COUNTING STAIRCASES IN INTEGER COMPOSITIONS
AUBREY BLECHER AND TOUFIK MANSOUR

ABSTRACT. The main theorem establishes the generating function F which counts the
number of times the staircase 17273" - - . m™ fits inside an integer composition of n.

ko — Tk
(1= ") (725)" + 5 (ko — k)

1—x 1—x

F =

where 4
m—1 o ]
k = xm] - (é) L .
" Z 1—x
=0
Here x and y respectively track the composition size and number of parts, whilst g tracks
the number of such staircases contained.

1. INTRODUCTION

In several recent papers the notion of integer compositions of n (represented as the
associated bargraph) have been used to model certain problems in physics. See for
example [2,7-9] where bargraphs are a representation of a polymer at an adsorbing
wall subject to several forces.

In a paper by a current author et al (see [1]), the x-ray process was modelled using
permutation matrices as a two dimensional analogue of the object being x-rayed, where
the examining rays are modelled by diagonal lines with equation x 4y = n for positive
integers n. The current paper is based instead on integer compositions as the object
analogue and where the examining rays are represented by equation x —y = n for
non negative integers n. Since this model is essentially parameterized by the degree to
which the x-rays are contained inside an arbitrary composition, it translates naturally
to obtaining a generating function which tracks the number of "staircases" which are
contained inside particular integer compositions of n. More precisely, we will obtain a
generating function which counts (with the exponent s of g as tracker) the number of
times the staircase 172731 ... m™ (m fixed) fits inside particular compositions. So the
term of our generating function n(a, b, s)x*y’q° indicates that there are in total 7(a, b, s)
compositions of a with b parts in which the staircases 17273" - .- m™* occurs exactly s
times.
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1.1. Definitions. A composition of a positive integer n is a sequence of k positive integers
ay,ay,- - - dax, each called a part such that n = Zlfg:1 a;; A staircase 172737 -..m™T is a
word with m sequential parts from left to right where for 1 <i < m the ith part > i.

See for example the staircase in Figure 1 below.

FIGURE 1. The staircase 172737475 F

Much recent work has been done on various statistics relating to compositions. See,
for example, [3,5,6] and [4] and references therein.

A particular composition may be represented as a bargraph (see [4] and [2]). For
example the composition 4 + 3 + 1 + 2 + 3 of 13 represented in Figure 2 as a bargraph,
contains exactly one 17273" staircase, three 1727 staircases and five 17 staircases. It
contains no others.

FiGure 2. The composition 4 + 3 + 1 + 2 + 3 containing one staircase
112737 (coloured) and three 1727 staircases

In this paper, compositions (ie their associated bargraphs) are the analogue for a
(2-dimensional) object to be x-rayed (as explained above). Across all possible compo-
sitions, the shapes are parameterized in a generating function by a marker variable g
which tracks the number of 17273% .. . m™ staircases (again with m fixed) that fit inside
a composition. The generating function in question is defined as

(1) F= Y n(abs)xq,

a>1;b>1;5>0

where n(a, b, s) is the number of compositions of a2 with b parts that contain s staircases
11213 . ..m™.
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The main theorem arrived at by the end of the paper consists in establishing a for-
mula for the generating function F defined in equation (1). We state it here for com-
pleteness:

_ i (] ] . . .
where k,;, = Zgzé x™Mi= () (%)] . Prior to this main theorem, several lemmas present a

set of recursions which are used in proving this result.

2. PrRoOOFs

2.1. Warmup: compositions containing words of the form 172" or 17273". Consider
words which are of the form 172%; i.e., words of two parts adjacent to each other from
left to right with the first being a letter > 0 and the second being a letter > 1.

We let F be the generating function for all words; F, be the generating function for all
words starting with the letter 2 and in general F; ,4,...4, be the gf (generating function)
for words starting with the letters aja; - - - a,. So by definition

) F=1+)_ F.
a>1

And we have the following recurrence:
(3) Fa:xay+Fal+Fa2+Fa3+"’

Now F,; = x"yF; and F,, = qx"yF, for b > 1. So F;, = x'y(1+ F, +qFh +qF+---).
Thus for all a > 1, we have F, = x*y(1 — q)(1 + F;) + gx"yF. As the second part of our
warmup, we now examine the pattern 172%37, i.e., we focus on compositions which
contain this word sequence.

Extracting part of the first letter, we have

(4) F, = x*"'F.

From equation (2),

(5) F=1+) F =1+
a>1

1
F;.
1—x !
Also
Fi=xy+ (Fhi+Fo+Fs3+---)
:xy+xy(F1+F12+xF12+x2F12+---)

(6) = xy + xyF +

Frp,
Tl
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where
Fip = x*y* + Fio1 + Fioo + (Fip3 + -+ +)
= x°y* + X°y*F + x*yFip + (qX°yFip + gx*yFip + -+ )
3.2 3,2 2 qx3y
(7) =x7y —i—xyF1+xyF12—|—1_xF12.

The last three equations have three unknowns F, F;, and Fj; which we can solve for
F using Cramer’s rule. However, instead, we try the general pattern.
2.2. The general pattern 172%3% ... m*. Asbefore, F, = x*~1F; and

1

(8) F:1+2Fa:1+1

a>1

F.

Now

Fr=xy+ (Fu+Fo+Fs3+--)
:xy+xy(F1+F12+xF12+x2F12—l—---)

9) = xy + xyF + Fip

1—x
and

Fip = x°y* + Fio1 + Fiop + (Fio3 + -+ +)
= x3y? + 23y F + x*yFip + (Fio3 + xFip3 + x*Fioz 4+ -+ - )

(10) = x%y* + °y*F + xPyFp + 1= xF123-
Next, by a similar process
(11) Fios = x%y° + x%°F) + x°y*Fip + x°yFip3 + - xP1234.
Proceeding in this way, we obtain in general for all j <m — 1
Fip.j = xU2)yl 4 xU2)-0yip 4 x(3)-0)yi-1p,
(12) + 22 -Qy 2R+t x(jzl)f(é)ylfu--']' + ﬁljlzmﬁy

with

(13) F12...m = quyF12.--m—1-
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To simplify the presentation we put z = % Now, we rewrite equations (7)-(13) in
matrix form. So we first define the matrix A as

1 z 0 0

0 1-— x(%)’@)y z 0

0 —x@-@)2 1-x@-0Gy z

0 —x("H-@Qym-2  _("H-Gym-3  _B-Cym—4 .. ("H-("Dy 0
2y y 2y y

0 —x@D-@yr1 _xBD-Qym2 _xB-Qym=3 o D=2 D"y

0 0 0 0 - 0 —qx™y 1

m— m T
and C to be the vector (x(%),x@y,x@yz, oo xl zl)ymfz,x(ﬂym*l,O) . Then the ma-
trix form of our equations is AX = C where it is the first entry of matrix X (the matrix
of variables from equations (7)-(13)) that is our required generating function F. So
defining B as the matrix obtained from the above matrix A by replacing its first column
with the entries from C; i.e.

<0 z 0 cee e e 0
By 1-xD-0y z 0
xy2 —x(3)= @)y 1-x@-0y - 0
x()nz—l)yn172 7x(m2—1)7(%)ym72 7x(7)12—1)7<%>ym73 o 7x(m2—1)7(mz—2)y 2 0
x(Bym=1 —x@D=Qym-1 L D-Gym2 (-2 1 x(B-("Yy
0 0 0 - 0 —qx™y 1

By Cramer’s rule, we obtain

detB
14 F = .
(14 detA
2.3. Equations for det A and detB in a form that can be solved recursively. Define
the mxm matrix Np, to be the first m rows and columns of the (m + 1)x(m + 1) matrix
A, but where the first column of A has initially been replaced by the first m entries of
C. To simplify the notation further, we let w;; = x(é)_@yi_j and so explicitly written
out,

x(z)y z 0 0O --- 0
x@)y 1—wy z 0
Np := x@)yz —wy  1—ws z
x(gl)ym_l — Wy ce e 1 —wun

By cofactor expansions (initially along the last row of B), we obtain

(15) detB = det Ny + zgx"'y det Ny 1.
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And let Cp—1 be the (m — 1)x(m — 1) matrix obtained by deleting the first row and
column of Np,. So, for example,

1-— wo1 2z 0 0
—wWs3 1—wszp z 0
Cy =
—wy  —Wg 1 —wys z
—Ws1  —Wsp  —wsz 1 —wsy

By employing cofactor expansions (also, initially along the last row of A), we see that
(16) det A = detCpy—1 + zqx™y det Cn—_a.
Again, by employing co-factor expansions along the last row of C4, we see that

detCy = (1 — wsy) det C3 + zws3 det C — wspz? det C1 + ws2° det Co,
where det Cp := 1. In general, a cofactor expansion along the last row of Cp, yields for
m>1

m—1 ) .
detCy, = (1 — Wyi1m) detCpm—1 + Z (—1)m_1_7wm+1jzm_] det ijl-
=1
Once again making the replacement w;; = x(é)*(é)yi’j , we have for m > 1

m—1 . m ; . .
(17)  detCp = (1 — x™y)detCp_1 + Zl(—1)m—1—fx< 2=y H-izm i det €5y,
x=

Dropping m by 1 and multiplying this equation by —x™"yz, we obtain
— x"yzdetCm-_1

m—2 . om i . .

(18) = —x"yz(1—x""'y)detCm_2+ )_ (1)1l 2+1)_(5)]/”“_].2’”_] det Cj_1.
=1

By subtracting (18) from (17), we obtain

detCpy + x"yzdet Cpm_1
= (1—x"y)detCm_1 + x"yz(1 — xm_ly) detCm_2 + xzm_lyzz det Cp,_».
Simplifying,
(19) detCm = (1 —x"y(1+2z))detCm_1 + x"yzdet Cpm_»,

where detC_q:=1,detCyo =1;detC1 =1—xy =1 —wy;.

For ease of notation in the remainder of the paper, we abbreviate det Cy, as Cy;, and
define the generating function C(t) = }_,,~0 Cnt™. By multiplying equation (19) by #"
and then summing from 1 to infinity, we obtain

C(t) —1 = tC(t) — (14 z)xytC(xt) 4+ x*yt*zC(xt) + xyzt.
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Therefore
1—t 1t
Again to simplify the notation, substitute f(t) := 14{?’? and @(t) := —xytw,
and iterate the previous equation to obtain:
(21) C(t) = f(t) + @(t)C(xt) = f(t) + (1) f (xt) + p(t) p(x1) C(2*1).

Repeatedly iterating (assuming |x| < 1), we obtain

C(t) =Y f(xt) Hgo(xt

j>0
1+ Tl 1q 1 — i+l
B et NG 1—[ 21271
=0 1— it 1—xt
Recall that z = _— which implies 1 4z = —=. Therefore,

T, (- 29

C(t) = Y (=1)/(1 4 ¥ lyzt)x 3 )yt (1+2z)
j\é(:) Hg 0(1 - xlt)
—x Tl (1 —xit)
- 11+ 2 yzt i j1B=0
];) X yzt)xt 2y ( — x) 7 - <it)

_y (1+ xj“yzt)x@yftj
B = -x)(1-ot)

For further notational simplification, we let

fi= (1+ xHlyzt)x 2 yiti
T =%y (1—t)

Finally, substituting for the remaining z as above and using partial fractions

J(J+3> ; M : .
fi= x5 y]Ht] N X Y (1 —x—xy)t
J (1—x)i+t (1—x)t1(1 — ¥t
_ A+ Yy + x@yjﬂ —x—xy)¥ Y ki
(1 — x)]+l (1 — x)]+1 k>0

Hence the mth coefficient of C(t) is given by

m+2y, m+1 P3i_a
VT g xE M1 x — xy)

x(zy —{—Z

)y =— -
m (1 - x)m—l—l = (1 _ x)]+1

So, we obtain the following lemma.
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Lemma 2.1. The determinants C, of the matrices obtained from N1 (see equation (2.3)) by
deleting its first row and column are given by

m+1 m . j
22) C, = 2" ( y ) Ly ) (L)] |
1—x = 1—x

For initial cases, we have detNy = 1 and detN; = 1 — xy — zxy. By a cofactor
expansion along the last row, we obtain for m > 2

detNp = (1 —x" 1y) detNp_1

m=2 . om i . . m
(23) + Y (— 1) DGy det Ny  (—1) TGyl

=1

Dropping m by 1 and multiplying this equation by —x"~1yz (a similar process to that
used in a previous section), we obtain for m > 3

—x" lyzdetNp_1 = —x" " lyz(1 — 2™ 2y) detNp_»
m—3 Cm . ' . .
(24) + Z (_1)m—]x(2)—(£)ym—]zm—1—] det N]' 4 (_1)m—1x(2)ym—lzm—1.

=1

Subtracting (24) from (23), we obtain

det Ny + x" lyzdet N1
= (1—x""1y)detNp 1+ " lyz(1 — x"%y) det Npm_2 + ¥*" 3y*2det N2
=(1- xm_ly) detNpm_1+ xm_lyz det Npm_».

Hence for m > 2,

(25) detNm = (1 —x"1y(142)) detNp_1 + x" 'yzdet Ny _»

with detNg = 0 and detN; = 1.

For the rest of the paper we simplify matters by abbreviating N, := det N, and now
define the generating function N(t) = Y_,,~0 Niut™. By multiplying equation (25) by ",
summing from 1 to infinity, we obtain -

N(t) —t = tN(t) — y(1 + 2)tN(xt) + xyzt>N(xt)
with N_; := 0. Hence

2 _
26) N(H) = : i - xyzt : z(tl—'_z)tN(xt).
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Repeatedly iterating (26) on t (while recalling that z = —;, and assuming |x| < 1), we
obtain

. : 1
ot =L yae( 1x+t+1 )
N t — i X X
(*) ng—xftlj 1 — xit
yxit
]; th H 1—x
2
x! — yft7+1
; 1—x/t)(1—x)i’
Thus, we have our final lemma.
Lemma 2.2. With N, := det Ny, (see (2.3))
oy (Y
27 N,, = [t"IN(t) = "= .
@) = PING) = 1 ) ()

2.4. The generating function F. Finally, apply (15) and (16) to (14). Then, use lemma
2.1 and lemma 2.2, to obtain:

L0215~

staircases 1+2+C’PL -m™ (tracked by the exponent of variable q) contamed in particular com-
positions (of a with b parts) is given by

(28) F=

m+1 —x— m :
(1= xF) (1) "+ 175 (N — F5 N

For example, Theorem 2.3 with g = 1 yields F,—1 = 11 Ty which is the generating
function for the number of compositions of n with exactly m parts (see [4]).

By differentiating the generating function F with respect to 4 and then substituting
q = 1, we obtain

aF <" ()"
1= 1—x—x m—1,.m ] m—1 .mj—(!
g " T (e @ () 0 (1))
x(mz_l)ym
(1—x—xy)2(1—x)m2
x(m;rl) xjym+]
= 41
= &
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Next, we extract coefficients; firstly of [y] to obtain

(%) (+j—1 . om
l—m+1)"—e=l—-m+1 ( : )x”ﬁ(ﬂ,
( = (]

and then of [x"] which leads to the following result.

Corollary 2.4. The total number of staircases 17273% - - m™ in all compositions of n with

exactly ¢ parts is given by
n—1-(3)
(E—m—l—l)( /1 )
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