ∈R4 : b3 +b4 ≥ 0,b1 +b2 +2b4 = 0}

for a single point,

Cline = {b ∈R4 : b3 +b4 = 0,b1 +b2 +2b4 ≥ 0}

for a line-segment,

C3-gon = {b ∈R4 : b3 +b4 ≥ 0,b1 +b2 +2b4 ≥ 0,b1 +b2 −2b3 ≤ 0}

for the triangle and

C4-gon = {b ∈R4 : b3 +b4 ≥ 0,b1 +b2 +2b4 ≥ 0,b1 +b2 −2b3 ≥ 0}

for the quadrangle.
Since Cpoint ⊂ C3-gon and Cline ⊂ C4-gon it is sufficient to investigate C3-gon and C4-gon.

Here we get for b ∈C4-gon

Φ (A,b) = 1

2

(
b2

4 −b2
3 +b2b3 +b1b3 +b2b4 +b1b4

)+ b1

2
(1− {b4}− {b3})

+ b2

2
(1− {b4}− {b3})+ b3

2
(− {b2}+2{b3}− {b1})+ b4

2
(2−2{b4}− {b2}− {b1})

+
({

b3 −b1

2

}2

+
{

b3 −b2

2

}2

−
{

b1 +b4

2

}2

−
{

b2 +b4

2

}2

+
{

b1 +b4

2

}
{b1}+

{
b2 +b4

2

}
{b2}+

{
b3 −b1

2

}
{b1}+

{
b3 −b2

2

}
{b2}

−
{

b3 −b1

2

}
{b3}−

{
b3 −b2

2

}
{b3}+

{
b2 +b4

2

}
{b4}+

{
b1 +b4

2

}
{b4}

−
{

b3 −b2

2

}
−

{
b3 −b1

2

}
− {b1}− {b2}+ {b3}− {b4}+1

)
,

and for b ∈C3-gon

Φ (A,b) = 1

8

(
b2

1 +b2
2 +4b2

4 +2b1b2 +4b1b4 +4b2b4
)

+ b1

4
(2− {b1}− {b2}−2{b4})+ b2

4
(2− {b1}− {b2}−2{b4})

+ b4

2
(2− {b1}− {b2}−2{b4})

+
(
2

{
b1 −b2

4

}2

−
{

b2 +b4

2

}2

−
{

b1 +b4

2

}2

+ {b1}

{
b1 +b4

2

}
+ {b2}

{
b2 +b4

2

}
− {b1}

{
b1 −b2

4

}
− {b2}

{
b2 −b1

4

}
+ {b4}

{
b2 +b4

2

}
+ {b4}

{
b1 +b4

2

}
− {b4}−2

{
b1 −b2

4

}
+1

)
.
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