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ABsTRACT. We extend the main result of the paper “Arithmetic progressions in sets of
fractional dimension” ([12]) in two ways. Recall that in [12], Laba and Pramanik proved
that any measure y with Hausdorff dimension a € (1 —€p, 1) (here €p is a small constant)
large enough depending on its Fourier dimension p € (2/3,«] contains in its support
three-term arithmetic progressions (3APs). In the present paper, we adapt an approach
introduced by Green in “Roth’s Theorem in the Primes” to both lower the requirement
on B to B > 1/2 (and € to 1/10) and perhaps more interestingly, extend the result to
show for any § > 0, if & is large enough depending on ¢ then u gives positive measure to
the (basepoints of the) non-trivial 3APs contained within any set A for which p(A) > 4.

1. INTRODUCTION

This paper seeks to employ the technology of restriction/transference results in ad-
ditive combinatorics developed in [7] for the prime numbers to extend results of Laba
and Pramanik [12] demonstrating three-term arithmetic progressions in certain fractal
sets.

We will be concerned with a measure y on T satistying the following conditions for
appropriate «, 8, Cy, Cr in the case that d =1

(@) |u|(B(x,7)) < Cyr® for all x € T
) |7i@)] < Cr(1+[¢]) % forall g e Z7. !

In [12], it was shown that a measure y satisfying (a) and (b) for « sufficiently close
to 1 depending on B > 2/3, Cy, and Cr must contain in its support 3-term arithmetic
progressions (for short, 3APs). Consequently, any closed set supporting a measure
satisfying (a) and (b) with appropriate constants must contain 3APs. In the present
paper, we show that in fact, dense subsets of such sets still contain 3APs, in particular
providing a condition for a measurable set to contain progressions. Our main result is
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Theorem 1.1. Let 6 > 0, and suppose that the probability measure y on T satisfies (b) with
B> % and (a) with « sufficiently close to 1 depending on B, 6, and the implicit constants Cy
and Cg in (a) and (b).

Then any measurable set A with u(A) > & contains 3APs % ; indeed, y gives positive measure
to the set of x such that x, x + r,x + 2r is a non-trivial 3AP contained with A.

Remark 1.2. Notice that it follows from the above Theorem that the total measure with respect
to u of the set of x which are not the basepoint of a 3AP entirely contained within supp u is less
than 6.

The proof of Proposition 5.1 (upon which the proof of the above theorem rests) requires that
o> #. By Remark 4.3, in the case that 6 = 1 and Cy,Cr =~ 1, it is sufficient to take
« > 1— B/6 for Lemma 4.2. Thus if B = « in the full-density case, as is nearly-achieved by
Salem sets, then we need only take x = B > 9/10. It is unclear whether the dependency of «

on the parameter 6 < 1 may be removed. For details, see Section 7.

This result even applied to the full support of the measure is new both in that we
show u gives positive measure to the basepoints of non-trivial 3APs contained in its
support, and that it is valid for sets with Fourier dimension equal to anything greater
than 1/2, whereas [12] required a lower bound of g > 2/3.

Our approach is based on [7], in which it was shown that 3APs are contained in
any set taking up a positive proportion of the prime numbers. There, the main in-
gredients were the pseudorandomness of the prime numbers, a restriction theorem for
pseudorandom sets (though in that paper stated only for the prime numbers), and
the properties of Bohr sets. In the present context, all three ingredients are available.
Namely, the Fourier decay condition (b) plays the role of pseudorandomness, we in-
voke Theorem 1.3 to obtain restriction estimates, and the properties of Bohr sets carry
over unchanged to the continuous setting.

One reason to be interested in the arithmetic properties of fractional sets is their
implication in the fine analytic behaviour of singular sets.

In 2002 (respectively, 2000) Mitsis [14] (independently Mockenhaupt [15]) obtained
the following Stein-Tomas type restriction theorem for fractional sets.®

Theorem 1.3. Let y be a compactly supported positive measure on RY which obeys (a) and (b)

for some a, B € (0,d).
Then for all p > po = po(d,a, B) := Z(Zd_pw, there is a C(p) > 0 such that

fdull ze) < COIf 20

2Note that by requiring that supp(u) C [1/3,2/3] C [0,1] ~ T, or equivalently by dilating, we
guarantee that the progressions above are genuine progressions when supp () is embedded in R.

3Aside from the end point, which was obtained by Bak and Seeger in 2010.

4n [14] and [15] this theorem was stated with Hf/d?tH Lp (R in place of ||f/d\y|\ ¢r(z4)- By Lemma 4.4, the
two are equivalent for p € (1, ]
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As noted by Mockenhaupt [15], obstructions to restriction results for the sphere rely
on arithmetic properties of the surface measure on the sphere (more specifically, on the
existence of arithmetic progressions in small neighborhoods of pieces of this measure).
Recent work of Laba and Hambrook [9] made more precise the analogy between arith-
metic progressions in fractional sets and the classical Knapp example showing sharp-
ness of the spherical Stein-Tomas theorem. They did so by constructing measures y on
R obeying (a) and (b) which nonetheless contained an abundance of long arithmetic
progressions, and demonstrating that an extension of Theorem 1.3 to an improved LF
range fails for such u via an argument which makes direct use of the many long arith-
metic progressions contained in supp (). Thus an understanding of deep properties of
singular measures can be seen to begin with the easier problem of understanding their
arithmetic properties.

This work is particularly motivated by a desire to directly connect to harmonic anal-
ysis a principle in additive combinatorics that a not too small pseudorandom subset of
a space should possess many of the same properties as the full space, and results for
subsets of the entire space should, under suitable hypotheses, hold for subsets of the
pseudorandom subspace. The most well-known example of such a phenomenon is the
celebrated Green-Tao theorem that the primes contain arbitrarily long arithmetic pro-
gressions [8], whose proof entailed first demonstrating that the prime numbers behave
in a suitably pseudorandom fashion and second developing a “relative Szemerédi” the-
orem for subsets of appropriately pseudorandom subsets of the integers. Their result
extends ideas present in Green’s earlier Roth’s Theorem in the Primes [7], from which
we take inspiration in the present paper. The principle of such transference from a
large global space to a nice but sparser subspace can be seen in earlier work, such as
in Stein’s Spherical maximal theorem [17], which finds that the measure on the sphere
behaves almost “as well” as the measure on the unit ball for purposes of obtaining a
maximal theorem, and similarly in Bourgain’s ergodic theorem along the squares [1].
What many of these results have in common is that they rely on the pseudorandom set
being close in a Fourier or spectral sense to the indicator function for the entire space.
In [7], this is expressed by a Fourier restriction estimate which underlies the result, but
in [8], as further developed in [19], abstracted in [6] and [16], and in the excellent com-
binatorial strengthening [3], this proximity takes on an arithmetic nature encoded by
the Gowers uniformity norms and related objects. Although we do not take the combi-
natorial viewpoint here, relying instead on a restriction estimate as in [7], it seems that
combinatorial methods such as those of [3] would be necessary to extend our result to
the case of longer progressions.

In Section 2 we set up notation and describe the approach.

Online Journal of Analytic Combinatorics, Issue 11 (2016), #3
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2. NOTATION AND APPROACH

Throughout, u will always refer to a (possibly complex) Radon measure supported
on [0,1] ~ T. We denote the variation norm of the measure y by ||u||.

For a set A and measure y, set j4 := p|4 the restriction of y to the set A, and let A},
denote the set of points of positive density with respect to the measure y; that is, for
each x € A;",,

limsup |p|[(ANB(x,r))/|u|(B(x,r)) > 0.

Note that u(A/A;}) = 0 by [13], pg. 91, Remark 1.

Throughout, let (¢,) be an approximate identity on T (that is, a sequence of posi-
tive functions with L!-norm 1 converging weak* to the dirac delta function), with the
property that supp(¢,) C [—2",2"] and ¢n|[_pn-101) = 1.

The primary additional technical aspect of the argument involves the “progression
counting functional” Asz(yu), defined as
lim /CPn k W(X) P * (X — 1)y * pu(x — 2r) dx dr

n— oo

which first appeared in the context of measures, in a slightly different form, in [12],
and more generally the measure N3y defined by

/fdﬂ3;4 = nlgnw/f(x,r)¢n*y(x)cpn*y(x—r)qbn*y(x—Zr)dxdr.

We develop their existence theory in Section 6.
Recall that the quantity « in (a) is a Hausdorff dimension estimate, while the quantity
B of (b) is an estimate on the Fourier dimension of .

Theorem 2.1. Suppose that y is a measure on T satisfying (a) and (b) with B > % and

a> 22

Then the finite measure N3y : C(T?) — C given by

) g~ [ gendr ulxr) = Aglp)
= nli_{rlo/g(x,r)(pn sk U(X) Py * u(x — 1)y * u(x — 2r) dx dr

is well-defined.
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Lemma 2.2. Suppose that the probability measure y satisfies (a) and (b) for some B > % and

o> %. Then the trivial progressions of step size 0 lie outside the support of the measure
N3 W, or in other words

/1{0}(Y)dﬂ3]/l =0.

In Section 6 we show that the measure N°y exists and that it gives no mass to the
degenerate progressions of step size zero; the main tools here are a Littlewood-Paley
type decomposition, the Fourier decay assumption (b), and the use of uniformity norm-
type estimates to bound progression-counting multilinear functionals. In Section 3, we
show that the measure M3y, exists and that it is supported on the set of (x,r) for
which x, x +,x + 2r is an arithmetic progression contained in A;. Section 5 contains
the proof of Theorem 1.1. In Section 4, we obtain the proof of Lemma 4.2, which is the
main ingredient in proving the results of Section 3; the tools here are Bohr sets and the
restriction estimate Theorem 1.3.

3. EXISTENCE OF THE RESTRICTED MEASURE ON 3APs

In this section, for measurable sets A C T we demonstrate the existence of the mea-
sure N3(p14) on T x T under the assumption that y satisfies (a) and (b) with g > % and
a sufficiently close to 1, and we discuss the support properties of the measure M3(14).
Throughout this section, we will be assuming the results of Section 6, specifically the
truth of Theorem 2.1 and Lemma 2.2.

Lemma 3.1. Suppose that y is a probability measure on T which satisfies (b) fora p > % and
(a) for « > %, and that the set A C T is measurable. Then the Radon measure N3y 4 exists.
Proof. Consider the more general measure

d? (pg) (x,7) v= w" — lim gy (g dp) (x) b * (g dpt) (x — 1)p * (g dpt) (x — 2r) dux br
for a bounded measurable function g, provided the above weak™ limit exists. First note
that we have boundedness of g € L®(u) — N3(juq) on its domain of definition, since

for any f € C(T?)
[ £ (ng)

= lim | /f(x,r)<pn () (x)n * (gdp) (x — 1) (g dp) (x — 2r) dx dr|

n— oo

< Jim IFle=llglife [ @n s 1(x)gn s pu(x = r)g s u(x — 2) dxdr

= fll=lIgllz= Il 0 ll

and for B > 1 and a close enough to 1 this last is finite by Theorem 2.1.
Thus it suffices to show that the limit defining the operator

g M (pg)

Online Journal of Analytic Combinatorics, Issue 11 (2016), #3
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L=(p) —M(T xT)

exists on a dense subset. Conditional on > 1 and a being suffciently close to 1, by
taking trigonometric polynomials as this dense subset we again use Theorem 2.1 to
obtain existence of N3(jig) for such g by applying linearity and the fact that for ¢ € Z,
the measure dji(x) := e?™¢* du(x) satisfies

o [A[(B(x,r)) <7

« [7(@) < 1+ )t
Thus for any g € L*®, N34 exists, and so in particular does M?p4. U

We turn now to the support properties of the measure M3( Ha).

Lemma 3.2. Suppose that y is a probability measure on T satisfying (a) and (b) with B >

and a value of & > %. Suppose further that the set A C T is measurable with pu(A) >
Then we have

1
2
> 0.

M3uA(T x T\ ({(x,r) €T x(T\{0}):x,x+7x+2re A;}) _

where we recall from Section 2 that Ay denotes the points of positive density of the set A with
respect to the measure ji.

Before proving Lemma 3.2, we need the following fact about the projection of N3y
to the x-coordinate.” Interestingly, it seems inaccessible without recourse to restriction
esimates (a direct application of the U?-techniques of Section 6 fails, for instance),
leaving open the question of what shape, if any, an analogue would take in the case of
longer progressions.

Let D?u denote the measure [, f(x)dD?u(x) := [ f(x)d M u(x,r) provided that

M3y exists.

Proposition 3.3. Suppose that y is a probability measure on T satisfying (a) and (b) with
B > % and a value of « > 1 — B/4. Suppose further that the set A C T is measurable with
1(A) > 0, and that the measure N3y 4 exists. Then we have

Dy < pia.

Proof. For f € L* we will show that | [ fdD?*us| < ([ |f|2dpia)2, which applied to
indicator functions of sets implies absolute continuity.

By Dominated Convergence, it suffices to show the above for the dense subclass of f
with f € ¢1(Z). Fix such an f.

Taking Fourier transforms,

5In the discrete case, it is known that the dual function Dkf := x — Ey [Leo1y\fo} flx—1-u)ofa

function f with L (m) bounds is in L®(m)(m-denoting Haar measure), or indeed, that the dual function
is continuous (see Lemma 2.6 of [10]). What we show may be thought of as a singular U? version of this
fact.
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) [ fs H%*m x—ir)drdx = Y §u(0)a(28)TA(8)7TA (20) fn  Ha(2).

icZ

We have by the triangle inequality that
@(c)@(zm<¢>ﬁz<z_c>fmA<c>\ < | (@) (22) (If] + ial ) @)] -

Choosmg + + = 1 with p; > po (when 8 > 0, this is possible by taking p; = 3
for each i prov1ded « > 1—B/4 so that p, < 3)

Y | ) (Ifl #al) @)

ez
<||iall s ) |7l 222y | F) * |7 s 2
ST (A2 (AN 1 Fllall @l < (AP | fllg < o0

where in the first inequality of the last line, we have used the restriction estimate
Theorem 1.3 and Young’s convolution inequality, and in the second inequality we have
applied Theorem 1.3 again.

This shows absolute convergence (uniform in n) of the sum in (2).

But then evaluating (2) in the limit as n — oo, again applying the restriction estimate
Theorem 1.3 we get

‘/deZVA Y ma(@®mad)f - fual@ )‘

icZ

<\l @) | Fall vz 22y | Frallevs )
1/2

SN Al ([1Pans) <1l

as was to be shown.

g

Proof of Lemma 3.2. 1f B > % and « is close enough to 1, then by Lemma 3.1 M3 4 exists.
We show first that

Mua ({(x,r) eTxT:x,x+r,x+2re A;}C> —0.

Suppose that E C T x T is a collection of (x,r) which do not belong to the above set.
Then for each (x,7) € E, one of {x,x +r,x+2r} ¢ Aj,. We will decompose E into three
sets corresponding to each of these three possibilities, E = E' UE"” U E".

We consider the case of E’, the other cases being similar. Recall that (A \ A};) = 0.

Let B = A}, be the projection of E onto the x-axis.

Online Journal of Analytic Combinatorics, Issue 11 (2016), #3
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Then since M3y (B¢ x T) = D?u4(B°), D*up < ua and us(B¢) = 0, we have
M3ua(B¢ x T) = 0. (The cases of E” and of E" require the analogous variants of
Proposition 3.3, which we leave to the reader.)

Thus N3(p4) is in fact concentrated on the (x,r) such that x, x +r,x +2r € A

All that remains now is to show that N3(p4)(T x{0}) = 0. But this is immediate
from the obvious inequality

M (pa) < 03 (p)
and Lemma 2.2. U

4. TaeE MAIN ESTIMATE : PROOF OF LEMMA 4.2

Recall that for a given frequency set S C Z and radius 1 > ¢ > 0, a Bohr set
= B(S, €) is defined by

B={xecT: ¥ 1| <eforall¢ € S}
and (see, e.g., Section 4.4 of [18]) that
3) el < 1B.
We will need the following bound.

Lemma 4.1. Suppose that the measure y on T satisfies (a) and (b). Then if S C Z is a finite
set of frequencies and B = |B|~'1p is the normalized indicator of the Bohr set B of radius € and
frequency set S, one has

-1

- B
IB%B < e (1 a)|5\(1 a+2>

Proof. Set yy = B * B * .

Let N € IN be a large integer to be specified in a moment.

Since ||B?||1 = Hﬁ”%z = ||B||2, < 0 and || < |B|2, we may apply Fourier inversion
to decompose

|.u1(x)| < |B * B * V(X)| < | ‘ |Z: ﬁ(g)zﬁ(é)€2nié‘x| + ’ | lZ: E(C)Zﬁ(é)€2ﬂi§x|
¢I<N >N

=I+1I.

Taking ¢ a mollifier with  ~ Nlpg x-1), ¥~ 1p(o,n), we have

I ~ |Z$B@y(§)ezni§x‘ = |p«xBxBxu| < x|yl

(4) <N
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where in the last inequality, we have used || * |u|||L» < N'~* which follows from the
definition of ¥ and the Hausdorff dimension assumption on the positive measure ||
(for details see, e.g., Lemma 4.1 of [4]).

Further
S DU _B
1< Y (Bl < (BRIl e=ony) S N“2IIB| 12
Ig|>N
5) <N~2e1S

by Plancherel together with (3).
Combining (4) and (5) we obtain
lallis S N0+ N~ IS,

This is minimized when both terms on the right are equal. Thus we let

-1
log N = —|S| (1 — o+ g) loge,

at which point we find

-1
© ||141HL°° < e*(lfa)lS\(lng) .

O

Taking « 1 1 in the above estimate, we see that if § > 0, ||u1]|L~ S 1 for a sufficiently
close to 1, and a closer inspection yields the bound limsup,, _, ; ||y#1|[r~ < 2 in the limit
as max(Cpy, Cr) | 1.

Lemma 4.2. Suppose that the probability measure y on T satisfies (a) and (b) and that A C T
satisfies

(7) Hu(A) > 6.

Suppose further that B > % Then there is a lower bound wxy on « € (0,1), depending on
B,6,Cy, and Cg, and a number ¢ = ¢(6) > 0 such that if

&> n

then
As(pa) > c.

Proof. Let €, > 0. Let

S={¢eZ:|Tan(0)l >}
be the large spectrum of y 4 and let

B = {x: ¥ — 1] < eVE& € S}

be the associated Bohr set of radius €.

Online Journal of Analytic Combinatorics, Issue 11 (2016), #3
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Set

1
B := —13.
|B]

By the lower bound (3) on the size of a Bohr set

®) Bl < e 1S,

We first show that |S| can be bounded only in terms of 7. This is a consequence of the
restriction estimate Theorem 1.3. We have for p in the range guaranteed by Theorem 1.3
that

Slp? < LI @)1 < LIGn@))F S [ 1Tu@F S 114l <1
Zes

where in the second to last inequality we applied the restriction estimate, and in the
inequality before it we invoked Lemma 4.4 from the end of this section.
From the above we obtain that for appropriate p,

©) S| SuP.

We will compare p4 to B * B * iy =: p; and find that they contain approximately
the same number of 3-term progressions. By assuming a sufficiently close to 1 in terms
of 6 in order to bound | 1]z, a standard lower bound on M3(y;)(T?) will then give
us the result.

We next obtain a lower bound on A3z(y1). According to Lemma 4.1,

-1
BB« pigllie < BB s gy g O OF0erE)
So by choosing & > afy := B/(|S|In(e™!) — 1), we find that ||y~ < U for some
constant U | 2 as a« 1 1,Cp, Cr | 1. We suppose that we have done so.

By a version of the dense Roth’s theorem on T due in the discrete case to Varnavides
[20] (see also Proposition 2.2 of [6] for a general statement or Lemma 6.1 of [2] for a
derivation of the continuous inequality from the discrete), we have

||V1||L1)
10 A >
( ) 3(”1) _C<H,M1HL°°

where ¢(x) increases as x increases. Using the bound on ||j1]|r~ from (6) and that
|lu1]] 1 > 6 since B is normalized, we see that ¢ > ¢(é6/U) > 0 remains bounded below
as a function of § > 0 as € | 0 provided « is chosen as above.

We would then be done if we knew that |Az(pa) — As(p1)| < ¢, so we now bound
this quantity, keeping in mind that we are free to set the parameters €, 1 to be anything
we want provided « depends on them as specified.

By writing As(y4) and Asz(y1) on the Fourier side, we have
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(11) |As(pa) — Aspm)| = | gGZZ A (8)Fa(—2) (1 - B(&)*B(-2¢))|
<§€25|m &P 1Ea(—26)]11 - B(§)*B(—2¢)?

(12) +€¢Zs|m )Plia(=28)[11 — B(§)*B(—2¢)*|
ST = B(&)*B(=28) |1 (ces) 1| + 1Al e 1A N1

for any p > 0.

In the last line, we have used Holder’s inequality after pulling out the /* norm of
|#4|>7P. We wish to choose p so that the restriction estimate of Theorem 1.3 may be
applied to bound ||j4||,»+1 by a constant, but we also want the exponent 2 — p to be
positive. This is possible provided that

2>p>po—1

where p, is the critical exponent in Theorem 1.3.
Thus we want p, < 3. Observing the formula for p, given in Theorem 1.3, it suffices
to assume that « > 1 — B/4. So set &g = max(a(, 1 — f/4) and assume « > «y.
Choosing such a p in (11), and applying Theorem 1.3 and the bound

11— B(&)*B(—28)* [l (zes) S €°

(cf. [7], Lemma 6.7) we obtain

(13) |As(pa) — As(p1)| S €S|+ 1777 P.

By choosing € and 7 appropriately, we can finish the proof by showing that |Asz(y1) —
A3z(pa)| is smaller than the lower bound ¢ of Az(y1). To do this, we examine the
estimate (13).

Combining (9) with (13), we have

|A3(pa) — As(p1)| < CE*|S|+ Cy* P < Ce*p P + Cy? 7.

Since we have fixed o depending on €,# so that the bound in (10) is at least the
constant ¢ = ¢(6/U) , we may choose first 77, and then € small enough that the right
hand side above is less than, say, 1 ¢, and thus

1 1
Az(pa) > Na(pr) — 56> 5¢

giving us the result. O

Online Journal of Analytic Combinatorics, Issue 11 (2016), #3
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Remark 4.3. A computation shows that in the above theorem we may take y = € = (c/2C)V/(>=p),
so that we can set

- Br¥In(2)/2 €”In(2)/2 B ,
o = 1= 1]?1(671) _ ;//P ln(Z) =1- 1n(€fl) — P 11’1(2)'8 =:1- Y (C),B

With Cy, Cr close enough to 1 that we obtain a sufficient upper bound on ||p1||L~ (and thus
lower bound on c) that ¢ ~ ¢(6/2) we then have that for any p > 0 we may take o« — p >
max(1 — B/4,1— y(6)B) where v(5) = v'(c(8/2)). Since the constant C can be taken to be
>1,¢c <1, p <2 and vy is growing as a function of p, we can calculate that v(1) < 1/6
when u(A) = 1, in which case Lemma 4.2 remains valid when « > 1 — B/6 (provided Cy, Cr
sufficiently close to 1).

Lemma 4.4. Suppose that v is a measure compactly supported in T%. Then for any p € (1, 0]
Y @)~ [ 19 dz.
zez? R
Proof. We first prove that for p < oo
r s [, @)rd
ezt

(if p = oo, the corresponding inequality is immediate).
Let g be any Schwartz function equal to 1 on the support of v and for which supp g C
[—1,3]%. Then since dv = gdv,

@) = 10g@) =1 [ | 7@~ ngt) ]

<lgles [, ., 19E = mldy

N—
N—

So |V(¢ |<f %%dh’ ¢ —1)|dy. Thus by Holder’s inequality
R P
L Rers L ([, me-nla)
ezt gezd N1 21l
<Y [, E-nran = [ 5@ de.
aJ1= 23] R
cez

Now we prove the converse inequality. Fix a Schwartz function / equal to 1 on
supp(v) such that supp(h) C B(0,1). Then for any & € R?

7(§) =hv(g) = Y U(n)h(E—n)

nez
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by (111) of [21]. By a variant of Young’s inequality, we then have for any 1 < p < oo
that |[V][r < [[V]|¢r[[2]|11. Indeed,

1710 = [ X 90 —m)]| < [#llallills

nez*

[Vl = sup | Y 9(n)A(& —n)| < [V ]2l 2
FeR? pezd

where we have used the first part of the Lemma to bound Y- _, \h(E —n)| by ||i||1,

and interpolating between the two gives for any p € [1, 0]

1V e S 11V e

5. 3APs IN DENSE SUBSETS : PROOF OF THEOREM 1.1
The following is only a few lines removed from our main result, Theorem 1.1.

Proposition 5.1. Let 6 > 0, and suppose that the probability measure y on T satisfies (b) with
g > % and (a) with a sufficiently close to 1 depending on B, 6, and the implicit constants Cy
and Cr in (a) and (b).

Then if A is any measureable set with u(A) > 6, Ay, contains 3APs; indeed, y gives positive
measure to the set of x such that x, x + r, x + 2r is a non-trivial 3AP contained within A;.

Proof. By Lemma 3.1, the measure N3(y,) exists and by Lemma 3.2 it is concentrated
inside a set identifiable with the non-trivial 3APs contained in Aj. By Lemma 4.2,

N3(p4) is not the trivial measure and hence A, must contain 3APs. By Proposition 3.3,
U gives positive measure to the collection of base points x for such 3APs. 4

Proof of Theorem 1.1. Let L = Ay, \ A denote the collection of points of density of A not
contained in A. Of course, y(L) = 0. We may thus find an arbitrarily small open
set around L since p is Radon; in particular, we may find a subset A’ C A such that
Ay C A and such that
(A >é

remains valid.

Applying Proposition 5.1, we find that A} contains 3APs and that y gives the collec-
tion of their basepoints positive measure. Consequently so too for A. g

6. EXISTENCE OF THE MEASURE ON 3APs

The goal of this section is to prove Theorem 2.1 and Lemma 2.2.
We will need the following bound, which follows from the Hausdorff dimension
condition (a) via straightforward arguments (see Lemma 4.1 of [4]).

(14) Ipn # pll o S 20070,
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For bounded functions f : T — R and g : T? — R, define
Ag(f) = [ glemfl)flx—r)f (x - 2r) dxdr

and for three such functions f, f2, f3
Aglfufof3) = [ 8Ger) i) falx = ) falx = 2r) dxdr.
Following Gowers [5], set also
AL f(xr) = f(x)f(x —7)
A f(xir,s) = A f(r)A f(x —s;1) = f(0)f(x —r)f(x —s) f(x — 7 =)
Alg(xyir) = glxy)g(xy —7)
A’ g(x,y;r,s) = A g(x,y;r)A g(x =5,y — 5;7)

=g(x,y)8(x,y —r)g(x —s,y —s)g(x —s,y —r —s).
One easily verifies the following standard identity.

Lemma 6.1. Let f and f, be bounded functions on T and g be bounded on T?. Then
Ag(f1) = Ng(f2) = ;fl,szg(hl’hz’hg’)
where the symbol oo refers to a sum taken over the set

1= fo f1, 1), (fo f1 = fo, 1), (fos fo L = f2) )

We postpone the proofs of the following lemmas to the end of this section.

Lemma 6.2. Let f be a function on T which satisfies

(15) F@)] < Cr(+12) % forall £ € Z
(16) supp(f) € B(0,2"*1) \ B(0,2")

for some B > 0.
Then forally € Z

A2 f(& )] < 2-@F~Dn
and

—

supp A% £(0;-) C B(0,2"14).
Lemma 6.3. Let f,hy,hy : T— R and g : T?> — R be bounded functions. Then

| /g(X,r)hl(x)hz(x — 1) f(x —2r) dxdr|

9 1/4
<|| B ]| e || A2 || oo (/ '/Alg(Zx—r,x—r; —s) Alf(r;2s) dr dxds) )
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Lemma 6.4. Let f be a function on T which satisfies

17) F@) < Cet+ 12~ prag e Z.
(18) supp(f) < B(0,2""1)\ B(0,2")
for some B > 0. Then for any hy,hy € L®(T) and ¢ : T> - R, for all p € [1, 0]

2p—1-Z)n

[ Aglhn b, )] S 274 Il izl 14280, )y .

Lemma 6.5. Suppose that y is a measure on T satisfying (b) with B > 0. Then for any
¢:T?> >Rand p € [1,00], forall N > m € N,

(2—-1-2
[Ag(gn+10) = Mg+ 10)| S (22 iepty glg>1<||¢n+i*ﬂllfoo) 122502,

1
where the mixed norm ||G(§,17)H€égs =Y (2,7 \G(g’f,q)‘ﬁ) v
Using the above lemmas we can complete the proof of Theorem 2.1 and Lemma 2.2.

Proof of Theorem 2.1. It suffices to show that the functional defined by the limit in (1)
exists for ¢ in a dense subclass of C(T?) and is bounded on that subclass. We take as
our subclass the collection of all trigonometric polynomials, and by linearity it suffices
to check existence and boundedness for a monomial of the form g(x,r) = 2@ (&' +77"),

To show existence of the limit, it suffices to show that given € > 0 there is some m
such that for all large N,

(19) ’Ag(4’N * 1) — Ng(Pm * P‘)‘ <e€

To this end, we apply Lemma 6.5 with p = 1. By our assumption on g, it is easy to
see that

187 glln = 1.
Inserting this and the bound (14) into Lemma 6.5 gives

(20) |Ag(pn*p) — Ag(pm * )| S ZZ“ W)(n+1) = (@2p=1n/4 22 (5 —2(1-a))

n=m

and the exponent _(ng—l —2(1 — a)) will be negative when g > 3 and a > e Zﬁ

Since the sum (20) is a geometric series and remains finite in the limit N 1 oo we can
take m large enough to guarantee that (19) holds, as desired.

Thus

hrn /g X, 1) pn * W(X)pn * u(x — 1)y * pu(x — 2r) dx dr

exists for g a trigonometric polynomial. In particular, the limit exists for for g = 1.
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Finally, we complete the proof by showing that the above limit is bounded where
defined. Indeed, setting

M := Ai(|p))

we have

| lim /g(x,r)cpn k U(X) P * u(x — 1)y * u(x — 2r) dx dr|

n— oo

<l Jim, [ e 1l (6) = e = r)o el x — 20)
<M||g|| 1

using that the limit defining A (|u|) exists for the trigonometric polynomial g = 1. [

Proof of Lemma 2.2. Choose a compactly supported Schwartz function g with [— 1, 1] C
suppg C [—1,1]. Let € > 0 and set g.(r) = g((4¢)'r).

It is not hard to see that A¥ ¢ is rapidly decaying since g is Schwartz.

We have

(21) PPu({lrl <e}) < [Ag (1)l
We will show that

for some p > 1 to be specified later.
Since Ag(¢y * u) — [ gd N® u by Theorem 2.1, we can send N — co and set m = 0 in
the bound from Lemma 6.5, which gives

28-1-2
- —2(1-a)

1

[ ged = Mg o= )l £ Zz( ) 182 5¢(0:1)

n=0

for some p > 1. Since 8 > %, provided that « > % we may find p > 1 such that the

sum in the right hand side above is finite. Fix such a p. We then have

— 1 — 1
/gedWSﬂ < Nge(¢po* ) + 1|87 e (0 )| = Ce + [|4% ge(0; ) |17,

We are now done, since for any function G on [0,1]?> with G € L'(R?), for p > 1 if
Ge(X) = G((4€)7'%) then applying Lemma 4.4 and a change of variables,

. . o1,
1Geller S NGellr = € 7 [|Gllwr
and G = A% ¢(0; -) is such a function. O

All that remains is to prove Lemmas 6.2, 6.3, 6.4, and 6.5.
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Proof of Lemma 6.2. The (trivial) identity

A f(;T) = F(O) o + 1)

together with the Fourier decay condition (15) and the support condition (16) give

(22) A Fu )] S Tgnapep e <y (L 1T) P2 (14 I+ 7)) P72

One readily verifies that

=L Al —i1; A f(=¢ = 11,7 —112)
TEZ
which shows with (22) that 7 € B(0,2"**), and it follows by Cauchy-Schwarz that
RF@GmI <, [T I8 f o0 T A FE + )P

TEZ TEZ

Applying (22) to the above gives

1
2
N F(En)| S <Z n<je) e <2ty (L4 [T 7P (14 m +T|)_ﬁ>
%
+ <%1{2"§r,r+g+mlszn+l} A+t PA+|E+m+ T\)ﬁ)
TE
2—(2/3—1)1’1.

Proof of Lemma 6.3. We have
| /g(x, r)hy(x)hp(x — 1) f(x —2r) dx dr|
<l (1] o= rfGe—2r) drax )

1

=||h1 || </g(x,r)g(x,s—|—1’)hg(x—r)hQ(x—r—s)f(x—er)f(x—21*—23)(11’113((15)2

1
2

=||hy|| L (/ Alo(x,r;—8)Athy(x — 1;8) AL f(x — 2r;25) dr dx ds)

) 1/4
<|[Fa[ o |2 o (/‘/Alg(x—l—r,r;—s)Alf(x—r;25) dr dxds)
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’ 1/4
dx ds)

where in the last line we have applied the change of variables r — —r 4 x.

=\l ||z || B2l| Lo (/ ’/Alg(Zx—r,x—r; —s) Al f(r;25) dr

Proof of Lemma 6.4. By Lemma 6.3,

|/8(x/7)h1(x)hz(x—T’)f(x—Zr) dx dr|

5 1/4
dx ds)

1/4
=||hy||Le || B2 || oo (/ A2 g(2x —1,x —1;—s) A? f(r;2s,t) dx dr ds dt) .

<||hq]| Lo || 2| Lo (/ ‘/Al g(zx—r,x—r;—s)Alf(r;Zs)dr

Applying Plancherel gives

|//A2 x+r,; ,; t) A f(r;s, t) dr dt ds dx|

—2| ¥ A%g(0,25m/2, A f(En)]

EeZyez?

(23) <IN g(0,&m/2, )l (zup Y |82 F(@)lP )

WEZZ

by Holder’s inequality.
By Lemma 6.2, this is bounded by

A2 o —(2p-1-2%
||A2g(0,§;171/2,172)||€%€52 (2f—1-J)n

and two applications of Lemma 4.4 in order to move to the continuous context, change
variables, and back, give the result. L]

Proof of Lemma 6.5. We decompose into telescoping series and invoke Lemma 6.1
N-1
‘Ag((PN 1) = Ng(pm* )| = | Y Ag(Pnia* ) — Ag(n )|
n=m

ol Ty,
Ly gy 812 3)|

| Ag (i, g, 13)|.

@) i

m

1k PPk
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We next calculate a bound on each individual term in the above sum. By a linear
change of variables, it suffices to suppose that fi3 = ¢y, 41 % ft — Py % 4 := pi.°
We can apply Lemma 6.4, which gives
28 %

11— _ 1
[Ag(n, b, )| 277"l [l |2 = 1A% g 0, & ) sy

Inserting this into the right hand side of (24) gives the result.

7. CONCLUDING REMARKS

It is interesting to note that if the dependence of the Hausdorff dimension « in The-
orem 1.1 on the measure § of the set A were dropped, we would in fact have that
u-almost every point x was the starter of a three-term arithmetic progression contained
in the support of p. It is not a priori clear whether this dependence is necessary, or
whether for some «, B strictly less than 1, and some Cp, Cr, it might be true that when-
ever i satisfied (a) and (b) that every A for which u(A) > 0 must contain 3APs. In the
discrete context, Green’s result applies to any dense subset of the primes, regardless
of density, but the primes have “dimension” 1 within the natural numbers. On the
other hand Conlon, Fox, and Zhao [3] have developed a combinatorial approach strong
enough to obtain a relative Szemerédi theorem (kAPs for k > 3) for subsets of pseudo-
random sets of integers having “dimension" less than 1 within the integers, and their
result applies for any dense subset of a sufficiently pseudorandom set, which gives
reasonably strong evidence that such a result may be possible in our context.

There is some further weak evidence the dependence of x on § may be unnecessary,
in the form of a result of Conlon and Gowers [6] (see also [11] for the k = 3 case) that
as N T oo, with probability converging to 1, every random subset E of [N] large enough
for the statement to not trivially fail has the property that all size §|E| subsets of E
contain kAPs. The natural cutoff for 3APs in this result of Conlon and Gowers is that
the set E C [N] satisfy |E| =~ N 2. Thus it is natural to conjecture that the appropriate
bound on the Hausdorff dimension a of a measure y on T in order that it contain 3APs
be a > % Though we have achieved results for any g > %, we require a far larger «.

In a different direction, it should be true that for a large set of x, the collection of r for
which x, x + 7, x + 2r lies in supp(u), or indeed in A for a set A of positive y-measure,
be large in Hausdorff dimension.

In [2], we applied a notion of “higher order” Fourier dimension to extend the results
of [12] to longer progressions. It would be natural to extend the results of the present
paper to this setting, namely, to demonstrate that given a measure of (k — 1)st order
Fourier dimension sufficiently close to 1, that any subset of sufficiently large measure

®The change of variables may result in a different g. However, since the change of variable is linear, it
will affect the bounds we obtain by at most a constant which doesn’t affect the conclusion of the theorem.
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must contain kAPs. The obvious approach to such a result would be to adapt the
methods of [3].
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