COMBINATORIAL ANALYSIS OF INTEGER POWER PRODUCT EXPANSIONS

H.GINGOLD, WEST VIRGINIA UNIVERSITY, DEPARTMENT OF MATHEMATICS, MORGANTOWN WV 26506, USA, GINGOLD@MATH.WVU.EDU
JOCELYN QUAINTANCE, UNIVERSITY OF PENNSYLVANIA, DEPARTMENT OF COMPUTER
SCIENCE, PHILADELPHIA PA 19104, USA, JOCELYNQ@SEAS.UPENN.EDU

Аbstract. Let $f(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}$ be a formal power series with complex coefficients. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonzero integers. The Integer Power Product Expansion of $f(x)$, denoted $\mathbb{Z P P E}$, is $\prod_{k=1}^{\infty}\left(1+w_{k} x^{k}\right)^{r_{k}}$. Integer Power Product Expansions enumerate partitions of multi-sets. The coefficients $\left\{w_{k}\right\}_{k=1}^{\infty}$ themselves possess interesting algebraic structure. This algebraic structure provides a lower bound for the radius of convergence of the $\mathbb{Z P P E}$ and provides an asymptotic bound for the weights associated with the multi-sets.

1. Introduction

In the field of enumerative combinatorics, it iswell known that

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} p(n) x^{n}=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-1} \tag{1}
\end{equation*}
$$

where $p(n)$ is the number of partitions of n [1]. Equally well known is the generating function for $p_{d}(n)$, the number of partitions of n with distinct parts [1]

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} p_{d}(n) x^{n}=\prod_{n=1}^{\infty}\left(1+x^{n}\right) \tag{2}
\end{equation*}
$$

Equation (2) is a special case of the Generalized Power Product Expansion, GPPE. The GPPE of a formal power series $1+\sum_{n=1}^{\infty} a_{n} x^{n}$ is

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} a_{n} x^{n}=\prod_{n=1}^{\infty}\left(1+g_{n} x^{n}\right)^{r_{n}} \tag{3}
\end{equation*}
$$

Date: March 10, 2016.
1991 Mathematics Subject Classification. 05A17, 11P81, 41A10, 30 E 10.
Key words and phrases. Power products, generalized power products, generalized inverse power products, power series, partitions, compositions, multi-sets, analytic functions, expansions, convergence, asymptotics.
where $\left\{r_{n}\right\}_{n=1}^{\infty}$ is a set of nonzero complex numbers. If $r_{n}=1$ and $g_{n}=1$, Equation (3) becomes Equation (2). Similarly, Equation (1) is a special case of the Generalized Inverse Power Product Expansion, GIPPE. The GIPPE of a formal power series $1+\sum_{n=1}^{\infty} a_{n} x^{n}$ is

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} a_{n} x^{n}=\prod_{n=1}^{\infty}\left(1-h_{n} x^{n}\right)^{-r_{n}}, \tag{4}
\end{equation*}
$$

where $\left\{r_{n}\right\}_{n=1}^{\infty}$ is a set of nonzero complex numbers. Equation (1) is Equation (4) with $r_{n}=1$ and $h_{n}=1$. The analytic and algebraic properties of the GPPE and the GIPPE were extensively studied in $[5,6,4]$. Since Equations (1) and (2) are generating functions associated with partitions, it is only natural to define a single class of product expansions that incorporate both as special examples. Define the Integer Power Product Expansion, $\mathbb{Z} P P E$, of the formal power series $1+\sum_{n=1}^{\infty} a_{n} x^{n}$ to be

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} a_{n} x^{n}=\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}} \tag{5}
\end{equation*}
$$

whenever $\left\{r_{n}\right\}_{n=1}^{\infty}$ is a set of nonzero integers. Then Equation (2) is Equation (5) with $r_{n}=1$ and $w_{n}=1$, while Equation (1) is Equation (5) with $r_{n}=-1$ and $w_{n}=-1$.

The purpose of this paper is to study, in a self-contained manner, the combinatorial, algebraic, and analytic properties of the $\mathbb{Z P P E}$. Section 2 discusses, in detail, the role of integer power product in the field of enumerative combinatorics. In particular, we show how integer power products enumerate partitions of multi-sets. We also discuss how the $\mathbb{Z} P P E$ factors the formal power series associated with the number of compositions. Section 3 derives the algebraic properties of w_{n} in terms of $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{r_{n}\right\}_{n=1}^{\infty}$. The most important property, known as the Structure Property, writes w_{n} as a polynomial in $\left\{a_{i}\right\}_{i=1}^{n}$, whose coefficients are rational expressions of the form $\frac{p\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{q\left(r_{1}, r_{2}, \ldots, r_{n}\right)}$. We exploit the Structure Property in Section 4 when determining a lower bound for the radius of convergence of $\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}$. Section 4 also contains an asymptotic approximation for the integer power product expansion associated with $1-\sum_{n=1}^{\infty} s^{n} x^{n}$ where $s=$ $\sup _{n \geq 1}\left|a_{n}\right|^{\frac{1}{n}}$, namely the majorizing product expansion.

2. Combinatorial Interpretations of Integer Power Product Expansions

Given a formal power series $1+\sum_{n=1}^{\infty} a_{n} x^{n}$ or an analytic function $f(x)$ with $f(0)=1$ which has a Taylor series representation $1+\sum_{n=1}^{\infty} a_{n} x^{n}$, we define the Integer Power Product Expansion, denoted ZPPE, as

$$
\begin{equation*}
f(x)=\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}} \tag{6}
\end{equation*}
$$

where $\left\{w_{n}\right\}_{n=1}^{\infty}$ is a set of nonzero complex numbers and $\left\{r_{n}\right\}_{n=1}^{\infty}$ is a set of nonzero integers. We say $\left(1+w_{n} x^{n}\right)^{r_{n}}$ is an elementary factor of the $\mathbb{Z} P P E$. If $r_{n} \geq 1$, an elementary factor has the form $\left(1+w_{n} x^{n}\right)^{r_{n}}=\left(1+g_{n} x^{n}\right)^{r_{n}}$, while for $r_{n} \leq-1$, an elementary factor has the form $\left(1+w_{n} x^{n}\right)^{r_{n}}=\left(1-h_{n} x^{n}\right)^{-\left|r_{n}\right|}$. If $r_{n}=1$ for all n, Equation (6) becomes the Power Product Expansion $f(x)=\prod_{n=1}^{\infty}\left(1+g_{n} x^{n}\right)$, while if $r_{n}=-1$ for all n, Equation (6) becomes the Inverse Power Product Expansion $f(x)=\prod_{n=1}^{\infty}\left(1-h_{n} x^{n}\right)^{-1}$.

Given a fixed set of nonzero integers $\left\{r_{n}\right\}_{n=1}^{\infty}$, there is a one-to-one correspondence between the set of formal power series and the set of $\mathbb{Z P P E ' s . ~ T o ~ d i s c o v e r ~ t h i s ~ c o r r e - ~}$ spondence, expand each elementary factor of Equation (6) in terms of Newton's Binomial Theorem and then compare the coefficient of x^{n}. In particular we find that

$$
1+\sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{k_{1}=0}^{\infty}\binom{r_{1}}{k_{1}}\left(w_{1} x\right)^{k_{1}} \sum_{k_{2}=0}^{\infty}\binom{r_{2}}{k_{2}}\left(w_{2} x^{2}\right)^{k_{2}} \sum_{k_{3}=0}^{\infty}\binom{r_{3}}{k_{3}}\left(w_{3} x^{3}\right)^{k_{3}} \cdots
$$

Hence,

$$
\begin{equation*}
a_{n}=\binom{r_{n}}{1} w_{n}+\sum_{\substack{l^{\prime} \cdot v=n \\ l_{j}<n}}\binom{r_{l_{1}}}{v_{1}} \cdots\binom{r_{l_{\theta}}}{v_{\theta}} w_{l_{1}}^{v_{1}} \cdots w_{l_{\theta}}^{v_{\theta}} \tag{7}
\end{equation*}
$$

where $l=\left[l_{1}, l_{2}, \cdots, l_{\theta}\right]$ and $v=\left[v_{1}, v_{2}, \cdots, v_{\theta}\right]$. Equation (7) implies that

$$
\begin{equation*}
w_{n}=\frac{1}{r_{n}}\left[a_{n}-\sum_{\substack{l \cdot v=n \\ l_{j}<n}}\binom{r_{l_{1}}}{v_{1}} \cdots\binom{r_{l_{\theta}}}{v_{\theta}} w_{l_{1}}^{v_{1}} \cdots w_{l_{\theta}}^{v_{\theta}}\right] . \tag{8}
\end{equation*}
$$

We formalize the above discussion in the following proposition which is a statement about a bijection between the sequence of the coefficients in a given power series and the sequence of coefficients in its $\mathbb{Z} P P E$ expansion.

Proposition 1:Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ denote a sequence of nonzero integers. Let $w_{k} \in \mathbb{C}, k=1,2, \ldots$, be an infinite sequence. Let the symbol $\prod_{k=1}^{\infty}\left(1+w_{k} x^{k}\right)^{r_{k}}$ stand for the infinite product

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1+w_{k} x^{k}\right)^{r_{k}}:=\left(1+w_{1} x\right)^{r_{1}}\left(1+w_{2} x^{2}\right)^{r_{2}} \cdots\left(1+w_{k} x^{k}\right)^{r_{k}} \cdots \tag{9}
\end{equation*}
$$

Then there exists a unique sequence $a_{n} \in \mathbb{C}, n=1,2, \ldots$, such that in the sense of power series the following holds

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} a_{n} x^{n}=\prod_{k=1}^{\infty}\left(1+w_{k} x^{k}\right)^{r_{k}} \tag{10}
\end{equation*}
$$

Conversely, let $a_{n} \in \mathbb{C}, n=1,2, \ldots$, be an infinite sequence. Then there exists a unique sequence of elements $w_{k} \in \mathbb{C}, k=1,2, \ldots$, such that the identity (10) holds. Moreover, the
elements w_{k} have the representation provided by Equation (8).
The one-to-one correspondence of Proposition 1 has many combinatorial interpretations. Let n be a positive integer. A partition of n is a sum of k positive integers i_{k} such that $n=i_{1}+i_{2}+\cdots+i_{k}$. Each i_{l} for $1 \leq l \leq k$ is called a part of the partition [1]. Without loss of generality assume $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n$. Given $n=i_{1}+i_{2}+\cdots+i_{k}$, we associate each part i_{k} with the monomial $x^{i_{k}}$. Then each summand of $\sum_{j=0}^{\infty}\left(x^{i_{k}}\right)^{j}=1+x^{i_{k}}+x^{2 i_{k}}+x^{3 i_{k}}+\cdots$ represents the part i_{k} occurring j times, and the product $\prod_{i=1}^{\infty} \sum_{j=0}^{\infty}\left(x^{i}\right)^{j}=\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{-1}$ becomes

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{-1}=(1-x)^{-1}\left(1-x^{2}\right)^{-1}\left(1-x^{3}\right)^{-1} \cdots=\sum_{n=0}^{\infty} p(n) x^{n} \tag{11}
\end{equation*}
$$

where $p(n)$ is the number of partitions of n. Equation (11) is Equation (6) with $r_{n}=-1$ and $w_{n}=-1$ for all n. To obtain a combinatorial interpretation for Equation (6) with $r_{n}=1$ and $w_{n}=1$ we observe that

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1+x^{i}\right)=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) \cdots=\sum_{n=0}^{\infty} p_{d}(n) x^{n} \tag{12}
\end{equation*}
$$

where $p_{d}(n)$ counts the partitions of n composed of distinct parts [1], where a partition of n has distinct parts if $n=i_{1}+i_{2}+\cdots+i_{k}$ and $i_{l}=i_{p}$ if and only if $l=p$.

Equations (11) and (12) may be combined as follows. Let $\left\{r_{k}\right\}_{k=1}^{\infty}$ be a set of integers such that for each $k, r_{k}=1$ or $r_{k}=-1$. Furthermore require that $w_{k}=r_{k}$. Equation (6) becomes

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1+r_{i} x^{i}\right)^{r_{i}}=\sum_{n=0}^{\infty} p_{H}(n) x^{n} \tag{13}
\end{equation*}
$$

where $p_{H}(n)$ is the number of partitions of n composed of unlimited number of copies of the part x^{k} if $r_{k}=-1$, and at most one copy of the part x^{k} if $r_{k}=1$. For example suppose that $r_{i}=-1$ if i is odd and $r_{i}=1$ if i is even. Equation (13) becomes

$$
(1-x)^{-1}\left(1+x^{2}\right)\left(1-x^{3}\right)^{-1}\left(1+x^{4}\right)\left(1-x^{5}\right)^{-1}\left(1+x^{6}\right) \cdots=\sum_{n=0}^{\infty} p_{H}(n) x^{n}
$$

In Equation (13) we required that $r_{k}= \pm 1$. Let us remove this restriction and just assume $\left\{r_{k}\right\}_{k=1}^{\infty}$ is an arbitrary set of integers. Define

$$
\operatorname{sg}\left(r_{n}\right)=\left\{\begin{array}{lc}
1, & r_{n} \geq 1 \tag{14}\\
-1, & r_{n} \leq-1 \\
0, & r_{n}=0
\end{array}\right.
$$

Is there a combinatorial interpretation for $\prod_{i=1}^{\infty}\left(1+\operatorname{sg}\left(r_{i}\right) x^{i}\right)^{r_{i}}$? To answer this question we need the notion of a multi-set. Let $\left\{r_{k}\right\}_{k=1}^{\infty}$ be a set of nonnegative integers. Define the associated multi-set as $1^{r_{1}} 2^{r_{2}} \ldots k^{r_{k}} \ldots$, where $k^{r_{k}}$ denotes r_{k} distinct copies of the integer k. If $r_{k}=0$, there are no copies of k in the multi-set. Given $\left\{r_{k}\right\}_{k=0}^{\infty}$, a set of positive integers, we form the generating function

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1+x^{i}\right)^{r_{i}}=(1+x)^{r_{1}}\left(1+x^{2}\right)^{r_{2}} \ldots\left(1+x^{k}\right)^{r_{k}} \cdots=\sum_{n=0}^{\infty} \hat{p}_{d}(n) x^{n} \tag{15}
\end{equation*}
$$

where $\hat{p}_{d}(n)$ counts the partitions of n composed of distinct parts of the multi-set $1^{r_{1}} 2^{r_{2}} \ldots i^{r_{i}} \ldots$ To clarify what is meant by distinct parts when working in the context of multi-sets, it helps to introduce the notion of color. Each of the r_{i} copies of i is assigned a unique color from a set of r_{i} colors. Differently colored i 's are considered distinct from each other. Thus $\hat{p}_{d}(n)$ counts the partitions of n over the multi-set $1^{r_{1}} 2^{r_{2}} \ldots k^{r_{k}} \ldots$ which have distinct colored parts. As a case in point, take the multi-set $1^{2} 2^{4} 3^{3} 4^{5}$, and represent it as
$\left\{1_{R}, 1_{B}, 2_{R}, 2_{B}, 2_{O}, 2_{Y}, 3_{R}, 3_{B}, 3_{O}, 4_{R}, 4_{B}, 4_{O}, 4_{Y}, 4_{G}\right\}$ where the color of the digit is denoted by the subscript and $\mathrm{R}=$ Red, $\mathrm{B}=$ Blue, $\mathrm{O}=$ Orange, $\mathrm{Y}=$ Yellow, and $\mathrm{G}=\mathrm{Green}$. The generating function for this multi-set is $\prod_{n=1}^{4}\left(1+x^{n}\right)^{r_{n}}=(1+x)^{2}\left(1+x^{2}\right)^{4}\left(1+x^{3}\right)^{3}(1+$ $\left.x^{4}\right)^{5}$ where exponent of x denotes the part while the exponent of each elementary factor denotes the number of colors available for the associated part.

Equation (15) is the multi-set generalization of Equation (12). There is also a multiset generalization of Equation (11). Assume r_{n} is a positive integer. Equation (11) generalizes as

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{r_{i}}=(1-x)^{r_{1}}\left(1-x^{2}\right)^{r_{2}}\left(1-x^{3}\right)^{r_{3}} \cdots=\sum_{n=0}^{\infty} \hat{p}(n) x^{n} \tag{16}
\end{equation*}
$$

where $\hat{p}(n)$ is the number of partitions of n associated with the colored multi-set which contains an unlimited number of repetitions of each integer k in r_{k} colors. In other words, the multi-set is $S_{1}^{r_{1}} S_{2}^{r_{2}} \ldots S_{i}^{r_{i}} \ldots$, where $S_{i}=\{i, i+i, i+i+i, \ldots\}$. The factor $\left(1-x^{i}\right)^{r_{i}}=\left(1+x^{i}+x^{2 i}+x^{3 i}+\ldots\right)^{r_{i}}$ corresponds to $\{i, i+i, i+i+i, \ldots\}$ replicated in r_{i} colors. As an example of Equation (16), let $r_{1}=2, r_{2}=1$ and $r_{3}=3$. The associated generating function is $(1-x)^{-2}\left(1-x^{2}\right)^{-1}\left(1-x^{3}\right)^{-3}$, and the multi-set contains two copies of $\{1,1+1,1+1+1, \ldots\}$, one in Red and one in Blue; one copy of $\{2,2+2,2+2+2, \ldots\}$ in Red; and three copies of $\{3,3+3,3+3+3, \ldots\}$ in Red, Blue, and Orange.

We combine Equations (15) and (16) as

Online Journal of Analytic Combinatorics, Issue 11 (2016), \#2

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1+\operatorname{sg}\left(r_{i}\right) x^{i}\right)^{r_{i}}=\sum_{n=0}^{\infty} \hat{p}_{H}(n) x^{n} \tag{17}
\end{equation*}
$$

where $\hat{p}_{H}(n)$ is the number of partitions composed from $\left|r_{i}\right|$ copies of M_{i}, where $M_{i}=\{i, i+i, i+i+i, \cdots\}$ if $\operatorname{sg}\left(r_{i}\right)=-1$, and $M_{i}=\{i\}$ if $\operatorname{sg}\left(r_{i}\right)=1$. As a specific example of Equation (17), let $r_{1}=-1, r_{2}=2$, and $r_{3}=-2$. Then $M_{1}=$ $\{1,1+1,1+1+1, \cdots\}$ occurs in Red, $M_{2}=\{2\}$ occurs in Red and Blue, while $M_{3}=\{3,3+3,3+3+3, \cdots\}$ occurs in Red and Blue, and the associated generating function is $(1-x)^{-1}\left(1+x^{2}\right)^{2}\left(1-x^{3}\right)^{2}$.

Equation (17) is the multi-set generalization of Equation (13). To further generalize Equation (17) we multiply each part i of the multi-set with the weight w_{i} to form

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(1+\operatorname{sg}\left(r_{i}\right) w_{i} x^{i}\right)^{r_{i}}=\sum_{n=0}^{\infty} \hat{p}_{H}(\bar{w}, n) x^{n} \tag{18}
\end{equation*}
$$

where $\hat{p}_{H}(\bar{w}, n)$ is a polynomial in $\left\{w_{i}\right\}_{i=0}^{\infty}$ such that each \bar{w} is the sum of monomials $w_{1}^{\alpha_{1}} w_{2}^{\alpha_{2}} \ldots w_{m}^{\alpha_{m}}$, where $\sum_{i=1}^{m} i \alpha_{1}=n$ and α_{m} counts the number of times colored part m appears in the partition. If $\operatorname{sg}\left(r_{i}\right)=-1$, there are $\left|r_{i}\right|$ colored copies of the weighted multi-set $M_{i}=\left\{w_{i} i, w_{i} i+w_{i} i, w_{i} i+w_{i} i+w_{i} i \ldots\right\}=\left\{k w_{i}\right\}_{k=1}^{\infty}$, and each $k w_{i} i$ is associated with the monomial $w_{i}^{k}\left(x^{i}\right)^{k}=w_{i}^{k} x^{i k}$. If $\operatorname{sg}\left(r_{i}\right)=1$, there are r_{i} colored copies of the weighted multi-set $M_{i}=\left\{w_{i} i\right\}$, where $w_{i} i$ is associated with the monomial $w_{i} x^{i}$. In the case of the previous example with $r_{1}=-1, r_{2}=2$, and $r_{3}=-2$, we now have one copy of the weighted multi-set $\left\{w_{1,}, w_{1}+w_{1}, w_{1}+w_{1}+w_{1}, \cdots\right\}$, two copies of the multi-set $\left\{2 w_{2}\right\}$, and two copies of the multi-set, and the generating function is $\left(1-w_{1} x\right)^{-1}\left(1+w_{2} x^{2}\right)^{2}\left(1-w_{3} x^{3}\right)^{2}$.

The combinatorial interpretations of Equations (11) through (18) originated from the product side of Equation (6). To develop a combinatorial interpretation from the sum side of Equation (6), define $f(x)=1-\sum_{n=1}^{\infty} a_{n} x^{n}$ where $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a set of positive integers. Equation (6) implies that

$$
\begin{equation*}
1-\sum_{n=1}^{\infty} a_{n} x^{n}=\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}} \tag{19}
\end{equation*}
$$

Take Equation (19) and form the reciprocal.

$$
\begin{equation*}
\frac{1}{1-\sum_{n=1}^{\infty} a_{n} x^{n}}=\frac{1}{\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}}=\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{-r_{n}} \tag{20}
\end{equation*}
$$

Equation (20) shows that the reciprocal of $1-\sum_{n=1}^{\infty} a_{n} x^{n}$ is also a $\mathbb{Z} P P E$. Expand the left side of Equation (20) as

$$
\begin{aligned}
\frac{1}{1-\sum_{n=1}^{\infty} a_{n} x^{n}} & =1+\sum_{n=1}^{\infty} a_{n} x^{n}+\left[\sum_{n=1}^{\infty} a_{n} x^{n}\right]^{2}+\left[\sum_{n=1}^{\infty} a_{n} x^{n}\right]^{3}+\cdots+\left[\sum_{n=1}^{\infty} a_{n} x^{n}\right]^{k}+\ldots \\
& =1+\sum_{n=1}^{\infty} C(n, 1) x^{n}+\sum_{n=2}^{\infty} C(n, 2) x^{n}+\cdots+\sum_{n=k}^{\infty} C(n, k) x^{n}+\ldots \\
& =1+\sum_{n=1}^{\infty}\left[\sum_{k=1}^{n} C(n, k)\right] x^{n}
\end{aligned}
$$

where $C(n, k)$ is a polynomial representation of the compositions of n with exactly k parts such that the part i is represented by a_{i} and the + is replace by $*$. In other words, $C(n, k)$ is composed of monomials $c a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}$ such that $i_{1}+i_{2}+\ldots i_{k}$ is a partition of n. Recall that a composition of a positive integer n with k parts is a sum $i_{1}+i_{2}+\ldots i_{k}=n$ where each part i_{j} is a positive integer with $1 \leq i_{j} \leq n$. The difference between a partition of n with k parts and a composition of n with k parts is that a composition distinguishes between the order of the parts in the summation [?, 2]. Our combinatorial interpretation of $C(n, k)$ is verified via a standard induction argument on k.

Since

$$
\begin{equation*}
\frac{1}{1-\sum_{n=1}^{\infty} a_{n} x^{n}}=1+\sum_{n=1}^{\infty}\left[\sum_{k=1}^{n} C(n, k)\right] x^{n}:=1+\sum_{n=1}^{\infty} C_{n} x^{n} \tag{21}
\end{equation*}
$$

we may interpret C_{n} to be the sum of all non-trivial polynomial representations of the compositions of n with k parts, i.e. C_{n} is a polynomial representation of the compositions of n where C_{n} is constructed by taking the set of compositions of n, replacing i with a_{i}, replacing + with $*$, and summing the monomials. If $a_{n}=1, C(n, k)$ is the number of compositions of n with k parts, while C_{n} is the total number of compositions of n. In particular, we find that

$$
\begin{align*}
\frac{1}{1-\sum_{n=1}^{\infty} x^{n}} & =\frac{1}{1-\left(\frac{x}{1-x}\right)}=1+\frac{x}{1-x}+\left(\frac{x}{1-x}\right)^{2}+\cdots+\left(\frac{x}{1-x}\right)^{k}+\ldots \\
& =1+\sum_{n=1}^{\infty} x^{n}+\left[\sum_{n=1}^{\infty} x^{n}\right]^{2}+\left[\sum_{n=1}^{\infty} x^{n}\right]^{3}+\cdots+\left[\sum_{n=1}^{\infty} x^{n}\right]^{k}+\ldots \tag{22}
\end{align*}
$$

Online Journal of Analytic Combinatorics, Issue 11 (2016), \#2

Define $\left[\sum_{n=1}^{\infty} x^{n}\right]^{k}=\sum_{l=k}^{\infty} \hat{C}(l, k) x^{l}$ whenever $k \geq 1$. Clearly $\hat{C}(l, 1)=1$ and a standard induction argument on k shows that $\hat{C}(l, k)=\binom{l-1}{k-1}$. Equation (22) then becomes

$$
\begin{aligned}
\frac{1}{1-\sum_{n=1}^{\infty} x^{n}} & =1+\sum_{n=1}^{\infty} x^{n}+\left[\sum_{n=1}^{\infty} x^{n}\right]^{2}+\left[\sum_{n=1}^{\infty} x^{n}\right]^{3}+\cdots+\left[\sum_{n=1}^{\infty} x^{n}\right]^{k}+\ldots \\
& =1+\sum_{n=1}^{\infty} \hat{C}(n, 1) x^{n}+\sum_{n=2}^{\infty} \hat{C}(n, 2) x^{n}+\cdots+\sum_{n=k}^{\infty} \hat{C}(n, k)+\ldots \\
& =1+\sum_{n=1}^{\infty}\left[\sum_{k=1}^{n} \hat{C}(n, k)\right] x^{n}=1+\sum_{n=1}^{\infty}\left[\sum_{k=1}^{n}\binom{n-1}{k-1}\right] x^{n} \\
& =1+\sum_{n=1}^{\infty} 2^{n-1} x^{n} .
\end{aligned}
$$

Our calculations have proven of the fact that number of compositions of n is 2^{n-1}, and the number of compositions of n with k parts is $\binom{n-1}{k-1}$. See Example I.6, Page 44 of [2] or Theorem 3.3 of [8]. But more importantly, by combining our observations with Equation (20), we see that the $\mathbb{Z P P E} \prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{-r_{n}}$ provides a way of factoring the series $1+\sum_{n=1}^{\infty} C_{n} x^{n}$, where C_{n} is the polynomial representation of the compositions of n.

3. Algebraic Formulas for coefficients of Integer Power Product Expansions

In this section all calculations are done in the context of formal power series and formal power products. For a fixed set of nonzero integers $\left\{r_{n}\right\}_{n=1}^{\infty}$, there are three ways to describe the coefficients of the ZPPE in terms of the coefficients of a given power series. First is Equation (8). An alternative formula for $\left\{w_{n}\right\}_{n=1}^{\infty}$ is found by computing the \log of Equation (6). Since $\log \left(1+w_{n} x^{n}\right)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}\left(w_{n} x^{n}\right)^{k}}{k}$, we observe that

$$
\begin{equation*}
\log \prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}=\sum_{n=1}^{\infty} r_{n} \log \left(1+w_{n} x^{n}\right)=\sum_{n=1}^{\infty} r_{n} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}\left(w_{n} x^{n}\right)^{k}}{k} . \tag{23}
\end{equation*}
$$

Represent $\log f(x)=\sum_{k=1}^{\infty} D_{k} x^{k}$. Comparing the coefficient of x^{s} in this expansion of $\log f(x)$ with the coefficient of x^{s} provided by the expansion in Equation (23) implies that

$$
\begin{equation*}
D_{s}=\frac{1}{s} \sum_{n: n \mid s}^{\infty}(-1)^{\frac{s}{n}-1} n r_{n} w_{n}^{\frac{s}{n}} . \tag{24}
\end{equation*}
$$

Solving Equation (24) for w_{s} gives us

$$
w_{s}=\frac{D_{s}-\frac{1}{s} \sum_{\substack{n \mid s \\ n \neq s}}(-1)^{\frac{s}{n}-1} n r_{n} w_{n}^{\frac{s}{n}}}{r_{s}}
$$

Although Equations (8) and (25) are useful for explicitly calculating w_{n}, neither of these formulas reveal the structure property of w_{n} crucial for determining a lower bound on the radius of convergence of the $\mathbb{Z} P P E$. Take Equation (6), define $a_{n}=C_{1, n}$, and rewrite it as

$$
1+\sum_{n=1}^{\infty} C_{1, n} x^{n}=\left(1+w_{1} x\right)^{r_{1}}\left[1+\sum_{n=2}^{\infty} C_{2, n} x^{n}\right]
$$

where $1+\sum_{n=2}^{\infty} C_{2, n} x^{n}=\prod_{n=2}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}$. Next write

$$
1+\sum_{n=2}^{\infty} C_{2, n} x^{n}=\left(1+w_{2} x^{2}\right)^{r_{2}}\left[1+\sum_{n=3}^{\infty} C_{3, n} x^{n}\right]
$$

where $1+\sum_{n=3}^{\infty} C_{3, n} x^{n}=\prod_{n=3}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}$. Continue this process inductively to define

$$
\begin{equation*}
1+\sum_{n=j}^{\infty} C_{j, n} x^{n}=\left(1+w_{j} x^{j}\right)^{r_{j}}\left[1+\sum_{n=j+1}^{\infty} C_{j+1, n} x^{n}\right] \tag{26}
\end{equation*}
$$

where $1+\sum_{n=j}^{\infty} C_{j, n} x^{n}=\prod_{n=j}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}$ and $1+\sum_{n=j+1}^{\infty} C_{j+1, n} x^{n}=\prod_{n=j+1}^{\infty}(1+$ $\left.w_{n} x^{n}\right)^{r_{n}}$. By comparing the coefficient of x^{j} on both sides of Equation (26) we discover that $w_{j}=\frac{C_{j, j}}{r_{j}}$ for all j. This fact, along with Equation (26), is the key to proving the following theorem.

Theorem 3.1. Let j be any positive integer. Define $C_{j, 0}=1$ and $C_{j, N}=0$ for $1 \leq N \leq j-1$. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be a set of nonzero integers. Assume that $C_{j, N} \leq 0$ for all $j \leq N$. Then $C_{j+1, N} \leq 0$ whenever $j+1 \leq N$.

Proof: Our proof involves two cases.
Case 1: Assume $r_{j} \geq 1$. Then $\left(1+w_{j} x^{j}\right)^{r_{j}}=\left(1+g_{g} x^{j}\right)^{r_{j}}$, and Equation (26) is equivalent to

$$
\begin{equation*}
1+\sum_{n=j+1}^{\infty} C_{j+1, n} x^{n}=\left(1+g_{j} x^{j}\right)^{-r_{j}}\left[1+\sum_{n=j}^{\infty} C_{j, n} x^{n}\right] \tag{27}
\end{equation*}
$$

Newton's Binomial Theorem and $\binom{-x}{k}=(-1)^{k}\binom{x+k-1}{k}$ implies that

$$
\begin{aligned}
1+\sum_{n=j+1}^{\infty} C_{j+1, n} x^{n} & =\left[1+\sum_{k=1}^{\infty}\binom{-r_{j}}{k}\left(g_{j} x^{j}\right)^{k}\right]\left[1+\sum_{n=j}^{\infty} C_{j, n} x^{n}\right] \\
& =\left[1+\sum_{k=1}^{\infty}(-1)^{k}\binom{r_{j}+k-1}{k}\left(g_{j} x^{j}\right)^{k}\right]\left[1+\sum_{n=j}^{\infty} C_{j, n} x^{n}\right] \\
& =\left[1+\sum_{k=1}^{\infty}(-1)^{k}\binom{r_{j}+k-1}{k} \frac{C_{j, j}^{k} x^{j k}}{r_{j}^{k}}\right]\left[1+\sum_{n=j}^{\infty} C_{j, n} x^{n}\right],
\end{aligned}
$$

where the last equality uses the observation that $w_{j}=g_{j}=\frac{C_{j, j}}{r_{j}}$.
If we compare the coefficient of x^{s} on both sides of the previous equation we discover that

$$
\begin{equation*}
\left.C_{j+1, s}=\sum_{n+j k=s}(-1)^{k} \frac{\left({ }^{r_{j}+k-1} k\right.}{r_{j}^{k}}\right) C_{j, j}^{k} C_{j, n} . \tag{28}
\end{equation*}
$$

Equation (28) may be rewritten as

$$
\begin{equation*}
C_{j+1, s}=A+B \tag{29}
\end{equation*}
$$

where

$$
A:=\sum_{\substack{n+j k=s \\ n \neq 0, j}}(-1)^{k} \frac{\binom{r_{j}+k-1}{k}}{r_{j}^{k}} C_{j, j}^{k} C_{j, n} \quad B:=\frac{\binom{r_{j}+\frac{s}{j}-1}{\frac{s}{j}}}{r_{j}^{\frac{s}{j}}}\left(-C_{j, j}\right)^{\frac{s}{j}}-\frac{\binom{r_{j}+\frac{s}{j}-2}{\frac{s}{j}-1}}{r_{j}^{\frac{s}{j}}-1}\left(-C_{j, j}\right)^{\frac{s}{j}} .
$$

We begin by analyzing the structure of A. If $r_{j} \geq 1$, then $\frac{\binom{r_{j}+(k-1)}{k}}{r_{j}^{k}}=\frac{\left(r_{j}+k-1\right)\left(r_{j}+k-2\right) \ldots r_{j}}{k!r_{j}^{k}}$ is always positive. By hypothesis $C_{j, j} \leq 0$ and $C_{j, n} \leq 0$. Hence $C_{j, j}^{k} C_{j, n}$ is either zero or has a sign of $(-1)^{k+1}$. Therefore, $(-1)^{k} \frac{\binom{r_{j}+k-1}{k}}{r_{j}^{k}} C_{j, j}^{k} C_{j, n}$ is either zero or has a sign of $(-1)^{k}(-1)^{k+1}=-1$.

We now analyze the structure of B. Unless j is a multiple of s, B vanishes. So assume $\frac{s}{j}=\hat{k}$ where $\hat{k}>1$. Then

$$
\begin{align*}
B & =\frac{\binom{r_{j}+\hat{k}-1}{\hat{k}}}{r_{j}^{\hat{k}}}\left(-C_{j, j}\right)^{\hat{k}}(-1)^{\hat{k}-1} \frac{\binom{r_{r}+\hat{k}-2}{\hat{k}-1}}{r_{j}^{\hat{k}-1}} C_{j, j}^{\hat{k}} \\
& =\frac{r_{j}+\hat{k}-1}{\hat{k}} \frac{\binom{r_{j}+\hat{k}-2}{\hat{k}-1}}{r_{j}^{\hat{k}}}\left(-C_{j, j}\right)^{\hat{k}}+(-1)^{\hat{k}-1} \frac{\binom{r_{j}+\hat{k}-2}{\hat{k}-1}}{r_{j}^{\hat{k}-1}} C_{j, j}^{\hat{k}} \\
& =(-1)^{\hat{k}-1} \frac{\binom{r_{j}+\hat{k}-2}{\hat{k}-1}}{r_{j}^{\hat{k}-1}} C_{j, j}^{\hat{k}}\left[-\frac{r_{j}+\hat{k}-1}{r_{j} \hat{k}}+1\right] \\
& =(-1)^{\hat{k}-1} \frac{\binom{r_{j}+\hat{k}-2}{\hat{k}-1}}{r_{j}^{\hat{k}-1}} C_{j, j}^{\hat{k}}\left[\frac{-r_{j}-\hat{k}+1+r_{j} \hat{k}}{r_{j} \hat{k}}\right] \\
& =(-1)^{\hat{k}-1} \frac{\binom{r_{j}+\hat{k}-2}{\hat{k}-1}}{r_{j}^{\hat{k}-1}} C_{j, j}^{\hat{k}}\left[\frac{\left(r_{j}-1\right)(\hat{k}-1)}{r_{j} \hat{k}}\right] \tag{30}
\end{align*}
$$

If $r_{j} \geq 1$ then $\frac{\binom{r_{j}+\hat{k}-2}{\hat{k}^{k}-1}}{r_{j}^{k-1}}$ is positive. By hypothesis $C_{j, j} \leq 0$. Thus, the sign of $C_{j, j}^{\hat{k}}$ is either $(-1)^{\hat{k}}$ or zero, and $(-1)^{\hat{k}-1} \frac{\binom{r_{j}+\hat{k}-2}{\hat{k}-1}}{r_{j}^{k}-1} C_{j, j}^{\hat{k}}$ is nonpositive. On the other hand, $r_{j} \geq 1$, with $\hat{k}>1$, implies that $\frac{\left(r_{j}-1\right)(\hat{k}-1)}{r_{j} \hat{k}}$ is positive or zero. The representation of B provided by Equation (30) shows that B is either zero or negative.

Case 2: Assume $r_{j} \leq-1$; that is r_{j} is a negative integer which is represented as $-\left|r_{j}\right|$, and $\left(1+w_{j} x^{j}\right)^{r_{j}}=\left(1-h_{j} x^{j}\right)^{-\left|r_{j}\right|}$. Equation (26) is equivalent to

$$
\begin{aligned}
1+\sum_{n=j+1}^{\infty} C_{j+1, n} x^{n} & =\left(1-h_{j} x^{j}\right)^{\left|r_{j}\right|}\left[1+\sum_{n=j}^{\infty} C_{j, n} x^{n}\right] \\
& =\left[1+\sum_{k=1}^{\infty}\binom{\left|r_{j}\right|}{k}\left(-h_{j}\right)^{k} x^{j k}\right]\left[1+\sum_{n=j}^{\infty} C_{j, n} x^{n}\right] \\
& =\left[1+\sum_{k=1}^{\infty}(-1)^{k}\binom{\left|r_{j}\right|}{k}\left(\frac{C_{j, j}}{\left|r_{j}\right|}\right)^{k} x^{j k}\right]\left[1+\sum_{n=j}^{\infty} C_{j, n} x^{n}\right]
\end{aligned}
$$

Online Journal of Analytic Combinatorics, Issue 11 (2016), \#2
where the last equality follows from the fact that $w_{j}=-h_{j}=\frac{C_{j, j}}{-\left|r_{j}\right|}$. If we compare the coefficient of x^{s} on both sides of the previous equation we find that

$$
\begin{equation*}
C_{j+1, s}=\sum_{j k+n=s}(-1)^{k} \frac{\binom{\left|r_{j}\right|}{k}}{\left|r_{j}\right|^{k}} C_{j, n} C_{j, j}^{k} . \tag{31}
\end{equation*}
$$

Equation (31) may be written as

$$
\begin{equation*}
C_{j+1, s}=\bar{A}+\bar{B} \tag{32}
\end{equation*}
$$

where

$$
\bar{A}:=\sum_{\substack{n+j k=s \\ n \neq 0, j}}(-1)^{k} \frac{\binom{\left|r_{j}\right|}{k}}{\left|r_{j}\right|^{k}} C_{j, j}^{k} C_{j, n}, \quad \bar{B}:=\frac{\binom{\left|r_{j}\right|}{\frac{s}{j}}}{\left|r_{j}\right|^{\frac{s}{j}}}\left(-C_{j, j}\right)^{\frac{s}{j}}+(-1)^{\frac{s}{j}-1} \frac{\binom{\left|r_{j}\right|}{\frac{s}{j}-1}}{\left|r_{j}\right|^{\frac{s}{j}-1}} C_{j, j}^{\frac{s}{j}}
$$

 nonpositive numbers and is either zero or has a sign of $(-1)^{k+1}$. Thus $(-1)^{k} C_{j, n} C_{j, j}^{k}$ is either zero or negative, and \bar{A} is nonpositive.

It remains to show that \bar{B} is also nonpositive. Notice that \bar{B} only exists if $\frac{s}{j}$ is a positive integer, say $\frac{s}{j}=\hat{k}$. Then \bar{B} becomes

$$
\begin{align*}
\bar{B}=(-1)^{\hat{k}}\binom{\left|r_{j}\right|}{\hat{k}} & \frac{C_{j, j}^{\hat{k}}}{\left|r_{j}\right|^{\hat{k}}}+(-1)^{\hat{k}-1}\binom{\left|r_{j}\right|}{\hat{k}-1} \frac{C_{j, j}^{\hat{k}}}{\left|r_{j}\right|^{\hat{k}-1}} \\
& =(-1)^{\hat{k}} \frac{r_{j} \mid}{\hat{k}}\binom{\left|r_{j}\right|-1}{\hat{k}-1} \frac{C_{j, j}^{\hat{k}}}{\left|r_{j}\right|^{\hat{k}}}+(-1)^{\hat{k}-1}\binom{\left|r_{j}\right|}{\hat{k}-1} \frac{C_{j, j}^{\hat{k}}}{\left|r_{j}\right|^{\hat{k}-1}} \tag{33}\\
& =\frac{(-1)^{\hat{k}-1}}{\left|r_{j}\right|^{\hat{k}-1}} C_{j, j}^{\hat{k}}\left[-\frac{1}{\hat{k}}\binom{\left|r_{j}\right|-1}{\hat{k}-1}+\binom{\left|r_{j}\right|}{\hat{k}-1}\right] \\
& =\frac{(-1)^{\hat{k}-1}}{\left|r_{j}\right|^{\hat{k}-1}}\binom{\left|r_{j}\right|-1}{\hat{k}-1} C_{j, j}^{\hat{k}}\left[-\frac{1}{\hat{k}}+\frac{\left|r_{j}\right|}{\left|r_{j}\right|-\hat{k}+1}\right] \\
& =\frac{(-1)^{\hat{k}-1}}{\left|r_{j}\right|^{\hat{k}-1}}\binom{\left|r_{j}\right|-1}{\hat{k}-1} C_{j, j}^{\hat{k}}\left[\frac{\left(\left|r_{j}\right|+1\right)(\hat{k}-1)}{\hat{k}\left(\left|r_{j}\right|-\hat{k}+1\right)}\right] \tag{34}
\end{align*}
$$

Since $\left|r_{j}\right|$ and \hat{k} are positive integers $\binom{\left|r_{j}\right|-1}{\hat{k}-1} \geq 0$. By hypothesis $C_{j, j}^{\hat{k}}$ is either zero or has a sign of $(-1)^{\hat{k}}$. Thus $\frac{(-1)^{\hat{k}-1}}{\left|r_{j}\right|^{\hat{k}-1}}\binom{\left|r_{j}\right|-1}{\hat{k}-1} C_{j, j}^{\hat{k}}$ is nonpositive. It remains to analyze the sign of the rational expression inside the square bracket at (34). The sign of this expression
depends only on the sign of $\left|r_{j}\right|-\hat{k}-1$ since the other three factors are always nonnegative. If $\left|r_{j}\right|-\hat{k}+1>0$, then $\left|r_{j}\right|+1>\hat{k}$, and the rational expression is nonnegative. If $\left|r_{j}\right|+1-\hat{k}<0$, then $1 \leq\left|r_{j}\right|<\hat{k}-1$, which in turn implies that $\binom{\left|r_{j}\right|-1}{\hat{k}-1}=0$. So once again the quantity at (34) is nonpositive. Only one case remains, that of $\left|r_{j}\right|+1=\hat{k}$. Notice that $1 \leq\left|r_{j}\right|=\hat{k}-1$. Then $\bar{B}=(-1)^{\hat{k}-1} \frac{C_{j, j}^{\hat{k}}}{\left|r_{j}\right|^{\hat{k}-1}}$, a quantity which is either zero or has a sign of $(-1)^{\hat{k}-1}(-1)^{\hat{k}}=-1$. In all three cases we have shown that \bar{B} is nonpositive.

If we use the notation of [3], we may transform Theorem 3.1 into a theorem about the structure of the $C_{j+1, s}$. Define $\alpha=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ to be a vector with n components where each component is a positive integer. Let $\lambda=\lambda(\alpha)$ be the length of α, i.e. $\lambda=n$. Let $|\alpha|$ denote the sum of the components, namely $|\alpha|=\sum_{s=1}^{n} j_{s}$. The symbol $C_{j, \alpha}$ represents the expression $C_{j, j_{1}} C_{j, j_{2}} \ldots C_{j, j_{n}}$. For example if $\alpha=(2,3,4,3)$, then $\lambda=4,|\alpha|=12$, and $C_{j,(2,3,4,3)}=C_{j, 2} C_{j, 3} C_{j, 4} C_{j, 3}=C_{j, 2} C_{j, 3}^{2} C_{j, 4}$.

Theorem 3.2. (Structure Property) Let j be a positive integer. Then

$$
\begin{equation*}
C_{j+1, s}=\sum_{l}(-1)^{\lambda(\alpha(l))-1}|c(\alpha(l), j, s)| C_{j, \alpha(l)} \tag{35}
\end{equation*}
$$

where the sum is over all unordered sequences $\alpha(l)=\left(j_{1}, j_{2}, \ldots j_{\lambda}\right)$ such that $|\alpha(l)|=s$ and at most one $j_{i} \neq j$. The expression $|c(\alpha(l), j, s)|$ denotes a rational expression in terms of j, s and $\left|r_{j}\right|$ which is nonnegative whenever $\left|r_{j}\right|$ is a positive integer. Furthermore, define $C_{j, \alpha(l)}=C_{j, j_{1}} C_{j, j_{2}} \ldots C_{j, j_{\lambda}}$. If $C_{j, s} \leq 0$ for all nonnegative integers j and all $s \geq j$, Equation (35) is equivalent to

$$
\begin{equation*}
C_{j+1, s}=-\sum|c(\alpha(l), j, s)|\left|C_{j, j_{1}}\right|\left|C_{j, j_{2}}\right| \cdots\left|C_{j, j_{\lambda}}\right| \tag{36}
\end{equation*}
$$

where the sum is over all unordered sequences $\alpha(l)=\left(j_{1}, j_{2}, \ldots j_{\lambda}\right)$ such that $|\alpha(l)|=s$ and at most one $j_{i} \neq j$.

Proof. If $r_{j} \geq 1$, we have Equation (29) which says $C_{j+1, s}=A+B$, where

$$
A:=\sum_{\substack{n+j k=s \\ n \neq 0, j}}(-1)^{k} \frac{\binom{r_{j}+k-1}{k}}{r_{j}^{k}} C_{j, j} C_{j, n}, \quad B:=\frac{\binom{r_{j}+\frac{s}{j}-1}{\frac{s}{j}}}{r_{j}^{\frac{s}{j}}}\left(-C_{j, j}\right)^{\frac{s}{j}}+(-1)^{\frac{s}{j}-1} \frac{\binom{r_{j}+\frac{s}{j}-2}{\frac{s}{j}}}{r_{j}^{\frac{s}{j}}-1} C_{j, j} .
$$

For A we represent $C_{j, j}^{k} C_{j, n}$ as $C_{j, \alpha(l)}$, and $\frac{\left(c^{r_{j}+k-1} k\right.}{k} r_{j}^{k}$ as $|c(\alpha(l), j, s)|$. Notice that $(-1)^{k}=$ $(-1)^{\lambda(\alpha(l))-1}$. For B we combine via Equation (30), let $C_{j, j}^{\hat{k}}=C_{j, \alpha(l)}$, and le $|c(\alpha(l), j, s)|=$
$\frac{\binom{r_{j}+\hat{k}-2}{\hat{k}-1}}{r_{j}^{k}-1} \frac{\left(r_{j}-1\right)(\hat{k}-1)}{r_{j} \hat{k}}$.
If $r_{j} \leq-1$, we have Equation (32) which says $C_{j+1, s}=\bar{A}+\bar{B}$, where

$$
\bar{A}:=\sum_{\substack{n+j k=s \\ n \neq 0, j}}(-1)^{k} \frac{\binom{\left|r_{j}\right|}{k}}{\left|r_{j}\right|^{k}} C_{j, j} C_{j, n}, \quad B:=\frac{\binom{\left(r_{r} \mid\right.}{\frac{s}{j}}}{\left|r_{j}\right|^{\frac{s}{j}}}\left(-C_{j, j}\right)^{\frac{s}{j}}+(-1)^{\frac{s}{j}-1} \frac{\binom{\left|r_{j}\right|}{\frac{s}{j}}}{\left|r_{j}\right|^{\frac{s}{j}}-1} C_{j, j}^{\frac{s}{j}} .
$$

 $(-1)^{\lambda(\alpha(l))-1}$. For \bar{B} we combine via Equation (34), let $C_{j, j}^{\hat{k}}=B_{j, \alpha(l)}$, and $|c(\alpha(l), j, s)|=$ $\frac{\binom{\left|r_{j}\right|-1}{\hat{k}-1}}{\left|r_{j}\right|{ }^{\hat{k}-1}} \frac{\left(\left|r_{j}\right|+1\right)(\hat{k}-1)}{\hat{k}\left(\left|r_{j}\right|-\hat{k}+1\right)}=\frac{(\hat{k}-1)\left(\left|r_{j}\right|+1\right)\left(\left|r_{j}\right|-1\right)\left(r_{j}-2\right) \ldots\left(\left|r_{j}\right|-\hat{k}+2\right)}{\left|r_{j}\right|^{\hat{k}-1} \hat{k}!}$ as long as $\left|r_{j}\right| \neq \hat{k}+1$. If $\left|r_{j}\right|=$ $\hat{k}+1$, then $\bar{B}=(-1)^{\hat{k}-1} \frac{C_{j, j}^{\hat{k}}}{\left|r_{j}\right|^{\hat{k}-1}}$ and $C_{j, j}^{\hat{k}}=C_{j, \alpha(l)}$ while $|c(\alpha(l), j, s)|=\frac{1}{\left|r_{j}\right|^{\hat{k}-1}}$.

If we take Equation (35) and iterate j times we discover that

$$
\begin{equation*}
C_{j+1, s}=\sum_{l}(-1)^{\lambda(\alpha(l))+1}|c(\alpha(l), j, s)| a_{\alpha(l)}=-\sum_{l}|c(\alpha(l), j, s)|\left|a_{j_{1}}\right|\left|a_{j_{2}}\right| \ldots\left|a_{j_{\lambda}}\right| \tag{37}
\end{equation*}
$$

where where the sum is over all $\alpha(l)=\left(j_{1}, j_{2}, \ldots j_{\lambda}\right)$ such that $|\alpha(l)|=s$ and $|c(\alpha(l), j, s)|$ is a rational expression in j, s, and $\left\{\left|r_{i}\right|\right\}_{i=1}^{j}$ which is nonnegative whenever $\left|r_{i}\right|$ is a positive integer.

If $s=j+1$ Equation (37) becomes

$$
\begin{align*}
C_{j+1, j+1} & =r_{j+1} w_{j+1}=\sum_{l}(-1)^{\lambda(\alpha(l))+1}|c(\alpha(l), j)| a_{\alpha(l)} \\
& =-\sum_{l}|c(\alpha(l), j)|\left|a_{j_{1}}\right|\left|a_{j_{2}}\right| \ldots\left|a_{j_{\lambda}}\right| \tag{38}
\end{align*}
$$

where the sum is over all unordered sequences $\alpha(l)=\left(j_{1}, j_{2}, \ldots j_{\lambda}\right)$ such that $|\alpha(l)|=$ $j+1$. For $\left\{\left|r_{i}\right|\right\}_{i=1}^{j+1}$ a set of positive integers, the coefficient $|c(\alpha(l), j)|$ is nonnegative. If $r_{j+1} \geq 1$, Equation (38) implies that $w_{j+1}=g_{j+1}$ is negative. If $r_{j+1} \leq-1$, Equation (38)
implies that $w_{j+1}=-h_{j+1}$ is positive. We explicitly list w_{i} for $1 \leq i \leq 6$.

$$
\begin{aligned}
w_{1} & =(-1)^{0} \frac{1}{r_{1}} a_{1}, \quad w_{2}=(-1)^{1} \frac{r_{1}-1}{2 r_{1} r_{2}} a_{1}^{2}+(-1)^{0} \frac{1}{r_{2}} a_{2} \\
w_{3} & =(-1)^{2} \frac{r_{1}^{2}-1}{3 r_{1}^{2} r_{3}} a_{1}^{3}+(-1)^{1} \frac{1}{r_{3}} a_{1} a_{2}+(-1)^{0} \frac{1}{r_{3}} a_{3} \\
w_{4} & =(-1)^{1} \frac{r_{2}-1}{2 r_{2} r_{4}} a_{2}^{2}+(-1)^{2} \frac{1+r_{1}\left(2 r_{2}-1\right)}{2 r_{1} r_{2} r_{4}} a_{1}^{2} a_{2}+(-1)^{3} \frac{-2 r_{2}+2 r_{1}^{3} r_{2}-r_{1}^{3}+2 r_{1}^{2}-r_{1}}{8 r_{1}^{3} r_{2} r_{4}} a_{1}^{4} \\
& +(-1)^{1} \frac{1}{r_{4}} a_{1} a_{3}+(-1)^{0} \frac{1}{r_{4}} a_{4} \\
w_{5} & =(-1)^{2} \frac{1}{r_{5}} a_{1}^{2} a_{3}+(-1)^{1} \frac{1}{r_{5}} a_{2} a_{3}+(-1)^{2} \frac{1}{r_{5}} a_{1} a_{2}^{2}+(-1)^{3} \frac{1}{r_{5}} a_{1}^{3} a_{2}+(-1)^{1} \frac{1}{r_{5}} a_{1} a_{4} \\
& +(-1)^{4} \frac{r_{1}^{4}-1}{5 r_{1}^{4} r_{5}} a_{1}^{5}+(-1)^{0} \frac{1}{r_{5}} a_{5} \\
w_{6} & =(-1)^{2} \frac{1}{r_{6}} a_{1}^{2} a_{4}+(-1)^{1} \frac{1}{r_{6}} a_{2} a_{4}+(-1)^{1} \frac{r_{3}-1}{2 r_{3} r_{6}} a_{3}^{2} \\
& +(-1)^{3} \frac{-r_{1}^{2}+3 r_{1}^{2} r_{3}+1}{3 r_{1}^{2} r_{3} r_{6}} a_{1}^{3} a_{3}+(-1)^{2} \frac{2 r_{3}-1}{r_{3} r_{6}} a_{1} a_{2} a_{3} \\
& +(-1)^{2} \frac{r_{2}^{2}-1}{3 r_{2}^{2} r_{6}} a_{2}^{3}+(-1)^{3} \frac{-r_{1} r_{3}+3 r_{1} r_{2}^{2} r_{3}-r_{1} r_{2}^{2}+r_{3}}{2 r_{1} r_{2}^{2} r_{3} r_{6}} a_{1}^{2} a_{2}^{2}+(-1)^{0} \frac{1}{r_{6}} a_{6} \\
& +(-1)^{4} \frac{4 r_{2}^{2}-4 r_{1}^{2} r_{2}^{2}-3 r_{1}^{2} r_{3}+6 r_{1} r_{3}+12 r_{1}^{2} r_{2}^{2} r_{3}-3 r_{3}}{12 r_{1}^{2} r_{2}^{2} r_{3} r_{6}} a_{1}^{4} a_{2}+(-1)^{1} \frac{1}{r_{6}} a_{1} a_{5} \\
& +(-1)^{5} \frac{12 r_{1}^{5} r_{2}^{2} r_{3}-9 r_{1}^{3} r_{3}+3 r_{1}^{2} r_{3}-12 r_{2}^{2} r_{3}-3 r_{1}^{5} r_{3}+9 r_{3} r_{1}^{4}-4 r_{1}^{5} r_{2}^{2}+8 r_{2}^{2} r_{1}^{3}-4 r_{1} r_{2}^{2}}{72 r_{1}^{2} r_{3} r_{6}} a_{1}^{6}
\end{aligned}
$$

4. Convergence Criteria For Integer Power Products

Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be a set of nonzero integers. The structure of w_{j} provided by Equation (38) allows us to prove the following theorem.

Theorem 4.1. Let $f(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}$. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be a given set of nonzero integers. Then $f(x)$ has $\mathbb{Z} P P E$

$$
\begin{equation*}
f(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}=\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}} \tag{39}
\end{equation*}
$$

Consider the auxiliary functions

$$
\begin{equation*}
C(x)=1-\sum_{n=1}^{\infty}\left|a_{n}\right| x^{n}=\prod_{n=1}^{\infty}\left(1-\operatorname{sg}\left(r_{n}\right) \widehat{W}_{n} x^{n}\right)^{r_{n}} \tag{40}
\end{equation*}
$$

Online Journal of Analytic Combinatorics, Issue 11 (2016), \#2

$$
\begin{equation*}
M(x)=1-\sum_{n=1}^{\infty} M_{n} x^{n}=\prod_{n=1}^{\infty}\left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}} \tag{41}
\end{equation*}
$$

where $\operatorname{sg}\left(r_{n}\right)$ is defined via Equation (14). Assume that $\left|a_{n}\right| \leq M_{n}$ for all n. Then $\left|w_{n}\right| \leq$ $\widehat{W}_{n} \leq E_{n}$ for all n.

Proof: By Equation (38) we have

$$
\begin{equation*}
w_{n}=\sum_{l:|\alpha(l)|=n}(-1)^{\lambda(\alpha(l))+1}|c(\alpha(l), n)| a_{\alpha(l)}=\sum_{l:|\alpha(l)|=n}(-1)^{\lambda(\alpha(l))+1}|c(\alpha(l), n)| a_{j_{1}} a_{j_{2}} \ldots a_{j_{\lambda}} \tag{42}
\end{equation*}
$$

Equation (42) implies that

$$
\begin{equation*}
\left|w_{n}\right|=\left|\sum_{l:|\alpha(l)|=n}(-1)^{\lambda(\alpha(l)+1)}\right| c(\alpha(l), n)\left|a_{j_{1}} a_{j_{2}} \ldots a_{j_{\lambda}}\right| \leq \sum_{l:|\alpha(l)|=n}|c(\alpha(l), n)|\left|a_{j_{1}}\right|\left|a_{j_{2}}\right| \ldots\left|a_{j_{\lambda}}\right| . \tag{43}
\end{equation*}
$$

Equation (38) when applied to Equation (40) implies that

$$
\begin{align*}
0 \leq \widehat{W}_{n} & =\sum_{l:|\alpha(l)|=n}(-1)^{\lambda(\alpha(l))}|c(\alpha(l), n)|\left(-\left|a_{j_{1}}\right|\right)\left(-\left|a_{j_{2}}\right|\right) \ldots\left(-\left|a_{j_{\lambda}}\right|\right) \\
& =\sum_{l:|\alpha(l)|=n}(-1)^{\lambda(2 \alpha(l))}|c(\alpha(l), n)|\left(\left|a_{j_{1}}\right|\right)\left(\left|a_{j_{2}}\right|\right) \ldots\left(\left|a_{j_{\lambda}}\right|\right) \\
& =\sum_{l:|\alpha(l)|=n}|c(\alpha(l), n)|\left|a_{j_{1}}\right|\left|a_{j_{2}}\right| \ldots\left|a_{j_{\lambda}}\right| . \tag{44}
\end{align*}
$$

Combining Equations (43) and (44) shows that $\left|w_{n}\right| \leq \widehat{W}_{n}$. Since $\left|a_{n}\right| \leq M_{n}$ we also have

$$
0 \leq \widehat{W}_{n}=\sum_{l:|\alpha(l)|=n}|c(\alpha(l), n)|\left|a_{j_{1}}\right|\left|a_{j_{2}}\right| \ldots\left|a_{j_{\lambda}}\right| \leq \sum_{l:|\alpha(l)|=n}|c(\alpha(l), n)| M_{j_{1}} M_{j_{2}} \ldots M_{j_{\lambda}}=E_{n}
$$

where the last equality follows from Equation (38). Thus $\widehat{W}_{n} \leq E_{n}$.
We now work with a particular case of $M(x)$, namely

$$
\begin{equation*}
M(x)=1-\sum_{n=1}^{\infty} s^{n} x^{n}=\prod_{n=1}^{\infty}\left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}}, \quad s:=\sup _{n \geq 1}\left|a_{n}\right|^{\frac{1}{n}} . \tag{45}
\end{equation*}
$$

We want to determine when the $\mathbb{Z} P P E$ of Equation (45) will absolutely convergent. Recall that

$$
\log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}}=r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)=-r_{n} \sum_{l=1}^{\infty} \frac{\left(\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{l}}{l}
$$

Then

(46)

$$
\log \prod_{n=1}^{\infty}\left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}}=\sum_{n=1}^{\infty} r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)=-\sum_{n=1}^{\infty} r_{n} \sum_{l=1}^{\infty} \frac{\left(\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{l}}{l}
$$

Equation (46) implies that if the double series is absolutely convergent, then both $\sum_{n=1}^{\infty} r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)$ and $r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)$ are absolutely convergent. Furthermore, the absolute convergence of the double series implies the absolute convergence of $\prod_{n=1}^{\infty}\left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}}$ since

$$
e^{\sum_{n=1}^{\infty} r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)}=e^{\sum_{n=1}^{\infty} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}}}=\prod_{n=1}^{\infty}\left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}}
$$

Thus it suffices to investigate the absolute convergence of $\sum_{n=1}^{\infty} r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)$.
If we take the logarithm of Equation (45) we find that

$$
\begin{equation*}
\sum_{n=1}^{\infty} r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)=\log \left(1-\sum_{n=1}^{\infty} s^{n} x^{n}\right) \tag{47}
\end{equation*}
$$

Now

$$
1-\sum_{n=1}^{\infty} s^{n} x^{n}=1-s x \sum_{n=0}^{\infty}(s x)^{n}=1-\frac{s x}{1-s x}=\frac{1-2 s x}{1-s x}
$$

Therefore,

$$
\begin{aligned}
\log \left(\frac{1-2 s x}{1-s x}\right) & =\log (1-2 s x)-\log (1-s x) \\
& =-\sum_{n=1}^{\infty} \frac{(2 s x)^{n}}{n}+\sum_{n=1}^{\infty} \frac{(s x)^{n}}{n}=\sum_{n=1}^{\infty} \frac{1-2^{n}}{n}(s x)^{n}
\end{aligned}
$$

By the Ratio Test we know that $\sum_{n=1}^{\infty} \frac{1-2^{n}}{n}(s x)^{n}$ absolutely converges whenever $\lim _{n \rightarrow \infty}\left|\frac{n\left(1-2^{n+1}\right)}{(n+1)\left(1-2^{n}\right)}\right||s x|<1$. This is ensured by requiring $|x|<\frac{1}{2 s}$.

We have shown that $\sum_{n=1}^{\infty} r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)$, and thus $\prod_{n=1}^{\infty}\left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}}$ will be absolutely convergent whenever $|x|<\frac{1}{2 s}$. We claim this information provides a
lower bound on the range of absolute convergence for the $\mathbb{Z P P E}$ of Equation (39) since

$$
\begin{aligned}
\left|\log \prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}\right| & =\left|\sum_{n=1}^{\infty} r_{n} \log \left(1+w_{n} x^{n}\right)\right| \leq \sum_{n=1}^{\infty}\left|r_{n}\right|\left|\log \left(1+w_{n} x^{n}\right)\right| \\
& =\sum_{n=1}^{\infty}\left|r_{n}\right|\left|\sum_{k=1}^{\infty} \frac{(-1)^{k-1}\left(w_{n} x^{n}\right)^{k}}{k}\right| \leq \sum_{n=1}^{\infty}\left|r_{n}\right| \sum_{k=1}^{\infty} \frac{\left(\left|w_{n}\right||x|^{n}\right)^{k}}{k} \\
& \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|r_{n}\right| \frac{\left(E_{n}|x|^{n}\right)^{k}}{k}
\end{aligned}
$$

where the last inequality follows by Theorem 4.1. These calculations implies that if $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} r_{n} \frac{\left(\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{k}}{k}$, and hence $\sum_{n=1}^{\infty} r_{n} \log \left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)$, are absolutely convergent, then $\sum_{n=1}^{\infty} r_{n} \log \left(1+w_{n} x^{n}\right)$ and $\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}$ will also be absolutely convergent. We summarize our conclusions in the following theorem.

Theorem 4.2. Let $f(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}$. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be a given set of nonzero integers. Define $s:=\sup _{n \geq 1}\left|a_{n}\right|^{\frac{1}{n}}$. Then both $f(x)$ and its $\mathbb{Z} P P E$,

$$
f(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}=\prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}
$$

and the auxiliary function, along with its $\mathbb{Z} P P E$,

$$
\begin{equation*}
M(x)=1-\sum_{n=1}^{\infty} s^{n} x^{n}=\prod_{n=1}^{\infty}\left(1-\operatorname{sg}\left(r_{n}\right) E_{n} x^{n}\right)^{r_{n}} \tag{48}
\end{equation*}
$$

will be absolutely convergent whenever $|x|<\frac{1}{2 s}$.
We now provide an asymptotic estimate for the majorizing GIPPE of Equation (48).
Theorem 4.3. Let $f(x)=1-\sum_{n=1}^{\infty} s^{n} x^{n}=\frac{1-2 s x}{1-s x}$ where $s>0$. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonzero integers. For this particular $f(x)$ and its associated $\mathbb{Z} P P E \prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}$ we have

$$
\begin{equation*}
r_{n} w_{n} \sim \frac{\left(1-2^{n}\right) s^{n}}{n}, \quad n \rightarrow \infty \tag{49}
\end{equation*}
$$

To prove Theorem 4.3 we need the following lemma.
Lemma 4.4. Let $f(x)=1-\sum_{n=1}^{\infty} s^{n} x^{n}=\frac{1-2 s x}{1-s x}$ where $s>0$. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonzero integers. For this particular $f(x)$ and its associated $\mathbb{Z P P E} \prod_{n=1}^{\infty}\left(1+w_{n} x^{n}\right)^{r_{n}}$ there exists α with $1<\alpha<2$ such that

$$
\begin{equation*}
m\left|r_{m}\right|\left|w_{m}\right| \leq \alpha 2^{m} s^{m} \tag{50}
\end{equation*}
$$

Proof: A straightforward calculation shows that $\frac{m\left|r_{m}\right|\left|w_{m}\right|}{(2 s)^{m}} \leq 1.691$ whenever $1 \leq m \leq$ 30. To prove Equation (50) for arbitrary m assume inductively that $j\left|r_{j}\right|\left|w_{j}\right| \leq \alpha 2^{j}{ }_{s}{ }^{j}$ is
true for $1 \leq j<m$. Our analysis shows that we may assume $m \geq 16$. Take Equation (24) and write it as

$$
\begin{equation*}
m D_{m}+\sum_{\substack{n \mid m \\ n \neq m}}(-1)^{\frac{m}{n}} n r_{n} w_{n}^{\frac{m}{n}}=m r_{m} w_{m} \tag{51}
\end{equation*}
$$

Since $f(x)=1-\sum_{n=1}^{\infty} s^{n} x^{n}=\frac{1-2 s x}{1-s x}$,

$$
\log f(x)=\log \left(\frac{1-2 s x}{1-s x}\right)=\sum_{k=1}^{\infty} \frac{-\left(2^{k}-1\right) s^{k}}{k} x^{k}=\sum_{m=1}^{\infty} D_{m} x^{m}
$$

and we deduce that that $D_{m}=\frac{-(2 s)^{m}\left(1-2^{-m}\right)}{m}$.
Take Equation (51) and write it as

$$
m\left[D_{m}+T_{1}+T_{2}+T_{3}+T_{4}+T_{5}+T_{6}+T_{7}+\Delta\right]=m r_{m} w_{m}
$$

where

$$
T_{j}:=\frac{(-1)^{\frac{m}{j}} j r_{j}}{m}\left(w_{j}\right)^{\frac{m}{j}}, \quad 1 \leq j \leq 7, \quad \Delta:=\frac{1}{m} \sum_{\substack{n \left\lvert\, m \\ \frac{m}{2} \geq n \geq 8\right.}}(-1)^{\frac{m}{n} n r_{n} w_{n}^{\frac{m}{n}} . .}
$$

The range of summation of Δ implies that $m \geq 16$. In order to prove Equation (50) it suffices to show that

$$
\begin{align*}
\frac{m\left|r_{m}\right|\left|w_{m}\right|}{(2 s)^{m}} & =\frac{m}{(2 s)^{m}}\left|D_{m}+T_{1}+T_{2}+T_{3}+T_{4}+T_{5}+T_{6}+T_{7}+\Delta\right| \\
& \leq \frac{m}{(2 s)^{m}}\left[\left|D_{m}\right|+\left|T_{1}\right|+\left|T_{2}\right|+\left|T_{3}\right|+\left|T_{4}\right|+\left|T_{5}\right|+\left|T_{6}\right|+\left|T_{7}\right|+|\Delta|\right]<2 \tag{52}
\end{align*}
$$

whenever $m \geq 16$. We must approximate $\frac{m}{(2 s)^{m}}\left|D_{m}\right|, \frac{m}{(2 s)^{m}}\left|T_{j}\right|$ for $1 \leq j \leq 7$, and $\frac{m}{(2 s)^{m}}|\Delta|$. Begin with $\frac{m}{(2 s)^{m}}\left|D_{m}\right|$ and observe that

$$
\begin{equation*}
\frac{m}{(2 s)^{m}}\left|D_{m}\right|=\frac{m}{(2 s)^{m}} \cdot \frac{(2 s)^{m}\left(1-2^{-m}\right)}{m}<1 \tag{53}
\end{equation*}
$$

Online Journal of Analytic Combinatorics, Issue 11 (2016), \#2

We now work with $\frac{m}{(2 s)^{m}}\left|T_{j}\right|$. Take the formulas for w_{j} provided at the end of previous section, let $a_{i}=-s^{i}$, and simplify the results to find that
$w_{1}=-\frac{s}{r_{1}} \quad w_{2}=-\frac{s^{2}\left(3 r_{1}-1\right)}{2 r_{1} r_{2}} \quad w_{3}=-\frac{s^{3}\left(7 r_{1}^{2}-1\right)}{3 r_{1}^{2} r_{3}} \quad w_{7}=-\frac{s^{7}\left(127 r_{1}^{6}-1\right)}{7 r_{1}^{6} r_{7}}$
$w_{4}=-\frac{s^{4}\left(-9 r_{1}^{3}+30 r_{1}^{3} r_{2}+6 r_{1}^{2}-2 r_{2}-r_{1}\right)}{8 r_{1}^{3} r_{2} r_{4}} \quad w_{5}=-\frac{s^{5}\left(31 r_{1}^{4}-1\right)}{5 r_{1}^{4} r_{5}}$
$w_{6}=-\frac{s^{6}\left(-4 r_{1} r_{2}^{2}-12 r_{2}^{2} r_{3}+3 r_{1}^{2} r_{3}+56 r_{2}^{2} r_{1}^{3}+81 r_{3} r_{1}^{4}+756 r_{1}^{5} r_{2}^{2} r_{3}-196 r_{1}^{5} r_{2}^{2}-81 r_{1}^{5} r_{3}-27 r_{1}^{3} r_{3}\right)}{72 r_{1}^{5} r_{2}^{2} r_{3} r_{6}}$.

We use this data to approximate $\frac{m}{(2 s)^{m}}\left|T_{j}\right|$ for $1 \leq j \leq 7$. When doing the approximations recall that r_{j} is a nonzero integer for all j and that $m \geq 16$.

$$
\begin{equation*}
\frac{m}{(2 s)^{m}}\left|T_{1}\right|=\frac{\left|r_{1}\right|}{(2 s)^{m}}\left(\frac{s}{\left|r_{1}\right|}\right)^{m}=\frac{1}{2\left(2\left|r_{1}\right|\right)^{m-1}} \leq \frac{1}{2^{m}} \leq \frac{1}{2^{16}} \leq 0.000016 \tag{54}
\end{equation*}
$$

$$
\frac{m}{(2 s)^{m}}\left|T_{2}\right|=\frac{2\left|r_{2}\right|}{4^{\frac{m}{2}}}\left|\frac{3 r_{1}-1}{2 r_{1} r_{2}}\right|^{\frac{m}{2}}=2\left|r_{2}\right|\left|\frac{3 r_{1}-1}{8 r_{1} r_{2}}\right|\left|\frac{3 r_{1}-1}{8 r_{1} r_{2}}\right|^{\frac{m}{2}-1}=\left|\frac{3 r_{1}-1}{4 r_{1}}\right|\left|\frac{3 r_{1}-1}{8 r_{1} r_{2}}\right|^{\frac{m}{2}-1}
$$

$$
\begin{equation*}
\leq\left(\frac{3}{4}+\frac{1}{4\left|r_{1}\right|}\right)\left(\frac{3+\left|r_{1}\right|^{-1}}{8\left|r_{2}\right|}\right)^{\frac{m}{2}-1} \leq\left(\frac{1}{2}\right)^{\frac{16}{2}-1} \leq\left(\frac{1}{2}\right)^{7}=.0078125 \tag{55}
\end{equation*}
$$

When approximating $\frac{m}{(2 s)^{m}}\left|T_{3}\right|$ use the fact that $T_{3}=0$ if $3 \nmid m$.
$\frac{m}{(2 s)^{m}}\left|T_{3}\right|=\frac{3\left|r_{3}\right|}{2^{m}}\left|\frac{7 r_{1}^{2}-1}{3 r_{1}^{2} r_{3}}\right|^{\frac{m}{3}}=\frac{3\left|r_{3}\right|}{8^{\frac{m}{3}}}\left|\frac{7 r_{1}^{2}-1}{3 r_{1}^{2} r_{3}}\right|^{\frac{m}{3}}=3\left|r_{3}\right|\left|\frac{7 r_{1}^{2}-1}{24 r_{1}^{2} r_{3}}\right|^{\frac{m}{3}}$
$=\left|\frac{7 r_{1}^{2}-1}{8 r_{1}^{2}}\right|\left|\frac{7 r_{1}^{2}-1}{24 r_{1}^{2} r_{3}}\right|^{\frac{m}{3}-1} \leq \frac{7}{8}\left(\frac{8}{24}\right)^{\frac{m}{3}-1} \leq \frac{7}{8}\left(\frac{1}{3}\right)^{\frac{18}{3}-1}=\frac{7}{8}\left(\frac{1}{3}\right)^{5} \leq 0.00361$
$\frac{m}{(2 s)^{m}}\left|T_{4}\right|=\frac{4\left|r_{4}\right|}{\left(2^{4}\right)^{\frac{m}{4}}}\left|\frac{-9 r_{1}^{3}+30 r_{1}^{3} r_{2}+6 r_{1}^{2}-2 r_{2}-r_{1}}{8 r_{1}^{3} r_{2} r_{4}}\right|^{\frac{m}{4}}=4\left|r_{4}\right|\left|\frac{-9 r_{1}^{3}+30 r_{1}^{3} r_{2}+6 r_{1}^{2}-2 r_{2}-r_{1}}{2^{7} r_{1}^{3} r_{2} r_{4}}\right|^{\frac{m}{4}}$
$=\left|\frac{-9 r_{1}^{3}+30 r_{1}^{3} r_{2}+6 r_{1}^{2}-2 r_{2}-r_{1}}{2^{5} r_{1}^{3} r_{2}}\right|\left|\frac{-9 r_{1}^{3}+30 r_{1}^{3} r_{2}+6 r_{1}^{2}-2 r_{2}-r_{1}}{2^{7} r_{1}^{3} r_{2} r_{4}}\right|^{\frac{m}{4}-1}$
(57)

$$
\leq \frac{48}{2^{5}}\left(\frac{48}{2^{7}}\right)^{\frac{m}{4}-1} \leq \frac{3}{2}\left(\frac{3}{8}\right)^{\frac{16}{4}-1}=\frac{3}{2}\left(\frac{3}{8}\right)^{3} \leq 0.08
$$

When approximating $\frac{m}{(2 s)^{m}}\left|T_{5}\right|$ use the fact that $T_{5}=0$ if $5 \nmid m$.

$$
\begin{align*}
\frac{m}{(2 s)^{m}}\left|T_{5}\right| & =\frac{5\left|r_{5}\right|}{\left(2^{5}\right)^{\frac{m}{5}}}\left|\frac{31 r_{1}^{4}-1}{5 r_{1}^{4} r_{5}}\right|^{\frac{m}{5}}=5\left|r_{5}\right|\left|\frac{31 r_{1}^{4}-1}{2^{5} 5 r_{1}^{4} r_{5}}\right|^{\frac{m}{5}}=\left|\frac{31 r_{1}^{4}-1}{2^{5} r_{1}^{4}}\right|\left|\frac{31 r_{1}^{4}-1}{2^{5} 5 r_{1}^{4} r_{5}}\right|^{\frac{m}{5}-1} \\
& \leq \frac{31}{32}\left(\frac{32}{160}\right)^{\frac{m}{5}-1} \leq \frac{31}{32}\left(\frac{32}{160}\right)^{\frac{20}{5}-1}=\frac{31}{32}\left(\frac{32}{160}\right)^{3}=0.00775 \tag{58}
\end{align*}
$$

When approximating $\frac{m}{(2 s)^{m}}\left|T_{6}\right|$ use the fact that $T_{6}=0$ if $6 \nmid m$.

$$
\begin{aligned}
& \frac{m}{(2 s)^{m}}\left|T_{6}\right|= \\
& \frac{6\left|r_{6}\right|}{\left(2^{6}\right)^{\frac{m}{6}}}\left|\frac{-4 r_{1} r_{2}^{2}-12 r_{2}^{2} r_{3}+3 r_{1}^{2} r_{3}+56 r_{2}^{2} r_{1}^{3}+81 r_{3} r_{1}^{4}+756 r_{1}^{5} r_{2}^{2} r_{3}-196 r_{1}^{5} r_{2}^{2}-81 r_{1}^{5} r_{3}-27 r_{1}^{3} r_{3}}{72 r_{1}^{5} r_{2}^{2} r_{3} r_{6}}\right|^{\frac{m}{6}} \\
& =6\left|r_{6}\right|\left|\frac{-4 r_{1} r_{2}^{2}-12 r_{2}^{2} r_{3}+3 r_{1}^{2} r_{3}+56 r_{2}^{2} r_{1}^{3}+81 r_{3} r_{1}^{4}+756 r_{1}^{5} r_{2}^{2} r_{3}-196 r_{1}^{5} r_{2}^{2}-81 r_{1}^{5} r_{3}-27 r_{1}^{3} r_{3}}{3^{2} 2^{9} r_{1}^{5} r_{2}^{2} r_{3} r_{6}}\right|^{\frac{m}{6}} \\
& =\left.\left|\frac{-4 r_{1} r_{2}^{2}-12 r_{2}^{2} r_{3}+3 r_{1}^{2} r_{3}+56 r_{2}^{2} r_{1}^{3}+81 r_{3} r_{1}^{4}+756 r_{1}^{5} r_{2}^{2} r_{3}-196 r_{1}^{5} r_{2}^{2}-81 r_{1}^{5} r_{3}-27 r_{1}^{3} r_{3}}{3^{1} 2^{8} r_{1}^{5} r_{2}^{2} r_{3}}\right|^{*}\right|^{\frac{m}{6}-1} \\
& \left\lvert\, \frac{-4 r_{1} r_{2}^{2}-12 r_{2}^{2} r_{3}+3 r_{1}^{2} r_{3}+56 r_{2}^{2} r_{1}^{3}+81 r_{3} r_{1}^{4}+756 r_{1}^{5} r_{2}^{2} r_{3}-196 r_{1}^{5} r_{2}^{2}-81 r_{1}^{5} r_{3}-27 r_{1}^{3} r_{3} r_{1}^{5} r_{2}^{2} r_{3} r_{6}}{3^{2}}\right.
\end{aligned}
$$

(59)

$$
\leq \frac{1216}{3^{1} 2^{8}}\left(\frac{1216}{3^{2} 2^{9}}\right)^{\frac{18}{6}-1} \leq 0.111
$$

When approximating $\frac{m}{(2 s)^{m}}\left|T_{7}\right|$ use the fact that $T_{7}=0$ if $7 \nmid m$.

$$
\begin{align*}
\frac{m}{(2 s)^{m}}\left|T_{7}\right| & =\frac{7\left|r_{7}\right|}{\left(2^{7}\right)^{\frac{m}{7}}}\left|\frac{127 r_{1}^{6}-1}{7 r_{1}^{6} r_{7}}\right|^{\frac{m}{7}}=7\left|r_{7}\right|\left|\frac{127 r_{1}^{6}-1}{2^{7} 7 r_{1}^{6} r_{7}}\right|^{\frac{m}{7}}=\left|\frac{127 r_{1}^{6}-1}{2^{7} r_{1}^{6}}\right|\left|\frac{127 r_{1}^{6}-1}{2^{7} 7 r_{1}^{6} r_{7}}\right|^{\frac{m}{7}-1} \\
(60) \quad & =\frac{127}{2^{7}}\left(\frac{128}{7^{1} 2^{7} r_{7}}\right)^{\frac{m}{7}-1} \leq \frac{127}{2^{7}}\left(\frac{128}{7^{1} 2^{7}}\right)^{\frac{21}{7}-1}=\frac{127}{2^{7}}\left(\frac{128}{7^{1} 2^{7}}\right)^{2} \leq 0.021 \tag{60}
\end{align*}
$$

Online Journal of Analytic Combinatorics, Issue 11 (2016), \#2

It remains to approximate $\frac{m}{(2 s)^{m}}|\Delta|$. Here is where we make use of the induction hypothesis. We also use the fact the $\frac{m}{2} \geq n$ implies $\frac{m}{n} \geq 2$. By definition we have

$$
\begin{align*}
\frac{m}{(2 s)^{m}}|\Delta| & \leq \frac{1}{(2 s)^{m}} \sum_{\substack{m \left\lvert\, m \\
\frac{m}{2} \geq n \geq 8\right.}} n\left|r_{n}\right|\left|w_{n}\right|^{\frac{m}{n}} \leq \frac{1}{(2 s)^{m}} \sum_{\substack{n \left\lvert\, m \\
\frac{m}{2} \geq n \geq 8\right.}} n\left|r_{n}\right|\left(\frac{\alpha 2^{n} s^{n}}{n\left|r_{n}\right|}\right)^{\frac{m}{n}} \\
& =\alpha \sum_{\substack{\frac{m}{2} \geq m \\
2} n \geq 8} \frac{n\left|r_{n}\right|}{\alpha}\left(\frac{1}{\frac{n\left|r_{n}\right|}{\alpha}}\right)^{\frac{m}{n}} \\
& =\alpha \sum_{\substack{\frac{m}{2 \mid m}}}\left(\frac{\alpha}{n\left|r_{n}\right|}\right)^{\frac{m}{n}-1} \leq \alpha \sum_{\substack{\frac{m}{2} \geq n \geq 8}}\left(\frac{\alpha}{n}\right)^{\frac{m}{n}-1} \leq \alpha \sum_{\substack{\frac{m}{2} \geq n \geq 8}}\left(\frac{\alpha}{8}\right)^{\frac{m}{n}-1} \\
& \leq \alpha \sum_{\frac{m}{n \geq 2}}\left(\frac{\alpha}{8}\right)^{\frac{m}{n}-1}=\alpha\left[\frac{\frac{\alpha}{8}}{1-\frac{\alpha}{8}}\right]=\alpha\left[\frac{\alpha}{8-\alpha}\right] \leq \alpha\left[\frac{2}{8-2}\right]=\frac{\alpha}{3} \leq \frac{2}{3} \tag{61}
\end{align*}
$$

We now take Equations (53) through Equation (61) and place them in $\frac{m\left|r_{m}\right|\left|w_{m}\right|}{(2 s)^{m}} \leq \frac{m}{(2 s)^{m}}\left[\left|D_{m}\right|+\left|T_{1}\right|+\left|T_{2}\right|+\left|T_{3}\right|+\left|T_{4}\right|+\left|T_{5}\right|+\left|T_{6}\right|+\left|T_{7}\right|+|\Delta|\right]$ to find that

$$
\begin{aligned}
\frac{m\left|r_{m}\right|\left|w_{m}\right|}{(2 s)^{m}} & \leq \frac{m}{(2 s)^{m}}\left[\left|D_{m}\right|+\left|T_{1}\right|+\left|T_{2}\right|+\left|T_{3}\right|+\left|T_{4}\right|+\left|T_{5}\right|+\left|T_{6}\right|+\left|T_{7}\right|+|\Delta|\right] \\
& \leq 1+0.000016+0.0078125+0.00361+0.08+0.00775+0.111+0.021+\frac{2}{3} \\
& \leq 1.9<2
\end{aligned}
$$

Equation (52) is valid and our proof is complete.
Proof of Theorem 4.3: Equation (24) implies that

$$
\begin{equation*}
k r_{k} w_{k}=k D_{k}+(-1)^{k} r_{1} w_{1}^{k}+\sum_{\substack{n \left\lvert\, k \\ \frac{k}{2} \geq n \geq 2\right.}}(-1)^{\frac{k}{n}} n r_{n} w_{n}^{\frac{k}{n}} \tag{62}
\end{equation*}
$$

For $f(x)=1-\sum_{n=1}^{\infty} s^{n} x^{n}$ we have $D_{k}=\frac{-(2 s)^{k}\left(1-2^{-k}\right)}{k}$. Thus Equation (62) is equivalent to

$$
\begin{equation*}
k r_{k} w_{k}=-(2 s)^{k}\left(1-2^{-k}\right)+(-1)^{k} r_{1}\left(-\frac{s}{r_{1}}\right)^{k}+\sum_{\substack{n \left\lvert\, k \\ \frac{k}{2} \geq n \geq 2\right.}}(-1)^{\frac{k}{n}} n r_{n} w_{n}^{\frac{k}{n}} \tag{63}
\end{equation*}
$$

Define

$$
T_{1}:=\left(-2^{k}+1\right) s^{k}, \quad T_{2}:=r_{1}\left(\frac{s_{1}}{r_{1}}\right)^{k}, \quad \Delta:=\sum_{\substack{n \left\lvert\, k \\ \frac{k}{2} \geq n \geq 2\right.}}(-1)^{\frac{k}{n}} n r_{n} w_{n}^{\frac{k}{n}}
$$

Equation (63) becomes $k r_{k} w_{k}=T_{1}+T_{2}+\Delta$. Lemma 4.4 implies there exist α with $1<\alpha<2$ such that

$$
\begin{equation*}
n\left|w_{n}\right| \leq n\left|r_{n}\right|\left|w_{n}\right| \leq \alpha 2^{n} s^{n} \tag{64}
\end{equation*}
$$

By definition

$$
\begin{align*}
|\Delta| & =\left|\sum_{\substack{n \mid k \\
k>n>1}}(-1)^{\frac{k}{n}} n r_{n} w_{n}^{\frac{k}{n}}\right| \leq \sum_{\substack{n \left\lvert\, k \\
\frac{k}{2} \geq n \geq 2\right.}} n\left|r_{n}\right|\left|w_{n}\right|^{\frac{k}{n}} \leq \sum_{\substack{n \left\lvert\, k \\
\frac{k}{2} \geq n \geq 2\right.}} n\left|r_{n}\right|\left[\frac{\alpha 2^{n} s^{n}}{n\left|r_{n}\right|}\right]^{\frac{k}{n}} \\
& =\alpha(2 s)^{k} \sum_{\substack{n \left\lvert\, k \\
\frac{k}{2} \geq n \geq 2\right.}}\left(\frac{n\left|r_{n}\right|}{\alpha}\right) \frac{1}{\left(\frac{n\left|r_{n}\right|}{\alpha}\right)^{\frac{k}{n}}}=\alpha(2 s)^{k} \sum_{\substack{n \left\lvert\, k \\
\frac{k}{2} \geq n \geq 2\right.}} \frac{1}{\left(\frac{n\left|r_{n}\right|}{\alpha}\right)^{\frac{k}{n}-1}} \\
& \leq \alpha(2 s)^{k} \sum_{\substack{n \left\lvert\, k \\
\frac{k}{2} \geq n \geq 2\right.}} \frac{1}{\left(\frac{n}{\alpha}\right)^{\frac{k}{n}-1}} \leq \alpha(2 s)^{k} \sum_{\frac{k}{2} \geq n \geq 2} \frac{1}{\left(\frac{n}{\alpha}\right)^{\frac{k}{n}-1}} \\
& =\alpha(2 s)^{k}\left[\frac{1}{\left(\frac{2}{\alpha}\right)^{\frac{k}{2}-1}}+\frac{2 \alpha}{k}+\sum_{\frac{k}{3} \geq n \geq 3} \frac{1}{\left(\frac{n}{\alpha}\right)^{\frac{k}{n}-1}}\right] \\
& \leq \alpha(2 s)^{k}\left[\frac{1}{\left(\frac{2}{\alpha}\right)^{\frac{k}{2}-1}}+\frac{2 \alpha}{k}+\sum_{\substack{\frac{k}{3} \geq n \geq 3}} \frac{1}{\left(\frac{n}{2}\right)^{\frac{k}{n}-1}}\right] \tag{65}
\end{align*}
$$

where the last equality reflects the fact that $\frac{1}{2}<\frac{1}{\alpha}<1$.
Define $M:=\sum_{\frac{k}{3} \geq n \geq 3} \frac{1}{\left(\frac{n}{2}\right)^{\frac{k}{n}-1}}=\frac{1}{\left(\frac{3}{2}\right)^{\frac{k}{3}-1}}+\frac{1}{\left(\frac{4}{2}\right)^{\frac{k}{4}-1}}+\frac{1}{\left(\frac{5}{2}\right)^{\frac{k}{5}-1}}+\sum_{\frac{k}{3} \geq n \geq 6} \frac{1}{\left(\frac{n}{2}\right)^{\frac{k}{n}-1}}$ and $b(n, k):=-\log \left[\left(\frac{n}{2}\right)^{\frac{k}{n}-1}\right]=-\left(\frac{k}{n}-1\right) \log \frac{n}{2}$. Then

$$
\begin{equation*}
\frac{\partial b(n, k)}{\partial n}=\frac{k}{n^{2}} \log \frac{n}{2}-\frac{1}{n}\left(\frac{k}{n}-1\right)=\frac{k}{n}\left[\frac{1}{n}\left[\log \frac{n}{2}-1\right]+\frac{1}{k}\right]>0, \quad n \geq 6 \tag{66}
\end{equation*}
$$

Equation (66) shows that $b(n, k)$ is increasing in n whenever $n \geq 6$. Hence

$$
b(n, k)<b\left(\frac{k}{3}, k\right)=-(3-1) \log \left(\frac{k}{6}\right)=-2 \log \left(\frac{k}{6}\right),
$$

Online Journal of Analytic Combinatorics, Issue 11 (2016), \#2
and each term in $\sum_{\frac{k}{3} \geq n \geq 6} \frac{1}{\left(\frac{n}{2}\right)^{\frac{k}{n}-1}}$ satisfies $e^{b(n, k)} \leq e^{-2 \log \left(\frac{k}{3}\right)}=\frac{36}{k^{2}}$. Therefore

$$
\begin{align*}
\sum_{\frac{k}{3} \geq n \geq 3} \frac{1}{\left(\frac{n}{2}\right)^{\frac{k}{n}-1}} & \leq \frac{1}{\left(\frac{3}{2}\right)^{\frac{k}{3}-1}}+\frac{1}{\left(\frac{4}{2}\right)^{\frac{k}{4}-1}}+\frac{1}{\left(\frac{5}{2}\right)^{\frac{k}{5}-1}}+\sum_{\frac{k}{3} \geq n \geq 6} \frac{36}{k^{2}} \\
& \leq \frac{1}{\left(\frac{3}{2}\right)^{\frac{k}{3}-1}}+\frac{1}{\left(\frac{4}{2}\right)^{\frac{k}{4}-1}}+\frac{1}{\left(\frac{5}{2}\right)^{\frac{k}{5}-1}}+k \frac{36}{k^{2}} \\
& =\frac{1}{\left(\frac{3}{2}\right)^{\frac{k}{3}-1}}+\frac{1}{\left(\frac{4}{2}\right)^{\frac{k}{4}-1}}+\frac{1}{\left(\frac{5}{2}\right)^{\frac{k}{5}-1}}+\frac{36}{k} \tag{67}
\end{align*}
$$

These calculations imply that $\lim _{k \rightarrow \infty} M=0$. By combining Equation (65) with Equation (67) we deduce that Th

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\frac{\Delta}{\left(-2^{k}+1\right) s^{k}}\right| & =\lim _{k \rightarrow \infty} \frac{|\Delta|}{\left|\left(-1+2^{-k}\right)\right|(2 s)^{k}} \\
& =\lim _{k \rightarrow \infty} \frac{\alpha(2 s)^{k}}{\left|\left(-1+2^{-k}\right)\right|(2 s)^{k}}\left[\frac{1}{\left(\frac{2}{\alpha}\right)^{\frac{k+1}{2}-1}}+\frac{2 \alpha}{k}+M\right]=0 .
\end{aligned}
$$

Hence $\lim _{k \rightarrow \infty} \frac{\Delta}{\left(-2^{k}+1\right) s^{k}}=0$.
We return to Equation (63) and observe that

$$
\begin{aligned}
r_{k} w_{k} & =\frac{T_{1}}{k}+\frac{T_{2}}{k}+\frac{\Delta}{k} \\
& =\frac{\left(-2^{k}+1\right) s^{k}}{k}+\frac{r_{1}\left(\frac{s}{r_{1}}\right)^{k}}{k}+\frac{\Delta}{k} \\
& =\frac{\left(-2^{k}+1\right) s^{k}}{k}\left[1-\frac{1}{r_{1}^{k-1}\left(-2^{k}+1\right)}-\frac{\Delta}{\left(-2^{k}+1\right) s^{k}}\right] \\
& =\frac{\left(-2^{k}+1\right) s^{k}}{k}[1+o(1)]=k D_{k}[1+o(1)]
\end{aligned}
$$

Remark 4.5. Theorem 4.3 provides an asymptotic bound for the weights assigned to underlying colored multi-set of Equation (18).

The authors thank the referees for their careful reading of the paper and thoughtful suggestions regarding improvement of the exposition.

References

[1] George E. Andrews, Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, U.K., 1998.
[2] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, U.K., 2009.
[3] H. Gingold, Factorization of Matrix Functions and Their Inverses Via Power Product Expansion, Linear Algebra and its Applications, 430(2008), 2835-2858.
[4] H. Gingold and A. Knopfmacher, Analytic Properties of Power Product Expansions, Can. J. Math, 47(1995), No. 6, 1219-1239.
[5] H. Gingold and J. Quaintance, Approximations of Analytic Functions via Generalized Power Product Expansions, Journal of Approximation Theory, 188(2014), 19-38.
[6] H. Gingold, H.W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34(1988), 143-161.
[7] H. W. Gould, Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Revised Edition, Published by the author, Morgantown, WV, 1972.
[8] S. Heubach and T. Mansour, Combinatorics and Compositions and Words, CRC, Boca Raton, Fl, 2009.

Except where otherwise noted, content in this article is licensed under a Creative Commons Attribution 4.0 International license.

