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ABSTRACT. Packing patterns in permutations concerns finding the permutation with the maxi-
mum number of a prescribed pattern. In 2002, Albert, Atkinson, Handley, Holton and Stromquist
showed that there always exists a layered permutation containing the maximum number of a
layered pattern among all permutations of length n. Consequently the packing density for all
but two (up to equivalence) patterns up to length 4 can be obtained. In this note we consider
the analogous question for colored patterns and permutations. By introducing the concept of
“colored blocks” we characterize the optimal permutations with the maximum number of a
given colored pattern when it contains at most three colored blocks. As examples we apply this
characterization to find the optimal permutations of various colored patterns and subsequently
obtain their corresponding packing densities.

1. INTRODUCTION

Given a permutation π of length n a pattern σ is said to be contained in π or σ occurs in
π if a subsequence of π is order isomorphic to σ. For instance, the permutation π = 51342
contains two σ= 321 patterns as the subsequences 532 and 542. The occurrence of a pattern
in a permutation has been vigorously studied over the past decades. However, most of the
existing work involves studying permutations which avoid a particular pattern; i.e., pattern
avoidance.

A symmetric problem to pattern avoidance is the study of which permutation contains the
most instances of a given pattern; i.e., pattern packing. The central problem of patten packing
is maximizing the function p(π,σ) among all permutations of given length, where p(π,σ) is the
number of occurrences of a patternσ in the permutationπ. This question was first considered
in the unpublished work of Stromquist [4] and in the PhD thesis of Price [2] where much of the
foundational work on pattern packing can be found. In what follows we call a permutation π̃

optimal if

p(π̃,σ) ≥ p(π,σ)

for any permutation π of the same length. A useful way to compare the “packability” of two
different patterns is by comparing their packing densities, defined as

δ(σ) = lim
|π|→∞

p(π̃,σ)(|π|
|σ|

) .
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Definition 1. A permutationπ of length n is called layered if it can be partitioned into segments
π1,π2, . . . ,πr called layers such that each layer is decreasing and all elements in πi are less than
all elements in πi+1 for 1 ≤ i ≤ r −1.

For example, the permutation π = 32154876 contains three layers π1 = 321, π2 = 54, π3 =
876. Because π1 < π2 < π3 (notating all elements of one layer being less than all elements of
another) we have a layered permutation. A simple representation of a layered permutation
with lattice points is shown in Figure 1.

FIGURE 1. A layered permutation 32154876

Building upon previous work, Albert et al. [1] considered packing densities of layered pat-
terns. One important result used there is from [4].

Theorem 1.1 ([4]). Given a layered pattern σ there exists an optimal permutation π̃ that is also
layered.

Since all but two symmetry classes of permutations of length 4 are layered permutations
(the exceptions being represented by 1342 and 2413), most of the packing densities have been
found for patterns up to length four while the others have been conjectured.

We next introduce the concept of colored permutations.

Definition 2. An m-colored permutation χ of length n is a permutation of length n in which
each element is assigned one of m distinct colors.

For example, let χ = 3a2a5b1a4b be a two-colored permutation where 3,2 and 1 have color
a while 5 and 4 have color b. Analogously to the case of non-colored patterns the colored
pattern φ= 2a1a3b occurs in χ as the subsequences 3a1a4b and 3a2a4b .

Colored permutations are similar to permutations of a multi-set. The question of pattern
avoidance on multi-sets has been studied in past years (see, for instance, [3]). In this note we
focus on pattern packing in colored permutations.

We first define colored blocks, which are central to our study. Colored blocks are analogous
to layers in non-colored permutations.

Definition 3. In a colored permutation χ, a colored block is a maximal monochromatic seg-
ment χ(a)

i in which each element has color a and every element not in χ(a)
i is either larger than

or smaller than all elements in χ(a)
i .

Remark 1. Note that every entry in a colored permutation is in exactly one of its colored blocks.

In other words, a colored block is a monochromatic segment of elements with consecutive
numerical values. For instance, the permutation χ = 3a1a2a6a5b4b contains three colored
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blocks, χ(a)
1 = 3a1a2a , χ(a)

2 = 6a , and χ(b)
3 = 5b4b . A graphical representation of colored blocks

is shown in Figure 2. An important note is that colored blocks are both numerically and chro-
matically disjoint.

FIGURE 2. A Colored Permutation 3a1a2a6a5b4b

In the rest of this note we provide some observations on the optimal colored permutations
for colored patterns which contain either two or three colored blocks. For convenience we
will reuse the notation p(χ,φ) to represent the number of occurrences of the colored pattern
φ in the colored permutation χ. Colored blocks will often be denoted simply by their color
and/or location, i.e. χ(a)

1 = A1, χ(b)
2 = B2, χ(a)

3 = A3, etc. Similarly for colored patterns φ(a)
1 =α1,

φ(b)
2 =β2, etc. The collection of all colored blocks in χ of color a (b) will be denoted by χA (χB ).

2. PATTERN PACKING WITH TWO OR THREE COLORED BLOCKS

Note that a single-colored (or non-colored) permutation has exactly one colored block (namely
the permutation itself). In what follows we assume the permutations/patterns under consid-
eration to be at least two-colored.

2.1. Patterns with two colored blocks. Since the number of colored blocks is at least the
number of colors, we may assume that a colored pattern φ with two colored blocks φ(r )

1 = ρ

and φ(b)
2 = β to have exactly two colors and is of the form ρβ. Furthermore, we may assume

without loss of generality that all elements in ρ are less than all elements of β (similarly to
layers denoted α<β). For the remainder of this section color r will be referred to as “red” and
b will be referred to as “blue”.

Theorem 2.1. For a pattern φ with two blocks of the form ρβ with ρ < β, there is an optimal
length-n permutation χ̃ of the form RB with R < B.

Remark 2. The proof below follows the simple idea that sliding all of the red entries to the left
and all of the blue entries to the right leaves every instance of a φ-pattern intact.

Proof. Let χ be an optimal permutation of length n with colored blocks χ1χ2 . . .χk . First we
claim that χ1 = R1 is red. If χ1 were blue,

p(χ,φ) = p(χ1,ρ) ·p(χ>1,β)+p(χ>1,φ)

where χ>i0 (χ<i0 ) is the collection of all colored blocks in χ after (before) χi0 . Clearly the first
term in the sum is zero. By recoloring χ1 red, this term is replaced with

p(R1,ρ) ·p(χ>1,β) ≥ 0,
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and thus p(χ,φ) will only increase. Similarly, we may assume χk = Bk is blue. Along the same
lines we claim there is no blue block immediately preceding a red block. Otherwise, let χ j = B j

and χ j+1 = R j+1 in χ, we have

p(χ,φ) = P (χ< j ,ρ) ·p(B j ,β)+P (χ> j+1,β) ·p(R j+1,ρ)+p(χ< jχ> j+1,φ).

Let χ′ be obtained from χ by switching χ j and χ j+1, we have

p(χ′,φ) = p(χ,φ)+p(R j+1,ρ) ·p(B j ,β).

Thus p(χ,φ) may only increase.
Consequently, we now have an optimal permutation χ of the form χ = χRχB . Because any

φ= ρβ pattern occurring in χmust consist of a ρ pattern from χR and a β pattern from χB , we
have

p(χ,φ) ≤ p(χR ,ρ) ·p(χB ,β)

with equality if χR <χB . Hence there is an optimal permutation χ̃= RB with R < B . ■

For example, to pack the pattern χ = 2r 1r 3b4b an optimal permutation of length n con-
sists of a decreasing sequence of the elements bn

2 c . . .1 colored red followed by an increasing
sequence of the elements (bn

2 c+1) . . .n colored blue. More detailed applications will be dis-
cussed in Section 3.

2.2. Patterns with three colored blocks. In this subsection we consider patterns with three
colored blocks through several different cases. Some arguments are similar to those in the
previous subsection and we omit some details.

First consider the case when the pattern has three distinct colors. Assume without loss of
generalityφ(r )

1 = ρ,φ(b)
2 =β, andφ(g )

3 = γ (with colors red, blue and green) and thus the colored
pattern has the form φ= ρβγ.

Theorem 2.2. Given a pattern φ with three colored blocks of distinct colors of the form ρβγ,
there is an optimal permutation χ̃ (of length n) of the form RBG with the same numerical or-
dering as ρβγ.

Remark 3. For instance, given a pattern φ of the form ρβγ with ρ < γ< β, there is an optimal
permutation of the form RBG such that R <G < B.

Proof. Following the same arguments as Theorem 2.1, it is easy to show that the optimal per-
mutation is of the form

R1 . . .Ri Bi+1 . . .B j G j+1 . . .Gk =χRχBχG .

Then

p(χ,φ) ≤ p(χR ,ρ) ·p(χB ,β) ·p(χG ,γ)

with equality if any elements a ∈ χR , b ∈ χB and c ∈ χG assume the same numerical ordering
as ρ, β and γ. ■
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Suppose now that a pattern φ has three colored blocks with only two colors. Assume with-
out loss of generality that there is one red block and two blue blocks. First consider the case
when the two blue blocks are adjacent, i.e., φ = ρβ1β2. This case is representative of all pat-
terns with two adjacent blue blocks since reversing the permutation/pattern turns all ρβ1β2

patterns into β1β2ρ patterns.

Theorem 2.3. For a pattern φ with three colored blocks of the form ρβ1β2, there is an optimal
permutation χ̃ (of length n) that is also of the form RB1B2 and the numerical ordering of the
colored blocks in χ̃ is the same as that of the colored blocks in φ.

Proof. First note that since the two blue blocks are numerically disjoint, no element from β1

may be (numerically) adjacent to an element in β2. That is, either β1 < ρ < β2 or β2 < ρ < β1.
Without loss of generality we will assume the former.

Once again arguments from Theorem 2.1 yield that all red blocks in an optimal permutation
χ can be placed before any blue blocks. That is, an optimal permutation is of the form

χ= R1 . . .Ri Bi+1 . . .Bk =χRχB .

Note that any ρβ1β2 pattern is a result of a ρ pattern in χR and a β1β2 pattern in χB . For any
particular pattern ρ in χR , let χB<ρ be the set of all blue blocks less than ρ and χB>ρ be the set
of all blue blocks greater than ρ. Since ρβ1β2 patterns are only formed using β1 patterns from
χB<ρ and β2 patterns from χB>ρ , the contribution from this ρ pattern to p(χ,φ) is at most

p(χB<ρ ,β1) ·p(χB>ρ ,β2).

This can be achieved (regardless of the choice of ρ) by putting the blue blocks in increasing
order. Under this assumption, letχB< j (χB> j ) denote the collection of blue blocks before (after)
B j in χB and j0 be such that

p(χB< j0+1 ,β1) ·p(χB> j0
,β2) ≥ p(χB< j+1 ,β1) ·p(χB> j ,β2)

for any i +1 ≤ j ≤ k −1, we now have

p(χ,φ) ≤ p(χR ,ρ) ·p(χB< j0+1 ,β1) ·p(χB> j0
,β2).

Equality holds if

χB< j0+1 <χR <χB> j0
.

Consequently each of R = χR , B1 = χB< j0+1 and B2 = χB> j0
is a single block and the optimal

permutation is of the form RB1B2 with B1 < R < B2. ■

Lastly we consider the case when the pattern is of the form φ=β1ρβ2.

Theorem 2.4. For a pattern φ with three colored blocks of the form β1ρβ2, there is an optimal
permutation χ̃ that is of the form B1RB2 with same numerical ordering as those in φ.

Proof. First we may assume (following the same argument as before), that in an optimal per-
mutation χ, the first and last blocks are blue, i.e.,

χ=χ(b)
1 . . .χ(ci )

i . . .χ(b)
k
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where ci ∈ {r ,b}. Consider any ρ pattern formed in the sequence of the s red blocks χR :=
χ(r )

j1
χ(r )

j2
. . .χ(r )

js
. A β1ρβ2 pattern can only be formed by a β1 pattern in the the sequence of blue

blocks before χ(r )
j1

and a β2 pattern in the sequence of blue blocks after χ(r )
js

. Thus the number
of φ patterns formed from this particular ρ pattern is at most

p(χB< j1
,β1) ·p(χB> js

,β2)

where χB< j1
denotes the sequence of blue blocks before block j1 and χB> js

denotes the se-
quence of blue blocks after block js .

Let j0 (not necessarily unique) be a value such that c j0 = r and

p(χB< j0
,β1) ·p(χB> j0

,β2) ≥ p(χB< j ,β1) ·p(χB> j ,β2)

for all j , then

p(χ,β1ρβ2) ≤ p(χB< j0
,β1) ·p(χR ,ρ) ·p(χB> j0

,β2)

with equality if all red blocks are located in between the first blue block immediately preceding
and following χ(r )

j0
. Consequently χ is an optimal permutation of the form

χ(b)
1 . . .χ(b)

`
χ(r )
`+1 . . .χ(r )

m χ(b)
m+1 . . .χ(b)

k =χB1χRχB2

with colored blocks χB1 :=χ(b)
1 . . .χ(b)

`
, χR :=χ(r )

`+1 . . .χ(r )
m , and χB2 :=χ(b)

m+1 . . .χ(b)
k .

Through arguments similar to those of Theorem 2.3 one can see that the numerical ordering
of χB1χRχB2 is the same as β1ρβ2. ■

3. APPLICATIONS TO SPECIFIC PATTERNS

In this section, we apply our findings to some specific colored patterns and obtain their
corresponding packing densities. For convenience we let p(n,φ) denote the specific number
of occurrences of φ in an optimal permutation of length n.

3.1. Patterns of Length 2. For non-colored patterns of length 2, the packing density is trivially
equal to one.

In the colored case, Theorem 2.1 implies that the optimal permutation of length n of the
colored pattern 1r 2b (or equivalently 2r 1b) is of the form RB with R < B . Then

p(n,1r 2b) = p(R,1) ·p(B ,1) = |R| · |B |.
Given |R|+ |B | = n, it is easy to see that

p(n,1r 2b) =
⌊

n2

4

⌋
= 2n2 −1+ (−1)n

8
.

Therefore the packing density of all length two colored patterns (in which two distinct colors
occur) is given by

δ(1r 2b) = lim
n→∞

p(n,1r 2b)(n
2

) = 1

2
.
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3.2. Patterns of Length 3. For non-colored patterns of length 3, the packing densities for the
decreasing and increasing patterns are trivial. The layered pattern 132 has packing density
2
p

3−3 as established in [4].

3.2.1. The pattern 2r 1b3b (and equivalents). Theorem 2.3 implies that the optimal permuta-
tion of length n of the colored pattern 2r 1b3b is of the form RB1B2 with B1 < R < B2, then

p(n,2r 1b3b) = p(R,1) ·p(B1,1) ·p(B2,1) = |R| · |B1| · |B2|.
With |R|+ |B1|+ |B1| = n, it is easily shown that

p(n,2r 1b3b) =


n3

27 , if n ≡ 0 mod 3
(n−1)2(n+2)

27 , if n ≡ 1 mod 3
(n+1)2(n−2)

27 , if n ≡ 2 mod 3

Consequently the packing density of 2r 1b3b (and equivalent patterns) is

δ(2r 1b3b) = lim
n→∞

p(n,2r 1b3b)(n
3

) = 2

9
.

3.2.2. The pattern 1r 3b2b (and equivalents). Theorem 2.1 implies that the optimal permuta-
tion of length n of the colored pattern 1r 3b2b is of the form RB in which R < B , then

p(n,1r 3b2b) = p(R,1) ·p(B ,21) = |R|
(
|B |
2

)
.

Let |B | = k, then

p(n,1r 3b2b) = max
1≤k≤n

{
(n −k)

(
k

2

)}
,

achieved when k ∼ 2n
3 . Consequently δ(1r 3b2b) = 4

9 .

3.3. Longer colored patterns. Patterns of length over three may also be studied so long as
they contain no more than three colored blocks and each colored block is equivalent to a non-
colored pattern with known packing density.

3.3.1. Pattern 1b3r 4r 2b . Theorem 2.4 implies that the optimal colored permutation χ̃ is of the
form B1RB2 with B1 < B2 < R, then

p(n,1b3r 4r 2b) = p(B1,1) ·p(R,12) ·p(B2,1).

For convenience, let |B1| = x, |R| = y , and |B2| = z. Then x + y + z = n and thus for any fixed y

p(B1,1) ·p(B2,1) = x · z ≤ 2(n − y)2 −1+ (−1)n−y

8
with equality when |x − z| ≤ 1. Consequently

p(n,1b3r 4r 2b) = max
2≤y≤n−2

{
2(n − y)2 −1+ (−1)n−y

8
·
(

y

2

)}
,

achieved when y ∼ n
2 . Hence δ(1b3r 4r 2b) = 3

16 .
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3.3.2. Pattern 3b2b4r 6r 5r 1b . Theorem 2.3 implies that the optimal permutation χ̃ is of the
form B1RB2 with B2 < B1 < R. Hence

p(n,3b2b4r 6r 5r 1b) = p(B1,21) ·p(R,132) ·p(B2,1).

Letting |B1| = x, |R| = y , |B2| = z and fixing y again, we have x + z = n − y and

p(B1,21) ·p(B2,1) ≤
(

x

2

)
· z.

This expression is maximized when x ∼ 2(n−y)
3 and z ∼ n−y

3 . From [4] we have p(y ,132) ∼
(2
p

3−3) y3

6 , hence

p(n,3b2b4r 6r 5r 1b)

∼ max
3≤y≤n−3

{
2(n − y)

6

(
2(n − y)−3

6

)
·
(

2(n − y)

3

)
· (2

p
3−3)

y3

6

}
,

achieved when y ∼ n
2 . Thus δ(3b2b4r 6r 5r 1b) = 5

9 (2
p

3−3).

4. CONCLUDING REMARKS

In this note we considered the question of packing colored patterns into colored permu-
tations. It is worth noting that, with our characterizations of the optimal permutations, the
colored version of the pattern packing question is in some sense easier than the non-colored
version and encompasses a wider range of patterns. For instance, the optimal permutation
for the colored pattern 6r 1r 3r 2r 5b4b can indeed be characterized since it contains only three
colored blocks and each block is a layered pattern. However, the non-colored pattern 613254
is not layered and its optimal permutation is much more difficult to characterize.

It is natural to conjecture that the following holds in general, which we post as a question.

Question 4.1. Is it true that the optimal colored permutation with respect to a given colored
pattern always shares the same number and arrangement of the colored blocks as those of the
pattern?
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