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ABSTRACT. Let (x(n)),>1 be an s—dimensional Niederreiter-Xing’s sequence in base
b. Let D((x(n))N_,) be the discrepancy of the sequence (x(n))N_,. It is known that

ND((x(n))N_;) = O(In° N) as N — oco. In this paper, we prove that this estimate is

n=1
exact. Namely, there exists a constant K > 0, such that

inf  sup ND((x(n)®w)N_,)>Km® for m=1,2,...
welo,1)s 1<N<b™

We also get similar results for other explicit constructions of (f, s)-sequences.
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1. INTRODUCTION.

1.1 Let (55,5)),121 be a sequence in unit cube [0,1)°, (ﬁ,(f}\,)nNz_Ol points set in
[0,1)% Jy = [0,51) x - - < [0,ys),

(1.1) Ay, (BONVN) =#{1 <n < N | BN € Jy} — Ny ...y
We define the star discrepancy of a (ﬁqu:%\,)nN:_ol as
* * — 1
(1.2) D*(N) = D" (B =) = sup | AUy (BSAND)|:
0<yq,...ys<1

Definition 1. A sequence (ﬁgf))nzo is of low discrepancy (abbreviated 1.d.s.) if
D((BS)N-1) = O(N-L(InN)*) for N — cs.

Definition 2. A sequence of point sets ((,B,(f}\]),lf:_ol)‘f\‘}:l is of low discrepancy (ab-
breviated 1.d.p.s.) sz((,Bffg\])y:_Ol) = O(N"Y(InN)*71), for N — co.
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For examples of such a sequence, see, e.g., [BC], [DiPi], and [Ni].
In 1954, Roth proved that there exists a constant C; > 0, such that

ND*((BEMN) > C(InN)Z,  and  TmND*((5))N-1)(InN)~*/2 > 0

for all N-point sets ( ,B,(f}\])nNz_Ol and all sequences ( ,B,(f))nzo.
According to the well-known conjecture (see, e.g., [BC, p.283], [DiPi, p.67],
[Ni, p.32]), these estimates can be improved
(13)  ND((B)N)InN) ™1 > e and Tim N(InN)=D*((8)).1) > 0

n=1

for all N-point sets ( ,35153\;),11\]:_01 and all sequences ( ﬁ,(f))nzo with some C; > 0.
In 1972, W. Schmidt proved (1.3) for s = 1 and 5§ = 2. In [FaCh], (1.3) is
proved for a class of (t,2)—sequences.
In 1989, Beck [Bel] proved that ND*(N) > ¢In N(Inln N)/8=¢€ for s = 3 and
some ¢ > 0. In 2008, Bilyk, Lacey and Vagharshakyan (see [Bi, p.147], [BiLa,

p-2]), proved in all dimensions s > 3 that there exists some ¢(s), > 0 for which

the following estimate holds for all N-point sets : ND*(N) > ¢(s)(InN )%”.
There exists another conjecture on the lower bound for the discrepancy func-
tion: there exists a constant ¢3 > 0, such that

ND*((Bin)ilg) > ¢s(InN)*/2

for all N-point sets (/Sk,N)]]{\];Ol (see [Bi, p.147], [BiLa, p.3] and [ChTr, p.153]).
A subinterval E of [0,1)* of the form

S
E=]Tlaib~%, (a; +1)b~%),
i=1
witha;,d; € Z, d; >0, 0 <a; < b for 1 < i < s is called an elementary interval
in base b > 2.

Definition 3. Let 0 < t < m be an integer. A (t,m,s)-net in base b is a point set
X0, oy Xpmi_1 i1 [0, 1) such that #{n € [0,b™ — 1]|x,, € E} = b for every elementary
interval E in base b with vol(E) = b'™™,

Definition 4. Let t > 0 be an integer. A sequence X, X1, ... of points in [0,1)% is a
(t,s)-sequence in base b if, for all integers k > 0 and m > t, the point set consisting
of x,, with kb™ < n < (k+1)b™ is a (t,m,s)-net in base b.

By [Ni, p. 56,60], (t,m,s)-nets and (f,s)-sequences are of low discrepancy.

See reviews on (t, m,s)-nets and (¢, s)-sequences in [DiPi] and [Ni].

For x =} i>1 x;b~t, and Y=Y yib’i where x;,y; € Z, := {0,1,...,b — 1},
we define the (b-adic) digital shifted pointv by v = x @y := }.;>q v;b~!, where



ON THE LOWER BOUND OF THE DISCREPANCY OF (¢,s)-SEQUENCES: II

v; = x; +y; mod(b) and v; € Z,. For higher dimensions s > 1, let y =
(y1,-Ys) € [0,1)°. For x = (x1,...,x5) € [0,1)° we define the (b-adic) digital
shifted point vby v = x®y = (x1 ® y1,..., xs ®ys). For ny,ny € [0,0™), we
define ny @ ny := (n1/b™ & ny /b™)b™.

For x = Y~y xip;i, where x; € Z;,, x;, = 0 (i = 1,...,k) and x;,1 # 0, we
define the absolute valuation ||.|, of x by ||x||, = b~*"1. Let ||n|, = b for
n € bk, b)),

Definition 5. A point set (x,)o<y<pm in [0,1)° is d—admissible in base b if

S .
. i RN = H o
(14) ot © xlly > where x|, E x|,

A sequence (Xn)n>0 in [0,1)° is d—admissible in base b if inf,~ >0 |1 S k||, [|Xn © Xk ||
> b9

Let (xx)n>0 be a d—admissible (¢, s)-sequence in base b. In [Le4], we proved
for all m > 9s?(d + t) that
(1.5) L, max ND"((x0 & W)osnn) = b Kh qm®
with some w € [0,1)° and K;;5 = 4(d +t)(s — 1)2.

In this paper we consider some known constructions of (,s)-sequences (e.g.,
Niederreiter’s sequences, Xing-Niederreiter’s sequences, Halton type (¢, s)-sequences)
and we prove that they have d—admissible properties. Moreover, we prove that
for these sequences the bound (1.5) is true for all w € [0,1)°. This result sup-
ports conjecture (1.3) (see also [Be2], [LaPi], [Le2] and [Le3]).

We describe the structure of the paper. In Section 2, we fix some definitions.
In Section 3, we state our results. In Section 4, we prove our outcomes.

2. DEFINITIONS AND AUXILIARY RESULTS.

2.1 Notation and terminology for algebraic function fields. For the theory of
algebraic function fields, we follow the notation and terminology in the books

[St] and [Sa].

Let b be an arbitrary prime power, k = IF;, a finite field with b elements,
k(x) = FFp(x) the rational function field over [Fj, and k[x] = FF;[x] the polyno-
mial ring over IF,. Fora = f/g, f,g € k[x], let
21) Veo(a) = deg(g) — deg(f)

be the degree valuation of k(x). We define the field of Laurent series as

k((x)) = { i ax' | meZ, a; € k}.

i=m
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A finite extension field F of k(x) is called an algebraic function field over k.
Let k is algebraically closed in F. We express this fact by simply saying that F/k
is an algebraic function field. The genus of F/k is denoted by g.

A place P of F is, by definition, the maximal ideal of some valuation ring of F.
We denote by Op the valuation ring corresponding to P and we denote by IPr
the set of places of F. For a place P of F, we write vp for the normalized discrete
valuation of F corresponding to P, and any element t € F with vp(t) = 1is
called a local parameter (prime element) at P.

The field Fp := Op /P is called the residue field of F with respect to P. The
degree of a place P is defined as deg(P) = [Fp : k]. We denote by Div(F) the
set of divisors of F/k.

Let y € F\ {0} and denote by Z(y), respectively N(y), the set of zeros,
respectively poles, of y. Then we define the zero divisor of y by (y)y =
Ypez(y) vr(y)P and the pole divisor of y by (y)e = Lpen(y) vp(y)P. Fur-
thermore, the principal divisor of y is given by div(y) = (¥)o — (V) -

Theorem A (Approximation Theorem). [St, Theorem 1.3.1] Let F/k be a
function field, Py, ..., Py € Pr pairwise distinct places of F/k, x1,...,x, € F and
1, ..., 'n € Z. Then there is some y € F such that

vp(y—x;) =r; for i=1,.,n.

The completion of F with respect to vp will be denoted by F(P). Let t be
a local parameter of P. Then F(*) is isomorphic to Fp((t)) (see [Sa, Theorem

2.5.20]), and an arbitrary element & € F(P) can be uniquely expanded as (see
[Sa, p. 293])

(2.2) a= Y St where S;=S5;(ta)eFpCFP.
i=vp ()

The derivative %, or differentiation with respect to ¢, is defined by (see [Sa,

Definition 9.3.1])

da >
(2.3) e '72 iS;t1.
i=vp(a)

For an algebraic function field F/k, we define its set of differentials (or Hasse
differentials, H-differentials) as

Ar ={ydz |y € F, zis a separating element for F/k}
(see [St, Definition 4.1.7]).

Proposition A. ( [St, Proposition 4.1.8] or [Sa, Theorem 9.3.13]) Let z € F be
separating. Then every differential -y € Ar can be written uniquely as v = y dz for
somey € F.
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We define the order of a df at P by
(24) vp(a dB) == vp(a dB/dt),
where t is any local parameter for P (see [Sa, Definition 9.3.8]).

Let O be the set of all Weil differentials of F/k. There exists a F—linear
isomorphism of the differential module Ar onto Q) (see [St, Theorem 4.3.2] or
[Sa, Theorem 9.3.15]).

For 0 # w € O, there exists a uniquely determined divisor div(w) € Div(F).

Such a divisor div(w) is called a canonical divisor of F/k. (see [St, Definition
1.5.11]). For a canonical divisor W, we have (see [St, Corollary 1.5.16])

(2.5) deg(W) =2¢—2 and ((W)=g.

Let « dB be a nonzero H-differential in F and let w the corresponding Weil
differential. Then (see [Sa, Theorem 9.3.17], [St, ref. 4.35])

(2.6) vp(div(w)) = vp(a dB), forall P € Pp.
Let « d be a H-differential, t a local parameter of P, and
adp = i Sit'dt € FP).
i=vp(a)
Then the residue of x df (see [Sa, Definition 9.3.10) is defined by
(2.7) Resp(a dB) := Trr, k(S5-1) € k.
Let
(2.8) Resp ;(a) := Resp(adt).

Theorem B (Residue Theorem). ([St, Corollary 4.3.3], [Sa Theorem 9.3.14])
Let « df be any H-differential. Then Resp(a dB) = 0 for almost all places P.
Furthermore,

Y Resp(adp) =0.

PelPr
For a divisor D of F/k, let L(D) denote the Riemann-Roch space

L(D) = Lp(D) = Lr/ (D) = {y € F\0 | div(y) + D > 0} U{0}.

Then L£(D) is a finite-dimensional vector space over F, and we denote its di-
mension by /(D). By [St, Corollary 1.4.12], /(D) = {0} for deg(D) < 0.

Theorem C (Riemann-Roch Theorem). [St, Theorem 1.5.15, and St, Theorem
1.5.17 ] Let W be a canonical divisor of F/k. Then for each divisor A € div(F),
((A) =deg(A)+1—g+¢(W—A), and

((A) =deg(A)+1—g for deg(A)>2¢g—1.
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Let P € Pg, ep = deg(P), and let F/ = FFp be the compositum field (see [Sa,
Theorem 5.4.4]). By [St, Proposition 3.6.1] Fp is the full constant field of F'.
For a place P € Pr, we define its conorm (with respect to F'/F) as

(2.9) Conp/p(P) := ) _ e(P'|P)P,
P'|P

where the sum runs over all places P’ € Pp lying over P (see [St, Definition
3.1.8.]) and e(P’|P) is the ramification index of P’ over P.

Theorem D. ([St, Theorem 3.6.3]) In an algebraic constant field extension F' =
FFp of F/k, the following hold:
(a) F'/F is unramified (i.e., e(P'|P) =1 for all P € Pr and all P’ € Py with P’'|P).
(b) F'/Fp has the same genus as F/k.
(c) For each divisor A € Div(F), we have deg(Conp ,p(A)) = deg(A).
(d) For each divisor A € Div(F), ¢(Conp,p(A)) = ¢(A). More precisely: Every
basis of Lr/«(A) is also a basis of Lp/,r,(Conp/p(A)).
Theorem E. ([St, Proposition 3.1.9]) For 0 # x € F let (x)§, (x)L, div(x)F,
resp. (x)g’, (x)E, div(x)F denote the zero, pole, principal divisor of x in Div(F)
resp. in Div(F’). Then

Congr/p((x)5) = (x)§, Conp/r((x)E) = (x) and Conpr,¢(div(x)") = div(x)F.

Let By,..., B, be all the places of F'/Fp lying over P. By [St, Proposition
3.1.4.], [St, Definition 3.1.5.] and Theorem D(a), we have

(2.10) v, (a) =vp(a) for acF, 1<i<p.

We will denote by F(P) resp. F'™ (1 < i < ) the completion of F resp. F’
with respect to the valuation vp resp. va,. Applying [Sa, p.132, 133], we obtain

FCE®P cF™ and FCFcF™, 1<i<u

Let t be a local parameter of P, and let a € F(P), By (2.10), we have ve, (1) = 1.
Consider the local expansion (2.2). Using (2.10), we get vy (¢) = vp(a). Hence

(2.11) vp, () =vp(a) for a€F'N FP) 1<i<u

Theorem F. ([LiNi, Theorem 2.24]) Let M be a finite extension of the finite field
L, both considered as vector spaces over L. Then the linear transformations from M
into L are exactly the mappings Kg, B € F where Kg = Try/(Ba) for all a € F.
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Furthermore, we have Kg # K, whenever B and -y are distinct elements of L.

Theorem G. ([St, Proposition 3.3.3] or [LiNi, Definition 2.30, and p.58]) Let
L be a finite field and M a finite extension of L. Consider a basis {«1, ..., &} of M/ L.
Then there are uniquely determined elements B, ..., B of M, such that

1 ifi=j,

0 ifi#j.

The set B, ..., Bm is a basis of M/ L as well; it is called the dual basis of {a, ..., m }
(with respect to the trace).

(2.12) TI'M/L(DC,"B]') = 51"]' = {

2.2 Digital sequences and (T, s) sequences ([DiPi, Section 4]).

Definition 6. ([DiPi, Definition 4.30]) For a given dimension s > 1, an integer
base b > 2, and a function T : Ny — No with T(m) < m for all m € Ny, a sequence
(xo,X1,...) of points in [0,1)° is called a (T,s)-sequence in base b if for all integers
m > 0 and k > 0, the point set consisting of the points Xgym, ..., Xgpm pm_1 forms a
(T(m), m,s)-net in base b.

Lemma A. ([DiPi, Lemma 4.38]) Let (xo,x1,...) be a (T, s)-sequence in base b.
Then, for every m, the point set {yo,y1, ..., ypm_1} with yx := (x¢, k/b™), 0 < k <
b™, is an (r(m),m, s+1)-net in base b with r(m) := max{T(0),..., T(m)}.

Repeating the proof of this lemma, we obtain

Lemma 1. Let (x,),>0 be a sequence in [0,1)°, m, € N, m; > m; for i > j, and
let (X, n/b"™) o<y <pme be a (t,my, s+ 1)-net in base b for all k > 1. Then (Xp)n>0 is
a (t,s)-sequence in base b.

Lemma B. ([Ni, Lemma 3.7]) Let (x,,),,>0 be a sequence in [0,1)°. For N > 1, let
H be the point set consisting of (x,,n/N) € [0,1)5*! forn =0,..., N — 1. Then

* M-1 * N-1
1+ lér]b[a%(NMD ((xn)y;29 ) = ND*((xy,n/N), 5 )

Definition 7. ([DiNi, Definition 1]) Let m,s > 1 be integers. Let C(lf’”), .y
C™) be m x m matrices over Fy. Now we construct b™ points in [0,1)%. For n =
0,1,..,b" —1, let n = }:;71:61 a]-(n)bj be the b-adic expansion of n. Choose a bijection
¢: Zy:=10,1,..,b—1} — Fy, with ¢(0) = 0, the neutral element of addition in
Fy,. Let |¢p(a)| := |a| for a € Zy. We identify n with the row vector

(2.13) n = (ag(n), .. dn—1(n)) € F' with a;(n) = ¢(a;(n)), 0<i<m-—1.

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03
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We map the vectors

(2.14) ) = e yim) = nCEMT € FY
to the real numbers
() "o 1y () sy
(2.15) 0 = L0 )/
]:
to obtain the point
(2.16) xn = (x, ., 29y € [0,1)°.

The point set {xq, ..., xpm_1} is called a digital net (over IF},) (with generating matrices
(cm, ., clsmy),

For m = oo, we obtain a sequence xg, X1, ... of points in [0,1)° which is called a
digital sequence (over F,) (with generating matrices (C(1>®), . C(5%))),

We abbreviate C(i") as Cl0) for m € IN and for m = .

Definition 8. Let 0 < D(1) < D(2) < D(3) < ... be a sequence of integers. A
sequence (Xn)n>0 in [0,1)° is D—admissible in base b if

S .
- ~m-D ._
(2.17) oglgglbm |1Xn © X¢l], > 07" (M) where x|, == 111 Hx](l) )

|x|l, =61, x= Yix1 xipl._i with x; € Z, x; =0 (i =1, ..., k) and x; 1 # 0.

Note that for D(m) = d, m = 1,2, ... this definition is equal to Definition 5.
It is easy to see that condition (2.17) coincides for the case of digital sequences
with the following inequality

(2.18) min_||xq||, > b"PM, m=1,2,...
0<n<b™

2.3 Duality theory ( see [DiPi, Section 7], [DiNi], [NiP1i], [Skr]).

Let NV be an arbitrary FFj-linear subspace of IF;". Let H be a matrix over IF,,
consisting of sm columns such that the row-space of H is equal to N. Then we
define the dual space N- C F{" of N to be the null space of H (see [DiPi, p.
244]). In other words, N'! is the orthogonal complement of A relative to the
standard inner product in F;",

(2.19) Nt={AcF"|B-A=0 forall Bc N}.
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For any vector a = (ay,...,am) € F}]', let
(2.20) om(a) =0 if a=0 and wvy(a) =max{j : a; # 0} if a # 0.
Then we extend this definition to IF"® by writing a vector A € [ as the

concatenation of s vectors of length m, i.e. A = (ay,...,as) € F}® with a; € F}}
for 1 <i < s and putting

(2.21) Vin(A) = Y ou(ay).

1<i<s

Definition 9. For any nonzero FF}'-linear subspace A of [}, the minimum
distance of AV is defined by

om(N) = min{V,,(A) | A € N\ {0}}.

We define a weight function on IF"® dual to the weight function V;, (2.21).
For any vector a = (ay, ..., a,) € F}', let
(2.22) vn(a)=m+1if a=0 and v,;(a) =min{j : a; # 0} if a# 0.

Then we extend this definition to IF"® by writing a vector A € [ as the
concatenation of s vectors of length m, i.e. A = (ay,...,a5) € F}*® with a; € F}}
for 1 <i <s and putting

(2.23) Vir (A) = ) vp(ay).
1<i<s

Definition 10. For any nonzero IF}'-linear subspace N of F}"*, the maximum
distance of AV is defined by

(2.24) SE(N) = max{V;-(A) | A e N\ {0}}.

Definition 11. ([DiPi], Definition 7.4) Let k, m,s be positive integers. The
system {é](.l) cF|1<j<m 1<i<s}iscalleda (k m,s)— system over IF,
if for any kq,....ks € No with 0 < k; <mfor1 <i <sand ky + ... + ks = k the
system

(¢ eFy[1<j<k,1<i<s)
is linearly independent over IF,.
For a given (k,m,s)— system {é](.l) eF |1 <j<m 1< i< s)let

C() 1 <i < sbe the m x m matrix with the row vectors égi), "y c,S?. With these
m X m matrices over is linearly independent over [F;, we build up the matrix

C = (COTICOT|.|CETY g ppxem,

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03
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Let C denote the row space of the matrix C. The dual space is then given by
Ct={AcF"|B-A=0 forall BeC(}.

Lemma C. ([DiPi, Theorem 7.5]) The system {¢\" € Ty |1 <j <m, 1 <i <s}

is a (k,m,s)—system over Ty, if and only if the dual space C* of the row space C satis-

fies 8 (CH) >k + 1.

Let C), .., Cl®) € F>** be generating matrices of a digital sequence x, (C),>0
over IF,. For any m € IN, we denote the m x m left-upper sub-matrix of C?)

by [C)],.. The matrices [C(V],,, ..., [C©9)],, are then the generating matrices of a
digital net. We define the overall generating matrix of this digital net by

@25 [Clu = (CORICORLCENT) € ™, m=1,2,....

Let C,, denote the row space of the matrix [C], i.e.,

m—=1 .
(2.26) Con = D, (n)
o~ {(E i)
The dual space is then given by

(2.27) Cohn ={AC€F"|B-A=0 forall B€Cy}.

Consider a matrix

|O§n<bm}.

0<j<m—1,1<i<s

Cn = (G111 ICR)T) e s
) ) A0

with row space C, = C;. Let E](.i = ( s €
of the matrix C,(qi), i=1,...,,s. Hence

) with j € [1, m| are row vectors

m—1
P =(Ct = Az < m
(2.28) Cn = Cii = {( L e >0§j§m_1,1§§5 [0<n<b"}.
L§t E](.*,i) — (5](.21_1, ,5](11), ~](13),] =0,..,m—1,i=1,...,s. Consider the matrix
C,(:’z), with row vectors E](.*’l), j=0,.,m—1i=1,.,s.
Let C\Y) = (Cﬁ’l)T|...|Cnf’s)T). The row space of ¢\ is then given by
-1
56) _ [V A0 S
(2.29) " {< r;) Cm—f—lffa’(n))ogjgm—1,1§i§s [0<m <t }
Using (2.14) and (2.26), we get
(2.30) Con = LW, sy sy, s ySh) 10 < < 07,

Let
(2.31) Vm = {(y,(q*’l),...,y,(f’s)) = (yﬁl%,,yr(lll),,y,gs,)ﬂ,,yflsi) |0<n<b"},
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where yi) == (Y, - Y2 yi)), 1 <0 < s.
Bearing in mind (2.27), (2.30) and (2.28), we get

s m—1m—1 ) (i) S —1m-—1 ) (i)
Z 2 Z Cm —j— 1rar nl)ynzm —j Z 2 Z C]rar nl)yn2]+l =0, 0<mny,mn <b™
i=1r=0 j=0 i=1r=0 j=0

Now, from (2.27), (2.31) and (2.29), we derive that C:Sf) is the dual space of Vy, :

+ = Vm-

Proposition B. Let C(1), ...,C5) ¢ IF°"* be generating matrices of a digital se-
quence X, (C),>0 over Fy. Then Xn(C)nzo is D—admissible in base b if and only
szorallmE]Nthesystem{c EIFT]lSjgm,lgigs}isa
(m(s—1)—D(m)+s,m,s)— system over IFy, .

Proof. Applying Lemma C, we get that the system {E](*’i) ceF|0<j<
m—1, 1< i < s}isa (m(s—1)— D(m)+s,m,s)—system over [F, if and
only if the dual space G+ = Y, of the row space ) satisfies Om(Vm) >
m(s—1)—D(m)+s+1=:ay.

By Definition 9, we have

(ym) > 0y & va > &m for all (bl,...,bs) € ym \ {0}
i=1

Using (2.31), we obtain

(V) > am < va ) >y forall ne{l,.,b" —1}.
i=1

From (2.15), (2.20), (2.22), (2.31) and Definition 5, we derive

log, (Ixly) = —os (i) = vy —m—1, 1<i<s.
Therefore

s ,
Om(Vm) > ay < min Zm+1—v (y()))>zxm(:) min Z—vi(yﬁl))

1<n<bm 1<n<bm =

—_

= 1£n1<r}7m Zlogb Ixullp) > o — (m+1)s = —m — D(m) + 1.
Hence 6, (Vi) > ay if and only if ming <, pm [|xa ]y > b=~ P,
By Definition 8, Proposition B is proved. ]
We will also need the following assertion.
Proposition C. ([DiPi, Proposition 7.22] For s € IN, s > 2, the matrices C @, .., ce)
generate a digital (T,s)-sequence if and only if for all m € N we have

T(m) > m—6,(Cy;) +1, forall m € N.
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2.4 Admissible latices.

Let k(x) = FFp(x) be the rational function field over F;, k[x] = Fy[x| the
polynomial ring over [Fj, and let k((x)) be the perfect completion of k with
respect to valuation (2.1).

A lattice T in k((x))® is the image of (k[x])* under an invertible k((x))-linear
mapping of the vector space k((x))® into itself. The points of I will be called
lattice points. We will consider only unimodular lattices.

Define the norm of a vector ¢ = (71,...,7s) € k((x))® as || := maxj<j<s |7il,
where || = b~~(7) and v, is the discrete exponential valuation (2.1).

Now let < y,z > be a standard inner product ( < y,z >= y1z1 + ... + yszs for
y=(y1,-ys) and z = (z1, ..., 25)).

The dual (or polar) lattice T+ of a lattice I is defined by I't = {x € k((x))* |
< X,y > is a polynomial for all y € T'}.

First, we describe Mahler’s variant of Minkowski’s theorem on a convex body
in a field of series for the following special case:

The first successive minimum A; is defined as the norm of a nonzero shortest
vector by of a lattice I' in k((x))®. For 2 < i <s, a ith successive minimum A; of
I' is recursively defined as the norm of a smallest vector b; in I that is linearly
independent of by, ..., b;_1 over k((x)).

As an immediate consequence, we get

0< A <A << A,

We have a famous theorem due to Mahler (see [Ma], [Te2, p. 33]).
Theorem H. Let Ay, ..., As be the successive minima of a lattice I and let A A
be the successive minima of the dual lattice T+. We then have

€L
s

MAgds = AL AL LA =1, A =1 for 1<j<s.
Hence )\i_l)ts < 1and
(2.32) Ay < AJY6ED
Definition 12. A lattice T C k((x))® is d—admissible if

Nm(T) = inf Nm(q)/det(T) >b"% where Nm(y)= IT Il
ver\{0} 1<i<s

Alattice T’ C k((x))?® is said to be admissible if I" is d —admissible with some real 4.

Proposition D. Let a lattice T C k((x))® be d—admissible, det(T') = 1. Then the
dual lattice T+ is (d + 1)(s — 1) + 2—admissible.



ON THE LOWER BOUND OF THE DISCREPANCY OF (¢,s)-SEQUENCES: II

Proof. Suppose that there exists Y= = (71, .., 7) € T+ \ {0} with Nm(y+) =

b= 00 >a >c:=(d+1)(s—1)+2,a = a1s+ay, ay = [a/s] and ay €
{0,...,s —1}. We have that a; > (¢ —s — 1)/s. Consider the following unimod-
ular diagonal matrix U = diag(uy, ..., us), where u; = ’y}x”l forl1 <i < sand
Ug = yoxto,

Letg := U = (x™%,...,x %, x M~%), Therefore |§| < b~% < p—(e=s=1)/s,
It is easy that 4 € T+U ! and

(2.33) AL@UTY < || < bl /s,

Note that (UT)+ =T+U!, Nm(y) < |y|* for y € k((x)), and

(2.34) b~? <Nm(T') = Nm(UT) < inf |9]° = (A{(UT))5.
yeUr\o

Using (2.32) and (2.33), we get

235) b 9/s < A (UT) < (A(UT)) V6D = AHTtu-)Y e < p~ &1,

Thus —d/s < —(c—s—1)/(s*> —s) and
d>(c—s—1)/(s—1)=(d+1)(s—1)+2—-s—-1)/(s—1) =d.

We have a contradiction.

Now suppose that there exists - € I't \ {0} with Nm(y+) = 0. Let ;- #0
forieJC{l,.,s}, v+ =0forie]={1.,s}\], a=card(]) € [1,s—1],
s € J,and let b :=TTics |7i].

Let 4 := (Y1,.,Fs) with 4; = x ¢ fori € J and §; = 0 for i € ], where
¢ = 2d(s — a). Therefore |§| = b°.

Consider the following diagonal matrix U = diag(u, ..., us), where u; = ;- x°
foriec J,u;=x"foric J\{s}, and us = x~~f, with ¢; = 2ad.

Note that log, |det(U)| = f +ac— (s —a)cy — f =2ad(s —a) —2(s —a)ad =
0. Hence U is a unimodular matrix.

It is easy to see that 4 = ¢ytU™1 € T*U}, and A{ (THUY) < || = b7 <
b=,

By (2.34) and (2.35), we get

p—d/s < Al(ur) < (/\S(ur))fl/(sfl) _ (AlL(IwLufl))l/(sfl) < bfc/(sfl) < p—a/s

We have a contradiction. Therefore Proposition D is proved. [
Remark 1. In [Lel, Theorem 3.2], we proved the following analog of the

main theorem of the duality theory (see, [DiPi, Section 7], [NiPi] and [Skr]): if
a unimodular lattice Tk((x))**! is d—admissible, then from the dual lattice I'"
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we can get a (t,s)-sequence (X, ),>0 with t = d —s. Using Definition 5, Defini-
tion 12, and Proposition D, we get that (x,),>0 is (d + 1)s + 2—admissible. In
[Le5] and in this paper we consider a more general object. We consider nets in
[0,1)° having simultaneously both (t,m,s) properties and d-admissible prop-
erties. The d-admissible properties have a direct connection to the notion of
the weight in the duality theory (see Definition 5, Definition 8 - Definition 11,
Lemma C and Proposition B). Thus we can consider this paper as a part of the
duality theory.

2.5 Auxiliary results.

Lemma D. ([Le4, Lemma 1]) Let § > 2, d > 1, (Xn)g<p<pn be a d—admissible
(t,17,8)-net in base b, dg = d +t, ¢ € N, 0 < € < (2dpé(s — 1)), 1z = [me],
it = 0, ity = doérin (1< i < §—1), sits = it — (§ — V)siey — t > 1, tirg = ritg + 1ity,
B; C{0,..,m—1} (1 <i<3$),wcE and let () = ’y%l)/b Fo )

1;

(i) _ Y (i) _ Y _
(2.36) ,ymi+d0(fié+;i) B = 0 for 1 <j; <d,, ,)/mi—i—do(fié—i—f,-)—i—fi =1 for j; =
and j; € {0,111 —1}\B;, 0<ji<eé 1<i<sq=("WD.,99),B=
#By + ...+ #Bg and it > 4e =1 ($ — 1) (1 + $B) + 2t. Let there exists ng € [0,b™) such
that [(xuy @ W) D], = ¥, 1 < i < 6. Then

237) B0 D W)geyepn Jy) < b7 (2e(2(s = 1)) T T 4 0 doé B2,

Corollary 1. With notations as above. Let s > 3,7 > 0,111 = m — 7, (Xn)g<p<pn b€
a d—admissible (t,1i,$)-net in base b, dg = d +t,é € N, e = n(2dpé(s —1))"1,0 <
n < 1,1 = [me], i; = 0, m; = dobii, s = 11— (§ — V)tig — t > 1, 1its = 1itg + 1ity,
B; € {0,..,m—1},B; ={0,...,m—1}\B;, 1 <i<$, B=#By+..+#B;. Suppose
that

238  {(x"

A dodi 4] Ji €B;, i € 1,doé], i €[1,8]) | ne€0,b™)} =2,

with m > 2t + 8(d + t)é(s — 1)2y~1 4 2B8p4+5+(d 4 £)%e(s — 1)26-1y—s+1B 4+
4(s — 1)7 and y = doé(srir — B). Then there exists ng € [0,b™) such that [(xn, ®
w)(i)]mi = 'y(i), 1 <i <35, and for each w € Efﬁ, we have

V"D*((xn & W)g<pepn) > ’A((xn ® w)0§n<bm,]7)) > 2*2b*d1<;,f;r1,75—1ms171
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Proof. Let y(n,w) = v = (v(1, ..., 9)) with 4() := [(x, ® w) D], i € [1,4].
Using (2.38), we get that there exists ng € [0,b™) such that v(ng, w) satisfy
(2.36). Hence (2.37) is true. Taking into account (1.2) and that w € E:, is arbi-
trary, we get the assertion in Corollary 1. [

Let ¢ : Z, — TF, be a bijection with ¢(0) = 0, and let xi(ji = cp_l(yﬁllj,) for
1<i<s,j>1andn > 0. We obtain from Corollary 1 :
m = m—7, (Xp)g<ppn be a d—admissible
(t,17,8)-net in base b, dg = d+t, 6 € N, e = 5(2doé(s —1))"1, 0 < 5 < 1,
m = [me], m; = 0, m; = doém, g = 1w — (§ — D)y —t > 1, ms = 1itg + i1y,
B; € {0,.ti—1}, Bi = {0,.,it — 1Y\ B;, 1 < i < § B = #By + ... + #Bx.
Suppose that

Corollary 2. Let s > 3, 7 > 0,

(W i | i € B Ji € [Ldoé), i € [Ls]) [n € [0,0™)} = F,
with m > 2t +8(d + t)é(s — 1)%y~1 4 22p9+5+(d 4 t)%e(s — 1)26-Dy—s+1B +
4(s —1)7 and u = doé(srir — B). Then there exists ng € [0,b™) such that [(xn, ®
w) D] =99, 1 <i <3, and for each w € E3,, we have

V" D*((xn & W)o<pepn) = [A((Xn & W)o<papm, Jy)| = 2_2b_dK¢z_,f,:1’7S_1m

With notations as above, we consider the case of (¢, s)-sequence in base b:

Corollary 3. Let s >
base b, dy = d+t, é €
1<i<s, ms+1—t—1—|— do
1§z§s+1,B_#B1+...+#B

d > 1, (xu)u>0 be a d—admissible (t,s) sequence in
e = n(2does)™, 0 <y < 1, i = [me], ri; = 0,

érit, B; C {0,...,1i1 — 1}, B; = {0, ...,1i1 — 1} \ B,,
Suppose that

2,
N,
(s —

)_\
~—r

s+1°

(o €87 € ol 1€

By dodfs s +oon (1): fs1 € By, o € [Ldodl,) [ m € [0,b™)} =y,

with u = doé((s + 1)rir — B), and m > 2t + 8(d 4 t)és>y~1 4 225+2pd+s+t+1 (4 4
t)s+16s?5=5B. Then

1+ min min max ND*((XH@Q@W)O<H<N)Z2*217 dg s

S..,S
m°.
0<Q<b™ weEs, 1<N<b™ = dts+1'
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Proof. Using Lemma B, we have
1+ sup ND*((xn@Q D w)0§n<N) > me*((xn@Q D w/n/bm)0§n<b’”)
1<N<bm
=b0"D*"((xp, & W, (S Q)/b™)o<ppm)-
By (1.4) and [DiPi, Lemma 4.38], we have that ((x,, n/b™)g<y<pn) is a d—admissible
(t,m,s +1)—net in base b. We apply Corollary 2 withs =s+1,7 =0, B; = B;,
1<i<$ By={m—j—1|j € Bs}, Jox1 = 11— foy1 — 1, Jor1 = doé — Jou1 +1,

and xTY = 5 /pm. Taking into account that nyS;P] =aj(n) (0 <j < m), we get
(s+1) - . 3
Yty —dodrit— 1oty oy — iter-+dobfess Horn (n), and Corollary 3 follows. [J

Lemma 2. Let$ > 2,dy > 1,6 >1,m > 1, 1y = doérir, m; € [0,m — 1itq]
(1<i<$),m> sy, i >r, and let
, . . . .
(239) D= {(Y 1 Yo o Yoo Yo ) |1 € [0,6™)} C ™,
Suppose that ® is a IF linear subspace of ]Ff)m1 and dimg, (®) = $riry — r. Then there
exists B; € {0,...,m —1},1 <i <3 with B=#By + ...+ #Bs < r and

_ doé($1i—B)

(2.40) Y =F, ,

where

@41) ¥ ={0, i | i € Bi i€ [Ldod], i€ [13]) | n € [0,")}

with Bi = {O,...,m — 1} \ Bi'
Proof. Let # = sri1y — r, and let fy, ..., §; be a basis of ® with

1 1 N
Fo= (f;g,,z.lﬁl,...,f;l,gwl,...,f;f;5+l,...,f;f;5+ml), 1<u<t
Let

0(f,) = max {ri; + (i = )iy + | foy, . #0, j € [Lnin],i € [1,8]} for e [1,7]

Without loss of generality, assume now that o(f;) < o(f;) for 1 <i < j <#. Let

.. . : I l
o(f;) = iy, + (I — )iy + o, and let i = fi — f,-fk(;h)ﬁh/ fjf;.gﬁlz for1 <k <
i1,

We have v(f) < o(f;) forall 1 <k <j—1.
By repeating this procedure for j = #,7 — 1,...,2, we obtain a basis fy, ..., §; of
® with v(§;) < v(f]-) forl1 <i<j<7. Let

A= {ii+j|o(,) = (—Dig i+, 1 <j <y, 1 <p<?hiels].
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Taking into account that f4, ..., f; is a basis of ®, we get from (2.39)
(2.42) {1 jeA, ieLs]) nelobm)}=F"".

n,j

Now let
B;:= {]1 € [0,7i17) | El]l € [1,doé], with 7i; +]:id0é+].:j € A)}, i€(lL,s].

It is easy to see that B = #B; + ... + #B; < r, where B; = {0,...,m — 1} \ B;.
Bearing in mind (2.41), we obtain (2.40) from (2.42). Hence Lemma 2 is
proved. O]

3. STATEMENTS OF RESULTS.

If s = 2 for the case of nets, or s = 1 for the case of sequences, then (1.5)
follows from the W. Schmidt estimate (1.3) (see [Ni, p.24]). In this paper we
take s > 2 for the case of sequences, and s > 3 for the case of nets.

3.1 Generalized Niederreiter sequence. In this subsection, we introduce a
generalization of the Niederreiter sequence due to Tezuka (see [Te2, Section
6.1.2], [DiPi, Section 8.1.2]). By [Te2, p.165], the Sobol’s sequence [DiPi, Section
8.1.2], the Faure’s sequence [DiPi, Section 8.1.2]) and the original Niederreiter
sequence [DiPi, Section 8.1.2]) are particular cases of a generalized Niederreiter
sequence.

Let b be a prime power and let py, ..., ps € Fy[x] be pairwise coprime polyno-
mials over [Fy,. Let ¢; = deg(p;) > 1for1 <i<s.Foreachj>1land1<i<s,
the set of polynomials {y;;x(x) : 0 <k < e;} needs to be linearly independent
(mod p;i(x)) over F;,. For integers 1 <i <s,j>1and 0 < k < ¢;, consider the
expansions

yl]k —r—l
(3.1) all (j, k,r)x
M) E%

over the field of formal Laurent series F,((x~!)). Then we define the matrix
cl = (C,(,Zr))jzl,rzo by

é?:M%Q+Lkﬂ€Fb for 1<i<s j>1,r>0,

where j —1 = Qe; + k with integers Q = Q(i,j) and k = k(i,j) satisfying
0<k<e,.

A digital sequence (x;),>0 over F, generated by the matrices C1), ..., C() is
called a generalized Niederreiter sequence (see [DiPi, p.266]).

Theorem I. (see [DiPi, p.266]) The generalized Niederreiter sequence with gener-
ating matrices, defined as above, is a digital (t, s)-sequence over IF, with t = ey — s and

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03

17



18 MORDECHAY B. LEVIN

60 = 61 +...+es.

Theorem 1. With the notations as above, (X, )n>0 is d—admissible with d = e.
(a) Fors > 2, e =ejex---e5, )1 =s/(s+1) m >9(d+tes(s+1) and Ky;5 =
4(d +t)(s — 1)?, we have

14+ min min max ND*((x,00 ®W > 2 2pAK ms.
0<Q<bm weE, 1<N<b™ ((xne0 Jo<n<N) arst1'

(b) Let s > 3,112 € (0,1) and m > 8(d + t)e(s — 1)%p5 1 +2(1 + t)y, ' (1 — 172) L.
Suppose that miny, /> <je, <m,0<k<e,, (1~ deg(yio,jlk(x))j’lei_ol) > 1] for some iy €
[1,s]. Then

“rrrg]% V"D*((xn © W)o<pepn) > 2720~ de f;’lnz s,

3.2 Xing-Niederreiter sequence (see [DiPi, Section 8.4 ]). Let F/FF, be an
algebraic function field with full constant field [F, and genus g = g(F/IF).
Assume that F/IF, has at least one rational place P, and let G be a positive
divisor of F/IF, with deg(G) = 2¢ and P« ¢ supp(G). Let Py, ..., Ps be s distinct
places of F/F, with P; # Py for 1 <i <s. Pute; = deg(P;) for1 <i <s.

By [DiPi, p.279 ], we have that there exists a basis wq, w1, ..., wg of L(G) over
IF, such that

vp, (wy) =n, for 0<u<yg,
where 0 = np < n1 < ... <ng < 2¢. For each 1 < i <'s, we consider the chain

L(G) C L(G+P) CL(G+2P) C

of vector spaces over IFj. By starting from the basis wg, w1, ..., wg of L(G) and
successively adding basis vectors at each step of the chain, we obtain for each
n € IN a basis

(3.2) {wo, w1, ..., wg, ki1, ki, oor i e, }
of L(G + nP;). We note that we then have
(3.3) kij€ LG+ ([(j—1)/e;+1)]P) for 1<i<s and j>1

By the Riemann-Roch theorem, there exists a local parameter z at P, €.g.,
with

(34) deg((z)e) <2g+ €1 for z€ L(G+ P —Ps)\L(G+ P, —2P).
For r € N U {0}, we put

(3.5) 7, = {Zr if r & {no,n1,...,ng},

w, ifr=mn, forsomeu € {0,1,..,¢}.
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Note that in this case vp_(z,) = r forallr € NU{0}. For1 <i <sandje€ N,
we have k; ; € L(G + nP;) for some n € IN and also P ¢ supp(G + nP;), hence

Vp,, (k](.i) ) > 0. Thus we have the local expansions
(3.6) kij = Za](.jr)zr for 1<i<s and j€N,
r=0

where all coefficients a() € IFp. For 1 <i < s andj € IN, we now define the
sequences

3.7) C]('i) = (C](,i(;/‘?,(,?r---) = (a](,i;l)neﬂ\lo\{no,...,ng}
= (a/(5 Y a/(iT al) ﬁ al) ...) € FN,

jmo” Cjmo+17 7 gt T+ 0 Bings g +17
where the hat indicates that the corresponding term is deleted. We define the
matrices C), ..., C6) IF%\TXN by

(3.8) cl) = (cgi),cg),céi),...)T for 1<i<s,

i.e., the vector c](.i) is the jth row vector of C1) for 1 <i <s.

Theorem J (see [DiPi, Theorem 8.11]). With the above notations, we have that the
matrices C1), ..., C©) qiven by (3.8) are generating matrices of the Xing-Niederreiter
(t,5)-sequence (Xn)n>0 with t = ¢ +eg—sand eg = e + ... + es.

Theorem 2. With the above notations, (X, )n>0 is d—admissible, where d = g + e.
(a) Fors > 2, e = ey...es, m > 9(d + t)es?ny; t and Ky ;s = 4(d + t)(s — 1)?, we have

1+ min min max ND*((x Ow > 224K m’
0<Q<b™ weEj, 1<N<bm ((xnsg Jo<n<N) atsi1

with 11 = (14 deg((z)e0)) ! (see (3.4)).

(b) Let s > 3,1 € (0,1) and m > 8(d + t)e(s — 1)%n, 1 +2(1 +2¢ + m2t) 5, 1 (1 —
112) 1. Suppose that min, /5 _4<j<y Ve, (ki i) /] > 12, for some ig € [1,s]. Then
(3.9) min b"D*((xy & W)o<nepn) > 2720 K M5t

weeEs,

3.3 Niederreiter-Ozbudak nets (see [DiPi, Section 8.2 ]). Let F/FF;, be an
algebraic function field with full constant field F;, and genus ¢ = g(F/Fy).
Let s > 2, and let Py, ..., Ps be s distinct places of F with degrees ey, ..., es. For
1 <i <, let vp, be the normalized discrete valuation of F corresponding to P;,
let ¢; be a local parameter at P;. Further, for each 1 <i <5, let Fp, be the residue
class field of P;, i.e., Fp, = Op,/P;, and let 9; = (¢;1, ..., ¥;,) : Fp, — IF? be an IF-
linear vector space isomorphism. Letm > g+ Y2} ;(e; —1). Choose an arbitrary
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divisor G of F/IF, with deg(G) = ms —m + g — 1 and define a; := vp,(G) for
1 <i<s. Foreach1 < i <s, we define an Fj-linear map 0; : £(G) — [}/ on
the Riemann-Roch space £(G) = {y € F\0:div(y) + G > 0} U {0}. We fix i
and repeat the following definitions related to 6; for each 1 <i <s.

Note that for each f € £(G) we have vp (f) > —a;, and so the local expansion
of f at P; has the form

(3.10) F= Y Si(t, /), with Si(t;,f) € Fp, j > —a;.
j=—ai
We denote Si(t;, f) by fi;. Let m; = [m/e;j] and r; = m — e;m;. Note that

0 <r; <e. For f € L(G), the image of f under GI(G), for 1 <i <s, is defined
as

B1) 6 (F) = (0i1(F) e O () = (O i fi—aymy1)s s Bi(fi—a)) € Y,

where we add the r;-dimensional zero vector 0,, = (0, ...,0) € IFZ] in the begin-
ning. Now we set

(312) 0O (f) = (617 (), 67 (f) € By,
and define the [Fj,-linear map
0¢) : L(G) =S, f o 0©)(f).

The image of 6(%) is denoted by
(3.13) N = Nu(Py, ..., P G) := {6C) (F) e B | f € L(G)}.
According to [DiPi, p.274],

dim(N;,) = dim(£L(G)) > deg(G)+1—g¢=ms—m for m>g—s+e+..+es.
Using the Riemann-Roch theorem, we get
(3.14) dim(N,y) =ms—m for m>g—s+e+..+es, s> 3.

Let N;- = N (P, ..., P;; G) be the dual space of N, (Py, ..., Ps; G) (see (2.27)).
The space N can be viewed as the row space of a suitable m x ms matrix C
over IFy,. Finally, we consider the digital net P;(N;) = {x,(C)|n € [0,b™)}
with overall generating matrix C (see (2.25)).

Let fi(hi) = 77:1 47_1(hi,]')b_j, where h; = (hi,lr---rhi,m) € an (l = 1,...,5)
and let X(h) = (%1(h1), ..., %s(hs)) where h = (hjy, ..., hs). From (2.15), (2.16) and
(2.26), we derive

(3.15) Py :=Pi(N;5) = {&(h) | h € N;-(P,, ..., Ps; G)}.
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Theorem K (see [DiPi, Corollary 8.6]).With the above notations, we have that P,
is a (t,m,s)-net over By witht = g+ ey — s and ey = e1 + ... + es.

To obtain a d —admissible net, we will consider also the following net:

(3.16) Pri={({b"z1},..., {b"z}) | z = (21, ..., 25) € P1}.
Without loss of generality, let
(3.17) es = 11%1?5 e;.

Theorem 3. Let s > 3, mg = 25T3pTHH5(d 4 £)°(s — 1)% 1 (g + eg)en =+ and
7= (1+deg((ts)e)) L. Then

min max ND*(P;dw) > 2_2b_de_fj117_S+1ms_1, for m > my,
weEs, 1<N<b" A

Py is a d—admissible (t,m — ry,s)-net in base b with d = g+ ey, t = ¢ + ey — s, and

min "D*((P, @ w)) > 2720 K Sy lm =t for m > my,

weEfn_V0

where P; dw :={zdw|ze P}

3.4 Halton-type sequence (see [NiYe]). Let F/IF, be an algebraic function
field with full constant field IF, and genus g = g(F/F,). We assume that F/TF,
has at least one rational place, that is, a place of degree 1. Given a dimension
s > 1, we choose s + 1 distinct places Pi,...,Ps11 of F with deg(Ps11) = 1. The
degrees of the places Py, ..., Ps are arbitrary and we pute; = deg(P;) for1 <i <s.
Denote by Or the holomorphy ring given by

OF - m OP/
P?'észrl

where the intersection is extended over all places P # Ps;1 of F, and Op is the
valuation ring of P. We arrange the elements of Or into a sequence by using
the fact that

O = U E(mPs—i—l)'

m=0
The terms of this sequence are denoted by f, f1,... and they are obtained as
follows. Consider the chain

L£(0) € L(Ps+1) € L(2Ps4q) € -+

of vector spaces over [Fj. At each step of this chain, the dimension either re-
mains the same or increases by 1. From a certain point on, the dimension
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always increases by 1 according to the Riemann-Roch theorem. Thus we can
construct a sequence v, vy, ... of elements of Or such that

(3.18) {vo, 01, ..y W(mpsﬂ)fl}
is a [Fy-basis of £L(mPs,1). For n € N, let

n=1Y a(n)b" withall a,(n) € Z,
r=0

be the digit expansion of n in base b. Note that a,(n) = 0 for all sufficiently
large r. We fix a bijection ¢ : Z;, — F, with ¢(0) = 0. Then we define

(3.19) fn= i ar(n)v, € Op with a,(n) = ¢(a,(n)) for n=0,1,....
r=0

Note that the sum above is finite since for each n € IN we have a,(n) = 0 for all
sufficiently large r. By the Riemann-Roch theorem, we have

(20)  {fIFeLlim+g—1)Pn)} = {fulnel0b™)} for m>g

For eachi =1, ..,s, let p; be the maximal ideal of Or corresponding to P;. Then
the residue class field Fp, := Of/gp; has order b% (see [St, Proposition 3.2.9]).
We fix a bijection

(321) op;, - FPi — Zbei'

For each i = 1,...,s, we can obtain a local parameter t; € Or at p;, by applying
the Riemann-Roch theorem and choosing

(3.22) ti € L(kPs11 — P;) \ L(kPsy1 — 2D)
for a suitably large integer k. We have a local expansion of f, at p; of the form
(3.23) fo=Y 0t withall £ € Fp, n=0,1,....
j=0
We define the map ¢ : O — [0,1]° by
(3.24) E(fn) = (];)‘TPl (frg,j))b e1(]+1)l...,];)(7ps (fzfj))(b es(]+1)>.

Now we define the sequence xg, X1, ... of points in [0, 1]° by
(3.25) Xn =C(fn) for n=0,1,...
From [NiYe, Theorem 1], we get the following theorem :

Theorem L. With the notation as above, we have that (x,),>0 is a (t,s)-sequence
in base b witht = g+ ey —sand eg = e + ... + es.
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By Lemma 17, (x,),>0 is d—admissible with d = ¢ + eg. Using [Le4, Theorem
2], we get

(3.26) 1+ max ND*((xneQ ® W)osn<N) 2 2° 2Ky

for some Q € [0,b™) and w € E;,.
In order to obtain (3.26) for every Q and w, we choose a specific sequence
V9,71, ... as follows. Let

oor € L(([2g +1)/er] + 1)Py — Poya) \ £(([(2g +1)/e1] +1)Py — 2P,11).

It is easy to see that

(327)  wp,(tsy1) =1, vp(tss1) >0, i€ [2,5] and deg((fs41)e) <28 +e1 +1.

By (3.18) and the Riemann-Roch theorem, we have vp,, (v;) = —i — g fori > g.
Hence

(3.28) = Y ot/ with all v;€F, v,#0, i>g.
jsitg
Using the orthogonalization procedure, we can construct a sequence vy, vy, ...
such that {vo, v1, ..., Oy(mp,, )1} is a Fy-basis of L(mPs,1),
(3.29) Viitg =1, and v, =0 for je(gi), i>g.

Subsequently, we will use just this sequence.

Theorem 4. With the above notations, (X, )n>0 is d—admissible, where d = g + ep.
(a) For s > 2, m > 22+3pd+ttstl(g 4 4)stlg2se(o + 1) (eg + )y, * and

m = (1+deg((ts11)w)) L, we have

. . 21 —d

B30 Lk min, min e, ND((s0 & Whozsen) > 2 %Ki i
(b) Let s > 3, m > 225+3pd+t4s(d 4 1)3(s — )25 Yg+ep)en,°tH,

es = minj<j<se; and 7o = (1+ deg((ts)e)) 1. Then

(3.31) min b"D*((xn & W)o<n<pm) > 27 2~ de f:l’h =1,

weEs,

3.5. Niederreiter-Xing sequence.
Let F/IF, be an algebraic function field with full constant field IF, and genus
¢ = g(F/Fy). Assume that F /F; has at least s + 1 rational places. Let Py, ..., Ps11
be s 4 1 distinct rational places of F. Let G, = m(Py + ...+ Ps) — (m— g+ 1)Psyq,
and let t; be a local parameter at P;, 1 <i < s+ 1. For any f € L(G,) we have
vp,(f) > m, and so the local expansion of f at P; has the form

w .
f=Y fijt, with fi;€F, j>-m 1<i<s.

j=—m
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For 1 <i <'s, we define the [Fy-linear map ¢,,,;(f) : £(Gn) — ] by

Umi(f) = (fi—1) - fi—m) €FY, for fe L(Gp).
Let

(332) My = Mu(Pry . P; Gin) 1= {($1(F)y ooor Yms(f)) € I | f € L(Gm)}-

Let C(,...,C() € F** be the generating matrices of a digital sequence
Xn(C)n>0, and let (Cp,),y>1 be the associated sequence of row spaces of overall
generating matrices [C],, m = 1,2, ... (see (2.25)).

Theorem M. (see [DiPi, Theorem 7.26 and Theorem 8.9]) There exist ma-
trices CV),...,CY) such that x,,(C)n>0 is a digital (t,s)-sequence with t = g and
Cn = Mi(Pl,...,PS;Gm)for m>g+1,s>2

According to [DiNi, p.411] and [DiPi, p.275], the construction of digital se-
quences of Niederreiter and Xing [NiXi] can be achieved by using the above
approach. We propose the following way to get x;,(C);,>o.

We consider the H-differential dt; 1. Let w be the corresponding Weil differ-
ential, div(w) the divisor of w, and W := div(dt;y1) = div(w). By (2.5), we
have deg(W) = 2¢ — 2. Similarly to (3.18)-(3.29), we can construct a sequence
0o, 01, ... of elements of F such that {29, 01, ..., O¢((m—g+1)p,,,+w)—1} is @ Fp-basis
of
Ly :=L((m—g+1)P;y1 + W) and

(833) o, €Li1\Ly, vp  (0)=-r+g—2,1r>g, and Oy42 ¢=1,0,;=0
for2 <j<r+2— g where
0y 1= Z ’('Jr,]'ts_ll for 0,;€F, and r > g.
j<r—g+2

According to Proposition A, we have that there exists 7; € F (1 <i<s),such
that dt, 1 = ydt; for 1<i<s.
Bearing in mind (2.4), (2.6) and (3.33), we get

l/pi(T}rTi) = Vpi(Z)r’L'idfi> = l/pi(Z')rdterl) > Vpi(diV(dtS+1) — W) =0, 1< i < s, r>0.

We consider the following local expansions

r

(3.34) o1 = Y ¢V whereall ¢ e, 1<i<s, j>0.
jor i i, J
j=0

Now let Cl) = ( ('))]-,QO, 1 < i <s, and let C,, be the row space of overall

¢
generating matrix [C],, (see (2.25)).
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Theorem 5. With the above notations, x,,(C),>0 is a digital d—admissible (t,s)-
sequence, satisfying the bounds (3.30) and (3.31), with d = ¢+s, t = g, and
Cn = M;5(Py, ..., Ps; Gy forall m > ¢ + 1.

3.6 General d—admissible digital (,s)-sequences. In [KrLaPi], discrepancy
bounds for index-transformed uniformly distributed sequences was studied. In
this subsection, we consider a lower bound of such a sequences.

Lets>2,d>1,t>0,dy=d+tand m = s2dg(2%*2 —1) fork = 1,2, ...
Let C6+D = (CE,S}-H))i,jzl be a N x IN matrix over IF;, and let [C(**1)],, be a non-
singular matrix, k = 1,2,... . For n € [0,0™*), let hy(n) = (hg1(n), ..., hgm, (1)) =
n[CETD]L and hy(n) = Y0y ¢ (e (n)bt (k > 1). We have Iy (1) # hy(n)
for I # n, I,n € [0,b™). Let h ' (hx(n)) = n for n € [0,b™). It is easy to see
that h;l is a bijection from [0, b™k) to [0,6™*) (k =1,2,...).

Theorem 6. Let (x,)n>0 be a digital d—admissible (t,s)-sequence in base b. Then
there exists a matrix CV) and a sequence (h~'(n)),>o such that [CFV],, is non-
singular, h™Y(n) = h'(n) = h'(n) for n € [0,b™) (I > k, k = 1,2,...),
(Xp-1(n) Jn>0 a d—admissible (t, s)-sequence in base b, and

1+ min max  ND*((X,-1(,)a0 © W)o<n<N) > 2_2b_de_S mi, k>1.

0<Q<b"k,WeE;,;, 1<N<b"* A5+1

Remark 2. Halton-type sequences were introduced in [Tel] for the case of
rational function fields over finite fields. Generalizations to the general case of
algebraic function field were obtained in [Lel] and [NiYe]. The constructions in
[Lel] and [NiYe] are similar. The difference is that the construction in [NiYe] is
more simple, but the construction in [Lel] a somewhat more general.

Remark 3. We note that all explicit constructions of this article are expressed
in terms of the residue of a differential and are similar to the Halton construc-
tion (see, e.g., (4.6), (4.28), (4.62) and (4.113)-(4.121)). The earlier constructions
of (t,s)—sequences using differentials, see e.g. [MaNi].

4. PROOF OF THEOREMS.

4.1. Generalized Niederreiter sequence. Proof of Theorem 1. Using [Le4,
Lemma 2] and [Te3, Theorem 1], we obtain that (x,),>0 is d—admissible with
d= €.

We apply Corollary 3 with B; =0,1<i<s+1,B=0,é=e=-¢e1ep-"-e¢s,
dy = d+t, e = n(2sdoe) ! and 17y = s/(s+1). In order to prove the first
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assertion in Theorem 1, it is sufficient to verify that

(4.1) Ay = FEDRme g > 9(d 4 Hes(s + 1),
where
A= {(yfﬁl),...,yggl,...,y,i‘(ﬁ,...,yszls,ﬁdm’l (n), ., 8a,,,,(n)) [n€[0,b™)}
with
(4.2) di =y = doe[me] (1 <i<s), dsi11 = titgpq+1:=t+4 (s —1)doe[me],

g1 = tits 1 := t — 1+ sdoe[me], and n = Yo j<py_q a;(n)b).
Suppose that (4.1) is not true. Then there exists b;; € IF, (i,j > 1) such that

d; dsi1p

S
(4.3) Y X b+ Y bsiayl >0
i=1j=1 j=ds 411
and
S dl‘ () ds+1,2
(4.4) Y. bi,jynl,j—k Y bsy1aj(n) =0 forall ne[0,b").
i=1j=1 j=ds 41,1
From (2.14) and (3.1), we have
m—1
Yoy = X 0 (n),
r=0
with
(4.5) c]() —aD(Q+1,kr)€F, j—1=Qe+k 0<k<e,

Q = Q(i,j), k = k(i, ), where a(®) (], k,r) are defined from the expansions

yl]k ,r,1
=) all ],k r .
pl ) r>0

We consider the field F = Fy(x), the valuation v (see (2.1)) and the place
Py = div(x~1). By (2.8), we get

a¥(j,k,r) = Res (y;;(x)pi(x) Ix"*2).
Peo,x1
Hence

(i) yi,Q(i,j)—l—l,k(i,j)(x) m=l 42\ _ yi,Q(i,]')+1,k(iJ)(x)
(46) Yy = Pfiﬁl( i () Q) 1 rg“r(”)x ) = Igﬁi( () QN+ n(x))
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with n(x) = Y/ o ai(n)xit? forall je[1,d4], i€ [l,s].
We have a;(n) = Resl(n(x)x_f_l). From (4.4), we derive
Poo,x™
i dsy1.2
(4.7) Res (1(x)a) —Ow1thuc—ZZbU%Q”Hk(Z])( )
Peo,x—1

i=1j=1 pi(x) Qe j=ds+1,1

for all n € [0,b™). Consider the local expansion

a = 2 qorx_r_1 with ¢, €F,, r>0.

Applying (2.12) and (4.7), we derive

m—1 00 m—1
Res (n(x)a) = Res ( Y. ﬁy(n)xwrz ) gorx_r_1> = Y au(n)e:
Poo,x ™1 Poo,x ™1 =0 r=0 u=0r=0
m—1 oo m—1
x Res (x**277 1)y = Y Y a,(n)erbur = Y au(n)pu =0
Peo,x—1 #=0 r=0 u=0
for all n € [0,b™). Hence
(4.8) ¢r=0 for re[0,m—1] and ve(a) > m.

According to (4.5), we obtain
Q(l,]) +1< Q(l,dl) +1< [(dz — 1)/61] +1= di/ei fOI‘j c [1,di],i c [1,5].
By (4.7), we get

49  weL(G) with G =Y di/eidiv(pi(x))+ (desrs +1)div(x) — mPe.

i=1
From (4.1) and (4.2), we have for m > 2t + 8(d + t)es(s + 1)

deg(G) = Zd +dsy10+1—m = sdoe[me] +t — 1+ sdoe[me] +1 —m
i=1
<t—m(1—2sdpee) =t—m(l—m)=t—m/(s+1) <O.
Hence a = 0.
Let g.c.d.(x, pj(x)) = 1 for all j # i with some i € [1,s]. For example, let i = 1,
and let pi(x) = x1pi(x) with ejp, = deg(pi(x)), e1 = e11 +e12, €11 > 0,
g.c.d.(x, p1(x)) = 1. According to (4.7), we get &« = a1 + ap + a3, where

d:
Yi,Q(i,j)+1,k(1,)) (x) yzQ +1k(1])( )
= b; , b
! ZZ; i p;(x) Qi) +1 ; Lj pp(x) QL)+

/ d
; A (x 112 ]
and a3 = Zbl,jyl'Q(L])H'k.(l'])( ) Z
j ! , j—ds+1,1

s+1,j
xj+1
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with some polynomials  ;x(x) and iy ;x(x).
Using (4.2), we obtain for s > 2 and j € [1,d] that

dst11+1=1t+14 (s —1)doe[me] > doe[me] = dy > e11d1/e1 > e11deg(Q(1,d1) +1).

We have that the polynomials py, ..., ps, p1 and x are pairwise coprime over IF,,.
By the uniqueness of the partial fraction decomposition of a rational function,
we have that a3 = 0 and b, 1 = 0 for all j € [ds;1,1,dsy1,2]-

Bearing in mind that py, ..., ps are pairwise coprime polynomials over IF;, we
obtain from [Te3, p.242] or [Te2, p. 166,167] that b;; = 0 for all j € [1,d;] and
iell,s].

By (4.3), we have the contradiction. Hence assertion (4.1) is true. Thus the first
assertion in Theorem 1 is proved.

Now consider the second assertion in Theorem 1:
Let, for example, ip = s, i.e.

(4.10) min (1 —deg(ysx(x))ji e ) > 1.

m/2—t<jes<m,0<k<es
We apply Corollary 2 withs =5 >3,B;,=0,1<i<s,B=0,7=0,m =1,
dy=d+t é=ce=eer--es, € = 12(s—1)doe)~!. In order to prove the
second assertion in Theorem 1, it is sufficient to verify that

@11) Ay = for > 8(d+t)e(s — 1)yt 21+ )y (1 —m2) 7Y,

where

1 1 s—1 s—1 S S
Ay = {(yi(qlz,...,yi/il,...,yfqll ),...,yi/dsl,y](qlzls,l,...,yilzis’z) |nel0,b™)},

with
(4.12)  d; =m; =doe[me|, i € [1,s), ds1 =1 +1:=m—t+1— (s —1)dge[me|

and dgp = 1it; ;== m — t — (s — 2)dpe[me].
Suppose that (4.11) is not true. Then there exists b;; € IF; (i,j > 1) such that

s—1 d; ds2
(4.13) Y oY bijl+ ) |bsjl >0
i=1j=1 j=ds1
and
dsp
(4.14) Z Zb,]yn] S]yn] =0 forall n<[0,b™).
i=1j=1 j=dsa

Similarly to (4.7), we have
Resl(n(x)oc) =0 forall nel0,b"), with a=ua;+ay,
P, x—
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where

yzQ1]+1k(z])( ) 452 ySQS]+1k(S])( )
(4.15) ZZ ij i (1) QAT and ap = ]glbsj (1) QT

i=1j=1
Consider the local expansions
= 2 (pl,rx*rfl and ap = 2 gozlrx*rfl with ¢;, €F, i=12r>0.
= r=0
Analogously to (4.8), we obtain from (4.14)
(4.16) ¢1r+ @2, =0 forall rel0,m—1].

Taking into account that j < (Q(s,j) + 1)es and dgq > m/2 —t, we get from
(2.1) and (4.10) that

Ys,Qs, )+ 1k(s,) (X)\ , )
1/00( ps(x)Q(s)+1 ) = (Q(s,7) + 1)es — deg(ys q(s,j)+1,k(s,) (X)) =

d s5,Q(s,j s,j)\X . . .
Qo) +1) (1= BEBLCACIED ) Q)+ ey > > o

Applying (4.15)-(4.16), we have ¢, , = 0 for r < [12ds1]. Therefore ¢1, =0
for r < [n2ds1]. Hence

Veo(&1) > [112ds1]-
Similarly to (4.9), we obtain

s—1
a1 € L(Gy) with Gy =) di/ediv(pi(x)) — [72ds1] Pos
i=1

From (4.11) and (4.12), we have that m > 2(1+ )5, '(1 —72)~! and
deg(G,) = Z d; — [ds1m2] = (s — V)doe[me] — [(m — t + 1 — (s — 1)dge[me]) 2]

< (s— 1)doe[me] — (m—t— (s —1)doe[me])n2 +1 = (1 + 12)(s — 1)doe[me]
—mmy+ 1+t <m((1+n2)((s —1)doee — 1) + 1+t

=mmp((1+n2)/2—1)+1+t=1+t—mny(1—12)/2 <0.
Hence &1 = 0 and ¢, = 0 for r > 0.
Using [Te3, p.242] or [Te2, p. 166,167], we get b;; = 0 for all j € [1,d;] and
e [1,s —1].
According to (4.16), we have ¢, , = 0 for r € [0,m — 1] . Thus ve(ap) > m.
From (4.15), we obtain

ay € L(G3) with Gz = [dsa/es + 1]div(ps(x)) — mPe.

Applying (4.1) and (4.2), we derive for m > 2/eand s > 3

deg(Gs) < m —t— (s —2)doe[me] +es —m < 0.
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Hence ay = 0.

By the uniqueness of the partial fraction decomposition of a rational function,
we have from (4.15) that b, 1,; = 0 for all j € [dy1,ds2].

By (4.13), we have a contradiction. Thus assertion (4.11) is true. Therefore
Theorem 1 is proved. [

4.2. Xing-Niederreiter sequence. Proof of Theorem 2. Lemma 3. Let P € P,
t be a local parameter of P over F, k; € F, vp(k;) = j (j = 0,1,...). Then there exists

ki € Fwithvp(kj') = —j (j =1, 2 ..), such that
(4.17) S a(tkjky 1) =6,  for  ji,j2a>0.

Proof. Let ki = (tko)~'. We see vp(kjki-) > 0 for j > 1. Using (2.2) and
(2.12), we get that (4.17) is true for j, = 0. Suppose that the assertion of the
lemma is true for 0 < jp < jg—1, jo > 1. We take

(4.18) ki1 = Z 0wk ki)', where p,;, = S_1(t k1 (tk;,) ).

We see that vP(k].OH) =

sumption of the induction, we have 1/p(k]1 k- o +1) > 0 for j; > jo and

—jo — 1. By the condition of the lemma and the as-

(4.19) S_a(t kikiy) = 8,5 for ji> jo.

Now consider the case j; € [0, o). Applying (4.18), we derive

5-1 t k k]o+1 Z Pu, ]0 t khky ) + Sfl(t' kjl(tkjo)_l)'

Using (2.12), (4.18) and the assumption of the induction, we get

S_1(t, kjkis41) ﬁpy,joéjl,y_l +S_1(tk;, (tkip) ™) = pjvs1jo — Pjn+1o = 0.
Hence (4.19) is true for all j; > 0. By induction, Lemma 3 is proved. O
Lemma 4. (x;),>0 is d—admissible with d = g + ey, where ey = e1 + ... + es.
Proof. Consider Definition 5. Taking into account that (x;,),>0 is a digital

sequence in base b, we can take k = 0. Suppose that the assertion of the lemma
is not true. By (1.4), there exists 7 > 0 such that |||, || x|, < b~% = b8~ .

Let d; = diei +d1 with 0 < dl <e,1<i1<s, ”ﬁ”b = pm1
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b=4~1,1<i<s. Hence € [p"1,b™), xy(zl,zﬁl 70,

) S
¥ =0 forall je(l,d], ic(ls] and Y .(di+1)—m>d=g+e.

i i=1
By (2.14), we have

; . S .
(4200 yy; =0 forall j€[Ldie] i€[Ls] with Y dies>m+g
i=1

Let
4.21)  {ng,..,ng_1} ={0,1,...,2¢} \ {no, n1,..,ng} and n; =g+i+1fori>g.

Let n = Y La;(n)b' with a;(n) € Z, (i = 0,1...), and let a;(n) = ¢(a;(n))
(i=0,1,...) (see (2.13)). From (2.14), (3.6) and (3.7), we get

4.22 0 a0 = S ama for je[Lm], ief
(4.22) Y = Z ay(n)c]m = Z aﬂ(”)aj,fzy or je[l,m], iells].
u=0 u=0

By (3.5), we have
(4.23) vp, (z;) =r, for r>0, and 2z, =w, with u=0,1,..4.
Using Lemma 3, (2.2) and (2.8), we obtain that there exists a sequence (Z]L) i>1
such that va(sz) = —jand
(4.24) Ip{sg(zizﬁrl) =S_1(z, zl-z]%rl) =¢;; forall i,j>0.
We put

m—1 L
(4.25) fo=)_ au(n)zy 1.

u=0
Hence
(4.26) ay(n) = llgeS(fnZﬁy) for 0<u<m-—1,n€e]|0,b").

00,2

By (2.12) and (4.21), we have 6;,,n, =0 forall0 <u < g, u > 0.
Applying (4.23) and (4.24), we derive

m—1
(4.27) Res(fywy) = Res( Y @u(n)zy, 41 20, )
00,Z 0,Z u=0
m—1 m—1
= c‘zy(n)lp{eg(z,tﬂ Zn,) = ) au(n)0n,n, =0 for u=0,1,.,8 n>0.
u=0 oor u=0
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According to (3.6) and (4.25), we have

Res(fn ij) Res( 2 a,(n n,,+1 Za](.fr)zr>
r=0

-1 m—1 oo (i) m—1 (i)
Z Zd Res n 12r) = Y. ﬁﬂ(”)”j,r‘sﬁwf =) aP‘(n)aj,ny'
=0r=0 u=0r=0 u=0
From (4.22), we get
(4.28) IPQes(fnki,j) = yff} forall jel[l,m], i€([l,s], ne[0,b™).
0,2 !
Using (4.20) and (4.27), we derive
S del
Res(fn< Zb w+ Y wak,]» —0 forall byb;j €Ty
i=1j=1

Taking into account that (wy, ..., g, k1l1,...k1,d-1€1, . ks,lf"-fks,dses) is the basis of
L(G+ Y5 1 d;P;) (see (3.2)), we obtain

S
(4.29) ges(fﬁy) =0 forall € £(G) with G=G+) dP,.
cor% i=1

By (4.20), we have

S
deg(G— (m+g+1)Pu) =2¢+ ) diej— (m+g+1) >2g+m+g—(m+g+1) =2g—1.
i=1

Using the Riemann-Roch theorem, we get
G=(G—(m+9g)Ps)\(G— (m+g+1)Ps) # .
We take v € G. Hence vp_(v) = m + g. A A
From (3.5), we derive v = },>,, ., bz, with some b, € F, (r > m+g)
and by, ¢ # 0. According to (4.21), we have 7,1 = m + g. Therefore v =
Y, byz,.

Taking into account that 7i € [b™~1,b™), we get a,,,_1(#) # 0.
By (4.24), (4.25) and(4.29), we obtain

m—1 m=1
Poorz =0 7ty Poor2 =012y

Bearing in mind that ;,, = 1 for p € [0,m —1], r > 7,1 if and only if
p=m—1andr = n, 1 (see (4.21)), we get Resp_.(f7v) = ay_1(i)bs, , # 0.
We have a contradiction. Hence Lemma 4 is proved. [



ON THE LOWER BOUND OF THE DISCREPANCY OF (¢,s)-SEQUENCES: II

Lemma 5. Let s > 2, d; = doe[me], 1 < i <'s,dgy11 = t+ (s — 1)dpe[me],
dsy12 =t —14sdoe[me|, dg =d+t,t =g+ey—s,e=ej...esand m > 2/e. Then

the system {wo, wy, ..., we} U{Z/ T8}y | cica ULk jh<ics<j<a, of elements of
F is linearly independent over IF,.

Proof. Suppose that

dsy1,2
Sj+g+l
w _Zbojw]JrZZbl]k”Jr Y boyz =0
i=1j=1 j=ds111

for some b;; € IF, and Z}";O |bojj| + Y51 Z;il + Z dst12 |bs+1]| > 0. Let

]

3 di s ds+12 .
(4.30) Pr=)_bojwj Boi =Y bijkij P2=) Pois Ps= D} bsr1; 77
J=0 j=1 i=1 j=ds41,1
We have
(4.31) &= pB1+ P2+ B3 =0.

Suppose that)~; ; Z?;l b;j| = 0 and « = 0. By (4.30) and (4.31), we have
B1+ B3 = 0 and vp_(B1) > ds+11. Taking into account that B € L£(G) with
deg(G) = 2g, we obtain from the Riemann-Roch theorem that f; = 0. There-

fore Eg olbojl = 0and st“’z ’bs+1 jl = 0. We have a contradiction.

According to [DiP;j, Lemma 8.10], we get that if Z 5“2 | s+1,j| = 0 and
a = 0, then 2].:0 |bo,j| = 0and }7;_; ijl |b; ;| = 0. So, we w111 consider only the
case then Y7, Z;.ii 1 1bij] > 0and 245“'2 bst1,5] > 0.

Letz "1 |byj| > 0 for some h € [1,s], and let vp, (z) > 0.

By the constructlon of kj,j, we have By, ¢ L(G) and B,;, # 0. Applying (3.3)
and (4.30), we obtain vp(B,;) > —vp(G) for any place P # P, and hence we
obtain that vp (B2y) < —vp,(G) — 1 with vp, (G) > 0.

On the other hand, using (3.3) (4.30) and (4.31), we get

vp, (Ban) = vp, ( —p1— i Boi — /53)

i=1,i#h
> min <1/ph(,81),1/ph(ﬁ3) 1<n<11n7éh1/ph(,821)> > —Vph(G).

We have a contradiction.
Now let vp, (z) < —1. Bearing in mind that Yild |bs+1| > 0, we obtain

that B3 # 0, and vp,(B3) < —ds111 —¢—1. On the other hand, using (3.3) and

s+1 2
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(4.31), we have
vp, (B3) = vp,(B1+ B2) = —vp,(G) — [(dn, — 1) /e + 1]e, = —2g — dj.
Taking into account that
ds_|_1’1 —|—g+1—(2g+dh) = t+g+1+(s—2)doe[me] —29>t—g+12>1,

we have a contradiction. Thus Lemma 5 is proved. ]
Lemma 6. Lets > 2, dy =d+t t = g+e —s, € = n(2sdoe)™t, m1 =
(1+ deg((2)e)) ",
1 1 _ _
Ay = LYy e 0 By (1), g, (1)) | 1€ [0,6M)),

where

(4.32) di =1, 1= doe[me] (1 <i< S), d5_|_1,1 = m5+1 +1:=t+ (S — 1)(106[7’1’16],

dsi1p2 = thsy1 == t — 1+ sdoe[me], e = ejex---es, and n = Yo<jcy aj(n)bj.
Then
(4.33) Ay =B ith > 9(d + t)esy;

Proof. Suppose that (4.33) is not true. Then there exists b;; € T}, (i,j > 1)
such that

d; dsy1,2

S
(4.34) Yo Y bl 4+ ) bsiajl >0
i=1j=1 j=ds 111
and
s+12
(4.35) ZZbljyn]Jr Z by1,;a;(n) =0 forall n e [0,b").
i=1j=1 j=ds+11

From (4.26) and (4.28), we obtain for n € [0, b™)
aj_1(n) = Res(fnzs,_,) and y(i), = Res(fuk;;) with je[l,m], i€ ][l,s].
P,z / Py ,z 5

n,j

Applying (3.5) and (4.21), we get 711 = g+ j and zs_, = 28"/ for j > dgyq.
Hence

s 4 ds+1,2 ‘
(4.36) Y Y ou ]Res (fukij) + Y. bsy1jRes(fuz8"/*1) = Res(fun1) =0
i=1j=1 j=ds111 Poorz Poorz
with
s d; dsi1 )
(4.37) ZZ bijkij+ Y. bspq,z8t for n e [0,b™).
i=1j=1 j:ds+1,1
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Let
s d; 8 s d
bOu = = Z bl]a]n ’ 131 = Z bO,uwu/ 182 = Z Z bi,jkz',jr
i=1j=1 u=0 i=1j=1
dsi12 .
(4.38) B3 = Z bs+1,jzg+]+1 and ay = B1+ Bo+ B3 = B1 + 1.

j:ds+1,1

By (4.34) and Lemma 5, we get
(4.39) ay # 0.

Consider the local expansion

(4.40) =Y ¢z with ¢, €F, r>0.
r=0

Using (3.5), (3.6) and (4.38), we have

(4.41) ¢Pn, =0 for 0<u<g.

From (4.27), we derive Ip{es( fawy) =0 (0 <u <g). By (4.36) and (4.38), we get
OO/Z
ges(fnﬁl) =0 and ges(fntxz) =0 forall ne][0,b™).
0,2 00,2

Applying (4.24), (4.25) and (4.40), we obtain
m—1 N 00
Iéosg(fn“Z) = 1;53( ;} ”u(”)zfzyﬂ r;) (Przr)

m—1 oo

=L Eatatesti = = T Santiesn, = L ane, o

u=0r= u=0r=0
for all n € [0,b™).
Hence ¢;;, = 0 for p € [0,m — 1]. According to (4.21) and (4.41), we have

(4.42) ¢r=0 for re[0,m+g].
Therefore
(4.43) vp, () > m+g.

From (3.3) and (4.38), we derive
Bi+Be L(G+ ) [(di—1)/e;+1]P) and Bz € L((dst12+8+1)(2)e0)-
i=1

By (4.43), we obtain

ay € L(Gy) with Gy =G+ ) _[(di—1)/ei+1]Pi+ (dsy12+8+1)(2)eo — (m+g+1) P
i=1
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Using (4.32), we have

deg(G1) =2¢+ ) _di+ (dsy12+ g+ 1)deg((2)e) — (M +g+1)
i=1

= 2g + sdoe[me] + (t + g + sdoe[me]) (7, ' —1) — (m +g +1)
<2g+ (t+g)(ny' — 1)+ sdoemen;* — (m+g+1)
=g—1+(t+8)(n; ' —1) —m(1 —sdoeen; ') =g —1+ (t+8)(5; ' —1) —m/2 <0

for m > 9(d + t)es?y; ' > 2(g—1) +2(t+g)(y; ' — 1) and d = g + ep. Hence
ay = 0. By (4.39), we have a contradiction. Therefore assertion (4.35) is not true.
Thus Lemma 6 is proved. ]

End of the proof of Theorem 2. Using Lemma 4 and Theorem ], we get
that (x(n)),>0 is a d—admissible digital (¢,s) sequence with d = ¢ + ¢y and
t = g+ ey —s. Applying Lemma 6 and Corollary 3 with B;- =0,1<i<s+1,
B=0and é=e =ejey---es, we get the first assertion in Theorem 2.

Consider the second assertion in Theorem 2 :
Let, for example, iy = s, i.e.
(4.44) Up, (ksj) > 12j for j>m/2—t, and ;€ (0,1).
From (1.4), Lemma 4 and Theorem J, we get that (x(1) )< <pm is a d—admissible

digital (¢,m,s)-net withd = g+ epand t = g+ ¢y —s.

We apply Corollary 2 withs§ =5 >3,B;=90,1<i<s5,B=0,7=0, m =i,
é=e=ee--6,dy=d+t t=g+e —sand ey = e + ..+ e In order to
prove the second assertion in Theorem 2, it is sufficient to verify that

445) Ay = " for m > 8(d+ t)e(s — 12y +2(1+ 25 + mat)yy M (1 —12)
where
2= Lt b0 1 € [0
with
(4.46) d; =11 :=dgelme], i € [1,s), ds1 =1 +1:=m—t+1—(s—1)dge[me],

dsp = 1its := m — t — (s — 2)doe[me], and € = 1(2(s — 1)dge) L.
Suppose that (4.45) is not true. Then there exists b;; € [F, (i,j > 1) such that

ds

s—1 d; ,
(4.47) Y ) Ibijl+ Y byl >0
S

i=1j=1 j=dsa
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and

&.

5,2

ZZbUyn] S]yn]—O forall n e [0,b™).
i=1j=1 j=ds

Similarly to (4.36), we get
IP{es(fnrxl) =0 forall nel0,b"),with a;=uar—p
00,2

where ay = B1 + B2 + B3, with

g s—1 d; ds,Z
(4.48) Bi=)Y bouwy, Po=) Y bijki; and Pz= ) bsjks;
u=0

i=1j=1 j=ds1

ds

and by, = — Y Z b;;a ](2 — Z]. :2d bs,ja](-sn) . Consider the local expansions

51+52—24’r2r and B3 = Zqorzr with ¢;, €F, i=1,2, r>0.
r=0

Analogously to (4.42), we obtain
(4.49) ¢r+@r=0 for re[0,m+g]
Using (4.44), (4.46) and (4.48), we get
vp, (ksj) > 12j for j>ds1>m/2—t, and @, =0forr < [n2ds ] —
Therefore ¢, = 0 for r < [i2ds1] — 1. Hence

vp, (B1+ B2) > [172ds 1]
By (4.48), we obtain

—1
B1+ B2 € L(Gy) with Gy =G+ Z 1)/e; + 1]P; — [112ds1] Peo

i=1
According to (4.45) and (4.46), we have

s—1
deg(Gy) =29+ ; d; — [n2dsp] = 28+ (s — 1)doe[me]| — [2(m —t +1 — (s — 1)dpe[me])]

<29+ (s —1)doe[me| —np(m —t+1— (s — 1)doe[me]) +1 = (1 + 12)(s — 1)dpe[me]
—miy +28+1+1m(t—1) <mnyp((14+12)/2 1) +1+2g+ 1t <0
for m > 2(1+2g¢ + 12t)n, 1 (1 — 72) ~1. Hence B1 + B2 = 0.

By [DiPi, Lemma 8.10] (or Lemma 5), we get that b;; = 0 for all j € [1,d,],
i€[l,s—1]and by; =0 for j € [0, g].
From (4.49) we have ¢, = 0 for r € [0,m + g| . Thus vp_(B3) > m+ g+ 1.
Applying (4.48), we derive

Bs € L(G3) with G3 =G+ [(dsp—1)/es+1]Ps— (m+ g+ 1)Ps
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By (4.46), we obtain
deg(G3) =29+m—t—(s—2)doe[me]+es—m—g—1<g—t—1+es— (s —2)doe[me] <0

for m > e ! and s > 3. Hence B3 = 0. Using (3.2) and (4.48), we get that bs; =10
for all j € [ds1,dsp].

By (4.47), we have a contradiction. Thus assertions (4.45) and (3.9) are true.
Therefore Theorem 2 is proved. [

4.3. Niederreiter-Ozbudak nets. Proof of Theorem 3. Let
s—1 s
(4.50) m=me;+r, with 0<r<e, 1<i<sandFy=) r, ro=)_ti
i=1 i=1
Lemma 7. There exists a divisor G of F/IF, with deg(G) = ¢ — 1 + o, such that
vp(G) =0for1 <i<s, and
Nm(Plr v, Ps; G) = Nm(Pl, ey Ps; é), where G = miPy + ... +mg_1Ps_1 + G.

Proof. We have vp(G) = a; and vp(t;)) = 1for 1 < i < s. Using the
Approximation Theorem, we obtain that there exists y € F, such that

(4.51) vp(y — t?"_mi) =a;+1, for 1<i<s—1, vp(y—t&)=as+ms+1.
Let f = fy and G = G — div(y). We note
(452) f € L(G) & div(f) +G >0« div(fy) + G —div(y) >0 < f = fy € L(G).
It is easy to see that vp(G) = m; (1 <i < s—1), vp,(G) = 0 and deg(G) =
deg(G) =m(s—1)+g—1.Let G =G —mP; —...—mg_1P;_1. We getvp,(G) =
0 for1 < i <s. Hence

deg(G) =m(s—1)+g—1—eymy — ... —es_1ms_1 =g —1+F.
Let f;; = Sj(t;, f) (see (3.10)). By (4.51), we have

fl',,]' = fi/*az*mi*]. 1 S i S S — 1, and fslms,]' = fs,faermsfj with 1 S ] S ms.

Using notations (3.11), we get

01 () = (00 8 (1), s 0 fi-m)) = (O 05 fiayimy1)s oo BilFia)) = 6 ()

for1 <i<s-—1,and

6. (F) = (0r, 9 (Fome—1), s 95 (£50)) = (Ores 5 (fi —aorme1)s o 05 (o)) =
o) (f). By (3.12), we have

0 () = (0 (1), - 0887 (f)) = (017 (£),.. 07 () = 09 ()



ON THE LOWER BOUND OF THE DISCREPANCY OF (¢,s)-SEQUENCES: II

for all f € L(G). From (3.13) and (4.52) , we obtain the assertion of Lemma
7. O

By Lemma 7, we can take G instead of G. Hence
(4.53) G=mP +..+my_1P,_1+G, and a;=m;, 1<i<s—1, a;=0.
Let 9; = (01, ..., %i,,). From (3.11), we get for 0 <fi<m—1,1<j; <e, that

09 (F) = (051 (F)s s O (F)) = (O 8, (Fi 1), Bil o)), 1< i 5= 1,
w1th9”+]1€l+]l(f) 8, (f _4),and

(4.54) ) = (o, (f) +Os,m(f)) = (0r, Os(fsme—1), - Os(fs0)),
With Qs,rer]Yseerf,' (f) =0 f(fs mg ]s 1)

Lemma 8. Let 0; = (0,1, ..., 0,,) : Fp, — lFe' be an Fy,-linear vector space isomor-
phism. Then there exists an IF),-linear vector space isomorphism 9;- = (19}1, e 191-?) :
Fp, — IFb such that

e
Trr, /F, (1) = Y 0;j()9;;(%) forall x,%€Fp, 1<i<s.
i ],:1

Proof. Using Theorem F, we get that there exists ;; € Fp, such that
(4.55) 9;,i(y) = Trr, /¥, (yBi;) for 1<j<e,
and (Bj1, ..., Bie,;) is the basis of Fp, over IF, (1 < i < s). Applying Theorem G,
we obtain that there exists a basis ( fl, v fel) of Fp, over IF, such that

Trp, /]pb(ﬁlhﬁm) S, with 1<,/ <e.

Let x = Z]e-';l Vi f], ¥ = ] 17iBij and let
(4.56) 05(%) := ¥ = Trp, /F, (XB55)-
By (4.55), we have 7; = ¢; j(x). Now, we get

e
Ter /F, (1%) = Z ’7]1')’12Ter /Ty 51]1:31]2 27]7] Zlgi/]'(x)ﬁf(x)
J1j2=1 i=1

Hence Lemma 8 is proved. 0J

We consider the H-differential dt;. Let w be the corresponding Weil differen-
tial, div(w) the divisor of w, and W := div(dt;) = div(w). By (2.4) and (2.6),
we have

(4.57) deg(W) = Zg —2 and Vp, (W) = Vps(di's) = Ups(dts/di's) =0
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Using notations of Lemma 7, we define
(4.58) Gt =msP;— G+ W, where deg(G)=g¢g—1+7 and vp(G)=0
forl <i<s. Let aiL = Vpi(GJ‘ — W) for 1 <i <'s. We obtain from (4.58) that

a- =0for1 <i<s—1anda = ms Let f- € L(G1), then div(f+) + W+
Gt —W > 0and vp(div(f*) + W) > —vp (Gt — W). Applying (2.6), we get
459)  vp(frdts) = vp(fF) +vp (W) > —vp (G — W) = —ai, with a;" =0,

17

1<i<s—1,and a; = ms for fL c L(Gh). According to Proposition A, we
have that there exists 7; € F, such that

(4.60) dts = 1;dty, 1<i<s.
From (2.4) and (4.59), we get
Upi(fJ‘Ti) = Vpi(fJ‘Tidti) = Vpi(fj‘dts) > —aiL, 1<i<s.
By (2.2), we have the local expansions
(4.61) frr = Z Si( (t;, f+ Tl) where all S]-(ti,fLT,-) € Fp,
]_—ﬂ
for1 <i<sand f+ € £L(G'). We denote S;(t;, f+1;) by IL]
Using (2.7), (2.8) and (4.56), we denote
(4.62) ﬂiﬁ(fli) = Teri/]Fh(ﬁ f ) (ﬁf]lt i fLTi)

and 19L (19}1,..,191-%{) with 1 gfi <e, —ai < ji < —ai +m;—1,1<i<s.
For fL € L(G1), the image of fL under 9# for 1 <i <s, is defined as

O (F1) = O 0 (F1) 1= (O (e 0 (gt 1)oO) € Y,

It is easy to verify that

(4.63) 6, (F1) =05 (f5), for 1<fi<e, 0<fi<m—1,

(4.64) 1<i<s—1 and (’f]sesﬂs (f4) = (ff—msﬁs)' 0<7<ms—1
Let

(4.65) 01 (f1) == (61 (f), . 6 (f1)) € By™.

Let ¢; = (i1, ..., @ir,) With ¢ij € Fy (1<j<r,1<i<s), and let

(4.66) O ={p=(p,..9,) | @ €F}, i=1,.,s} with dim(P)=ry= Zri.

Now, we set

(4.67) 01 (frp) == (61 (Fh @), .05 (f' ) € Fy®,
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where

;- (f @) = (05(f @), s 05 (f . 0) == (@, 05 (f 1), s 075y (f 1)) € FY

We define the [F;-linear maps
(4.68) 0101 (L(G), @) =", (f19) = 0 (Fh )
and 0 £(GH) = FpE,  fR e 6O (FL).
The images of (1) and (1) are denoted by
(4.69) Eni= {0 (fLe) | f1 e L(Gh), pe )
and By = {0 () | f- e £L(GH)}

Lemma 9 With notation as above, we have ker(0(G1)) = 0 and

S (Ey) <m—+g—1+ey—ro.
Proof. Consider (4.57)-(4.60). Let f+ € £(G*) \ {0}, and let

(4.70) vp(fi) =d; for 1<i<s—1, vp,(f1) = ds — ms.

We see that

(4.71) div(ff)+ Gt >0, with Gt=mPs—G+W and W = (dt;).
Hence

(4.72) vp(div(f+) + msPs — G+ W) >0, forall P e Pp.

By (2.4) and (2.6), we obtain vp,(W) = vp (dts) = vp,(7;), 1 <i <s.
Bearing in mind (4.70) and that vp,(G) = 0 for i € [1,s], we get

vp(div(ft) +msPs— G+ W) =d; >0, 1<i<s.

Therefore

vp(div(F1)+ ) 2 0 for f- € £(GH)\ {0}, where G = G4 — Y diP,

and G+ = msPs — G + W. Taking into account that f* € L£(G*)\ {0}, we
obtain

Ogdeg(G):deg(GL ZdP) = deg(G') — Zdel
i=1

By (4.57), (4.58) and (4.50), we get

s
Zdiei gdeg(msPs—G-l-W) =ms€s—(g—1+70)+28—2=m—7’0+8_1-
i=1
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According to (4.61), (4.62) and (4.70), we obtain
fif;#ﬂ:o for 0<j<d; and fi,lail+d,- #0, 1<i<s.
From (2.22), (4.64) and Lemma 8, we have
v (0 () < (di+1)e; for 1<i<s.
Applying (4.65) and (2.23), we derive

S
an(f)cL (fH) <Y (@di+1)eg <m+g—14e—ro.
i=1

By (2.24), 6;:(Zy) < m+ g —1+ ey — ro. Taking into account (2.22) and that
s > 3, we get ker(9(G1)) = 0.
Therefore Lemma 9 is proved. [

Lemma 10. With notation as above, we have that dim(Z,,) = m.

Proof. By (4.57) and (4.58), we have
deg(G") = deg(msP; — G+ W) = mses —deg(G) +2g —2=m—rs+2g =2 —Fo— g+ 1.

Using (4.50) and the Riemann-Roch theorem, we obtain for m > g +ey —1 >
g + 1o that

dim(L£(G1)) = deg(msPs — G+ W) —g+1=m—rg+2¢—2—-29+2=m—rq.
From (4.66), we have dim(®) = rg. Hence
dim ((£(G1),®)) = dim(L(GH)) + dim(®) = m — rg + 1o = m.
By Lemma 9, we get ker(6(G-)) = 0. Bearing in mind that 8(G+) ((£(G1), ®))

.., we obtain the assertion of Lemma 10. ]

Lemma 11. Let f € L£(G), and f*+ € L(G™ ). Then

S
4.7 R Ldt) =
(4.73) 1_21 gs(ff s) =0,
m;—
(4.74) Rpeis(fdets) = 20 Trr, /i, (fi—j1 fi),  1<i<s—1
1 S L
(4.75) and Rpfsfs(ff dts) = Zé Trr, /¥, (fs,mrjfl fs,—ms+j)'
]:

Proof. By (4.53) and (4.58), we have
G=mP +..+mg1Ps_1+G, and G+ =mP,—G+W.



ON THE LOWER BOUND OF THE DISCREPANCY OF (¢,s)-SEQUENCES: II

Bearing in mind that div(f) + G > 0, div(f+) + G+ > 0 and that W = div(dts),
we obtain

43

div(f) + imiPi—FG-i-diV(fL) — G+ W =div(f) +div(f*) + imiPi—l—diV(dts) >0

i=1 i=1
From (2.6), we derive

vp(ffdts) = vp(ff*) +vp(div(dts)) >0 and Rgs(ffidts) =0

for all P € P¢\ {Py, ..., Ps}.
Applying the Residue Theorem, we get assertion (4.73).
By (3.10) and (4.61), we derive

(]

Rpess(fdetS):Rpess(x Sj,(ts, )t} i sz(ts,fL)t{;Zdts)

j1=0 Jo=—ms

- Z Z Res (ts, f) jz(ts,fL)t?Jrjzdts)
j1=0j

= Z Ter /IFb (Sjl(tS’f) sz(ts’fJ_))
O§j1<ms 1 ]1+]2771

ms—1 ms—1

= Z Ters/]Fb (Sms—j—l(tSrf) S—ms+j(tSffL)) = Z Ters/]Fb (fs,ms—j—l fsJ,_—ms—i—j)'

j=0 j=0
Hence assertion (4.75) is proved.
Analogously, using (4.60), we have

Rgs(fdetS):Rgs(ffL*th Res( Z S, (t, f)th Zsh tl,flq)thdt)

l ]l_fmz

= )3 Trr, /¥, (Sji (ti f) sz(tiff 1)),

0<jp<m;—1, j1+j2=-1

m,-—l

- ;} TI'FPi/]Fb (fi,_]-_l flL]), for 1<i<s-—1.
Thus Lemma 11 is proved. ]
Lemma 12. With notation as above, we have Z,, = N'-(Py, ..., Ps, G).

Proof. Using (3.14) and Lemma 10, we have
dimp, (Nyy) =ms—m and  dimg,(Z,) = m.

From (3.13), (4.68) and (4.69), we get that N, &, C Ep.
By (2.19), in order to obtain the assertion of the lemma, it is sufficient to prove
that A-B=0forall A € N,, and B € 5,,.
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According to (3.11), (3.13), (4.54) and (4.64) - (4.69), it is enough to verify that

(476) A-B 61' =0 with 51' = i@zlj(f)el%]((fL,¢)) for all f S £(G),
j=1

S
i=1
and (f*,@) € (L(G'),®). From (4.54) and (4.62) - (4.64), we derive

m,-—l €

. I 1
(4.77) O0i= ) s4j with sg; = Z O tieitii ) Oipigess, (@)
Ji=0 Ji=1

Using (4.54) and (4.64)-(4.67), we have for j; € [0,m; — 1], j; € [1,¢;]

_ 1 1 _ ol 1
95/75+js€s+fs (f) - 195,]2 (fs/msf]ysfl) and 95,75+js€s+fs((f /4’)) - 195,;5 (fsl_ms+js)/

_ 1 Loy — gl (gL :
Orriifies () =05 (fi ;1) and 0, . - ((f7, @) =0:(f;) 1<i<s—1

By Lemma 8 and (4.77), we obtain

s
_ 1 L _ 1
%SI]YS T AZ 195/f5 (fsfms_js_l) 195,]2 (fs,*mer]Ys) o TrFPS /Ty (fs,ms—]ys—l fsr*ms+]ys)
Ji=s$

and
€
1 1 L .
%ir]Yi = AZ 191,]Al( l‘,_j{i_l) 19i/fi (fl,]vz) = TrFPi/]Fb( i,—]Y,'—l i/]Yi) fOI' 1 S 1 S S — 1.
ji=1

From (4.74), (4.75) and (4.77), we get
0; = Rpes(fdetS) for 1<i<s.

Applying Lemma 11, we get assertion (4.76). Hence Lemma 12 is proved.  [J

Let

(4.78) G; = G+ qiP; — qsPs with g5 = M]

[g+70]+1 and g; = [g

65 61
for i € [1,s —1]. By (4.58), we have deg(G) = g— 1+ and vp(G) =0, i €
[1,s]. It is easy to see that deg(G;) >2¢—1,i € [1,5s — 1]. Let z; = dim(L(G;)),
and let ugl), v ug) be a basis of L(G;) over Fy, i € [1,s —1].

For each i € [1,s — 1], we consider the chain

L(G;) C L(G;+P;) C L(G;+2P;) C ...

of vector spaces over [F,. By starting from the basis ugi),..., ug) of £L(G;) and
successively adding basis vectors at each step of the chain, we obtain for each
n > g; a basis

(4.79) R TI O N ¥ L0 B S

zj 7 ql,/ll"'l qi€ir ==’ *n,17

+1
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of L(G;+ (n—gq;+ 1)P;). We note that we then have

(480) Kk € L(Gi+ (i —qi+DP)and vp (k) ) = —ji =1, vp (k) > g,

forj1 >gi,1<p<e 1<i<s—1
Let G = G+ gP;. We see that deg(G) = ¢ —1+7 +ges > 2¢— 1. Let
(0) (0)

Uy, ..., Uz, be a basis of L(G ) over [F,. In a similar way, we construct a ba-

sis
(i) k(i) k(i)

0 0 ]
0, K0 KOO K

e l} of L(G + gq;P;) with

481) K € LG+ (i +1)P)and vp (k) = —jr — 1 for ji € [0,q:),

1§j2§€i,1§i§5—1.

Now, consider the chain
L(gsPs—CG+W) C L((gs+1)P— G+ W) C...C L(G-—P,) c L(GY),

where G+ = msP; — G + W and g5 = [(g + 7o) /es] + 1. By (4.57) and (4.58), we
have deg(G) = g — 1+ 7y, deg(W) = 2¢ —2 and vp,(G) = vp,(W) = 0. Hence
deg(qsPs — G+ W) > 2¢ — 1. Let ugs), ...,ugf) be a basis of £L(gsP; — G + W) over
F},. In a similar way, we construct a basis {ugs), e ugi), k;i?l, . kt(ii,)es/ . k’(f:%, . kgf)es}
of L((n+1)Ps — G + W) with

(4.82) K € L((h+1)P — G+ W) and vp (k) ) = —j1 — 1 for ji > g,

JAC
i J1:]2
]. B

and j, € [1,es]. By (4.79)-(4.81), we have the following local expansions

(4.83) K= Z BT for ) e By, i€ (18],
==/

Lemma 13. Let j; > 0 fori € (1,5 — 1| and let js > gs. Then %(,i’i),,..., %(lfl) is
/ J q Jir—Ji Jir—Ji
a basis of Fp, over IFy, for i € [1,s].

Proof. Leti € [1,5s — 1] and let j; > g;. Suppose that there exist a3, ..., 4., € IF,

such that Y <<, ai%](i’i)ji = 0 and (ay,..,4.,) # (0,..,0). By (4.83), we get

vp, (&) > —j;, where & := Y1 <j <, aik](.z.z. Hence & € L(G; + (j;i — qi)P;). We have
a contradiction with the construction of the basis vectors (4.79).

Similarly, we can consider the cases i € [1,s —1], j; € [0,q;, —1] and i = s.
Therefore Lemma 13 is proved. ]
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Lemma 14. Let d; > 1 be an integer (i = 1,...,s — 1) and f+ € G*. Suppose that

Resp, . (ka]1 ]2) =0forj; €[0,d; —1],jo € [1,¢;] and i € [1,5 — 1]. Then

(4.84) (fz,]l) =0 for j1 €[0,di—1], € [l,e]andie€ [1,5—1].

1]2

Proof. By (4.71), (4.72), (4.78), (4.80) and (4.81), we have vp (div(fL) + mgPs —
G+ W) >0, for all P € Pr and k](.ll,)]-2 € L(G+a;, P + (j1 +1)P;) with some
integer aj, .

From (2.4), (2.6) and (2.7), we derive

vP(ka _dts) >0 and Res(ka _dts) =0 forall PePr\{P,P}.
Applying (4.60) and the Residue Theorem, we get

Res(f* okl ) = R;s(fik]@jzdts) - —ngs(fikj;}hdts) = —Res(f L)

iti i s P ts
forall0<j;, 1<jp<e, 1 <i<s—1.
By (4.61), (4.83) and the conditions of the lemma, we obtain

Rt 4]),) = Bes( k) = Res (Ll 1 0

Py ts ;,_7]1

(485) - Z 2 Ter/IFb f1] ]1]2 7 i’_ZTer/IFb f1] ]1]2)_0

J=0r==j1
for0<j; <d;—1,1<j, <¢;, and 1§1§s—1
Consider (4.85) for j; = 0. We have Trr, /p,( 10%8 ’0]2)) = 0 for all j, € [l.e].
By Lemma 13, we obtain that flL0 = 0. Suppose that ~l- =0for0 <j <jp.

Consider (4.85) for j; = jo. We get Trr, /F, ( 1]0%](0 ; ) = O for all j, € [1.e;]. Ap-

plying Lemma 13, we have that sz]o = 0. By induction, we obtain that ff] =0
forall j € [0,d; —1] and i € [1,s — 1]. Now, using (4.62), we get that assertion
(4.84) is true. Hence Lemma 14 is proved. ]

Lemma 15. Let s > 3, {,BSLy wer ﬁé:es} be a basis of Fp, /TFy,
J_
M {(Res(f J1 ]2)) dip<pi=dipl<p<e;l<iss—1’

1 s—j1—1 1 1
(E,e{?(’gsfhfj-t;ﬂ ! ))ds,1§j1§d5,211§j2§€s |f = 'C(G )}
with dsq1 = ms+1—[t/es] — (s — 1)dome/es, 11 = [1m€], 1 = m — ry,
(4.86) dsp =ms —2—[t/es] — (s —2)dorire/es, di1 = q;, dip = dotinle/e; — 1,
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i€ [l,s—1],dy =d+t e =cre---e, € =1n2(—1dee) !, 7 = (1+
deg((ts)eo)) . Then
S
(4.87) Ay =TFf, with x = Y (dio —di1+1)e; for m >2(g —1+eg)es +2t(n~ ' — 1),
i1

Proof. Suppose that (4.87) is not true. Then there exists bl )] €Fy (i,j1,)2 >
1) such that

(4.88) y 3 i| W 1> 0
) o e | ]1,]2
and
s—1 dip ¢ es
(4.89) b1 ]Zléets kaM + Z Y b] nRes(B; LT =0
i=1ji=d;; jo=1 j1=ds1 jo=1
for all f£ € L(G1). Let « = a1 + ap with
s—1 dip dsp e
(4.90) m=Y ) 2 b’ K and ap = by Bt
i=1 ji=d;1 jp=1 j1=ds1 jo=1
By (4.89), we have
(4.91) I;S,etf(f%c) =0 forall f1e L(Gh).

From (4.80), we get vp (a) > gs. Consider the local expansion

(o)
a= Y @i, with ¢,€Fp for r>g.
r=(qs

Suppose that ms > jo := vp, («). Therefore ¢;; # 0. From (4.82), we obtain that

](s)jz € L(G*) for all j, € [1,e5]. Applying (4.83) and (4.91), we derive

(s) Z 5,j2) jj—1 Z 5 5i12)
%{ets(km] %ef( JOJ2 fs (Prtr> = Trry /v, (54, JO(PJO) =0
s sibs N ji=—jo r=jo

for all j € [1,e]. By Lemma 13, { ]O ]O .. %](OS ESJO} is a basis of Fp. Hence

@j, = 0. We have a contradiction. Thus vp, (a) > ms.
We consider the compositum field F* = FFp_. Let By, ..., B, be all the places
of F'/ Fp, lying over P;. From (2.11), we get

(4.92) v, () > ms for i=1,..,pu.
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According to (4.78) and (4.80), we obtain

s—1
N € Ep(Al) = ﬁ(Al), with A; := G — quS + Z(di,z + 1)Pz’-
i=1

Applying Theorem D(d), we have
a1 € Lp(Congr/p(Ar)).
By (4.90), we derive
wr € Lp(Az), with Ay = ((ts)5)m 4L,
Using (4.92), we get
a € Lp(Ap+ Ay — mg i%i)'
i=1

From (2.9), Theorem D(a) and Theorem E, we derive Conp/p(Ps) = Zf;l B;,
ConF’/F((tS)fo) = (tS)fo/ and

& € Lp(A3), with Az = Conp/p(Ar+ (ms —dsq1 — 1)(ts)5, — msPy).
Applying Theorem D(c) and (4.78), we have

s—1
i=1

<g—1+7y+ (s —1)dgerit + (ms — ds1 — 1)deg((ts)oo) — Mses

<g—T1+4ey—es+ (s—1)doerir + ([t/es] + (s — 1)dorire/es —2) (571 — 1)

—mges < g—1+eg+ (t/es—2) (7' —1) + (s — Ddoerit(1+ (371 —1)/es) —
<g-—Tl+4eg+t(nt=1)/es—m((2es) '+ (1 —n/2)(1—1/es)) < B—m/(2e5) <0

for m > 2e;8, with =g —1+ey+t(y~ 1 —1)/es and € = 5(2(s — 1)dge) !
Hence « = 0.

Suppose that )~ 2]1 dzl ]2 1 ’bhjz‘ = 0. Then a» = 0 and 22 1 ]1]2 SLJZ =0

for all j; € [ds 1,ds, ] Bearing in mind that (8~ S )1<j<e, is a basis of Fp, /I, we
get Z;.ifi iy ]2 1 |b i ]2| = 0. By (4.88), we have a contradiction.
Therefore there exists h € [1,s — 1] with

dh,z e

(4.93) Y. Z |b]1 ]2| > 0.

1=dp1 jo=1
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Let By, 1, ..., By, ,, be all the places of F'/Fp, lying over P,. Let

S
N

1

e;
Z juof2 ]1]2 i=1..,5-1

&M\

i

Let vp, (ts) > 0 or ap = 0. Therefore U%h,].(az) > 0 for 1 < j < py. Taking into
account that oy = —ap, we get v%h/j(ocl) > 0for1<j<py and vp, (a1) > 0.
Using (4.58), (4.78), (4.80) and (4.86), we obtain vp, (a1,;) > 0 for 1 <i < s —
1,i # h. Bearing in mind (4.93) and that {ugh), . ugz),k(gi:?l, o kg e o s
is a basis of L(G, + (n — g, +1)P,), we get

w1y € L(Gy+ (j—gn+1)Py) \ L(Gy + (j — q)Py) with some j > g,
By (4.78) and (4.80), we get vp, (a1;) < —1. We have a contradiction.

Now let vp, (ts) < —1 and ap # 0. We have vp, (aq,) > —dpo — 1, vp,(a1) >
—dy, —1 and 1/$h/j(lx1) > —dp,—1,j = 1,..,uy. On the other hand, using
(4.90) and (2.11), we have v%h,].(zxz) < —(ms—dsp—1),j=1,..., uy. According
to (3.17) and (4.86), we obtain s > 3, e;, > e; and

ms—dsp —1—dy,—1=[t/es] +1+ (s —2)doere/es — dorire/ ey, > 1.

We have a contradiction. Thus assertion (4.89) is not true. Hence (4.87) is true
and Lemma 15 follows. [J

End of the proof of Theorem 3.

Using (2.15), (3.15), (4.67)-(4.69) and Lemma 12, we have
(4.94) Pr=1{x(f",9) = (B1(f7, @), T(fH9)) | f1 € L(GT),p €D}
with

m—r;

u(fe) = DP (/1)) bf—Zcp (i)™ + 077 7 @)
j=

By (3.16), we have

(4.95) Pr = {x(f*) = (41 (f), - % (f)) | /- € L(GH)}
with
(4.96) %(fh) = mf}—l(éi{j(fi))b—f, 1<i<s.

i=1

Lemma 16. With notation as above, P, is a d—admissible (t,m — rg,s)-net in base
bwithd = g+ep, and t = g+ey—s.
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Proof. Let | = [T5_,[A;/b%, (A; +1)/b%) with d; > 0, and 0 < A; < b%,
1 <i<s, andlet Jy = [T_4[p:i/b7 + Ai/b7 %, ¢ /07 + (A; + 1) /b7iH40) with
lpi/bri = wi,l/b"'---"‘t/)i,ri/bri/ l[Ji,]' €eZp1<i<s,di+..+ds=m—rg—t.
It is easy to see, that

X(fJ‘) €]+~ )N((fj',(p) € ]1/; with l[)i,]' = (P_l(q)i,j)/ 1< ] <r,1<i<s.
Bearing in mind that P; is a (,m,s) net with t = g+ eg — s, we have
Yo 1(Lx(fY)) = Y. 1(Jyp, x(f - @) = b'.
flteL(Gh) fLel(GL),pcd

Therefore P, is a (t,m — ro,s)-net in base b with t = g+ ey — s.
Using (4.69), Definition 5 and Definition 10, we can get d from the follow-

ing equation —6;; (&) = —(m —rg) —d + 1. Applying Lemma 9, we obtain
—(m+g—1+4+e —ry) < —(m—ry) —d+1. Henced < g+ ¢p. Thus Lemma
16 is proved. ]

Let V; C ]ng be a vector space over F,, u; > 1,i = 1,2. Consider a linear map
h: Vi — V,. By the first isomorphism theorem, we have

(4.97) dimp, (V1) = dimg, (ker()) + dimg, (im(h)).

Let

/ 1
A = {(lée:(f khJz))OSJ'lSdi,zflﬁfﬁei'lgigs_ll

s 1
(Res(,Bs]sz_ m —h- )) sl<]1<d521<]2<€s |fJ_ € L:(GJ_)}

and

_ L oplms—ji—1 +
A2 = {(Eif(ﬁszjzf T N asizaancize | § | Res(f kh Jz)

for 0<ji<dpl<p<e1<i<s—1, f-eL(Gh)}
with d;1 = ms +1— [t/es] — (s — 1)dgrite/es,
(4.98) dsp =ms —2— [t/es] — (s —2)dorire/es, di1 = q;, dip = dotre/e; — 1,

i€ l,s—1),dy=d+t e =erer--e5, € = 52— 1doe) !, n = (1+
deg((ts)e)) ™, i = [mme], it = m —rg, m > 2(g —1+eg)es +2t(n~1 — 1),
d=g+eandt = g+ey—s.

By (4.97), (4.98) and Lemma 15, we have dimp, (A]) > dimg, (A;) and

dim]pb (Az) = dim]ph (All) — dim][:b <{ (Res(flkh ]2))0§j1§di,2/1§]'2§3i|fj_ S ,C(GJ'}>

1<i<s—1
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s—1 s—1
> dimp, (A1) — Z io+1)e; > (dsp—ds1+1)e 2 gie; = doetit — 2es — Z gie;.
i=1 i=1

Let

_ 1 el ms—j1—1 Lol
A3 o {(Ililetf(ﬁs’]zf ts s )>ds,1§j1§ds,2xlfj2§es ’ l9i'j2 (fl'h) =0

for0<ji <dipl1<jp<el1<i<s—1|f-e L(Gi)}.
Using Lemma 14, we get Az 2 A and dimp, (A3) > dimg, (A2). Let

L 1
Ay = {( lJz(flh))0<]1<d12 1<jp<e;1<i<s—1 | freL(G )}

Taking into account that P, is a (t,m — rg,s)-net in base b, we get from (4.95)
that dimp, (A4) = (s — 1)dgern. Let

1 el gms—ji—1 1 1
A5:{( 1]2(f1]1)>0<]1<d121<]2<el <P5et§<’3542f A )>ds,1§j1§ds,2‘f € L(G )}

1<i<s—1 ’ 1<jp<es

By (4.78)and (4.97), we have

dimp, (As) = dimg, (Az) + dimg, (Ag) > sdgerir — 2es — 2(s — 1) (g + eo)-
Let 11y = dgem, m = [re|, i; = 0, i E [1,s — 1] and 7its = m — t — (s — 1)rity.
Bearing in mind that ij‘elﬂ‘(fL) = (fL]) for1 <ji<e, 0<j <m—1,

i € [1,5 —1] (see (4.63)), we obtain

4.99 ( - > > ( ) .
(*99) () 1<j<nin A<i<s—1 i 0<j1<d;p1<jr<e;1<i<s—1

From (4.98), we have rit; < ds1es and (ds» +1)es < #i1s + ri11. Taking into account
that

s—j1—1
9:_]165-0-]2 (fSJ,_—mS+j1) = 19SJ_]Z (fJ_) = Resps/fs (ﬁi]zfj_ t’Sn ; )
(see (4.62) and (4.64)), we get

(4.100) (025,4i(F4)

Let

1 gl gms—ji—1
1<j<iin = (11555(5 sinf " ts ))
= Lo (FL 1 1
Ao = { ((6510)) o 1eses) | FHE LG}
By (4.99) and (4.100), we derive
dimIFb (A6) > dimIFb (A5) > Sd()eﬁl — 2es — 2(5 - 1)(g + 6()).

Applying (2.15), (3.16), (4.95) and Lemma 2, we get that there exists
B; € {0,...,m —1},1 <i < s such that

ds,l Sjl Sds,Zrl sz <es

(4.101) Ay = Ffoer—doeB for 11> 1,
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where B = #By + ... +#Bs < 4(s —1)(g +¢p) and

A7 = {(Qimi+jidoe+j;(fL) | j: € B, ji € [1,doe], i € [1,5]) Ifte ﬁ(Gl)}

with B; = {0,...,ri1 — 1} \ B;.
From (4.96), we have

{ (St itoe s POV € Bisfi € [Ldoel i € [1,5]) [+ € £(GH) } = zgben—e?,

We apply Corollary 2 with § = s, # = rg, /it = m —rg, € = 17(2(s — 1)dpe) ! and
E=e=e1ey -6

Let y(f+,w) = 4 = (+1, .., 4¥) with ) = [(x(f1) @ W) D], i € [1,5].
Using (4.96) and (4.101), we get that there exists fL € G* such that 4(f+, w)
satisfy (2.36). Bearing in mind Lemma 16, we get from Corollary 2 that

(4.102) ‘A fJ')@W)frecr,]fy)‘ > 272~ e e,

for m > 225+3bd+t+s(d +£)5(s — )25 1(g + 80)617 —s+1
Taking into account (1.2), and that w € E},_, is arbitrary, we get the second
assertion in Theorem 3.

Consider the first assertion’ in Theorem 3.
Let7 = (41, ..., ) with ) = b=7i5(0, i € [1,5], and let w = (@), .., @) €

E;, with w](jzr = w]( ) forje [1,m—rp),i€[l,s]. By (4.94) and (4.95), we have

#H(fH o) @n) €0,9) <= n(fH)ew) €[0,4) and ¢ (g;)) BD;j =0

forj e [1,r], i € [1,s]. Hence
%(1([0 ), X(fH @) & W) = Fo) = 1([0,9),X(f ) & W) — o,
e

where [0,%) = IT;1[0,71), [0,%) = IT;_1[0,7), 70 = ¥..¥®) and

Yo = ’y(l)...'y( ). Therefore
Y oo ew) —T) = ¥ (L04),x(f) & w) o).

fLel(Gh)pcd flteL(Gh)
Using (1.1), (1.2) and (4.102), we get the first assertion in Theorem 3.
Thus Theorem 3 is proved. ]

4.4. Halton-type sequences. Proof of Theorem 4. Using (3.24) and (3.25), we

define the sequence (xfg) j>1 by

()

4103 pite = gp (F1), 2= T Z X jreitia
( . ) Z xn]1€1+]2 UP fn]l Yn = Z ] B Z bj1€i+j2 /
P= j=0 J1=0j2=1
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1<i<s, with (x{V, .. x) = x, = &(fu), and n = 0,1, ... .
Lemma 17. (x,),>0 is d—admissible with d = g + eg, where eg = e1 + ... + es.

Proof. Suppose that the assertion of the lemma is not true. By (1.4), there
exists 71 > k such that ||n © k||, [|xi © x; |, < b~
Letd,+1=dje;+d;with1<d;<e,1<i<s,n=nok, |n|,=0""!and let
’ x,(f) e x;{i) , = b=%1,1<i<s . Hencem—1-Y5 ,(di+1) < —d—1,and

S

S
(4104) m+g—1-) dieg<m+g—1-) (di+1)+e<—-d—1+g+e <0.

i=1 i=1
We have
(4.105) ay_1(n) #0, a,(n) =0, forr >m, x{

o # 3 )= 5

di+1’ n;r k,r
forr <d;, 1 <i<s. From (4.103), we get

f7511)1 = fk(lj)1 and félj)l =0 for 0<j;< d, 1<i<s.

Suppose that f:c)ll = 0, then f:;l :‘ f;j;i and x,(.i} = x](cl]) for 1 <j < (d;i+1e;.
Taking into account that d; +1 < (d; + 1)e;, we have a contradiction. Therefore
frglzl, # 0, forall 1 <i <s. Applying (3.23), we derive vp (f;) = d;, 1<i<s.

Using (3.18)-(3.20) and (4.105), we obtain f, € L((m + g —1)Psy1 — Y51 d; D) \

{0}
By (4.104), we get

s
deg((m+g— 1)Ps+1 — Zdipi) =m+g—1- Zdiei < 0.

s
i=1 i=1

Hence f, = 0. We have a contradiction. Thus Lemma 17 is proved. [
Consider the H—differential dt;. By Proposition A, we have that there

exists T; with dtg 11 = 1;dt;, 1 <i <s. Let W = div(dts,q), and let

(4.106) Gi=W-+q;Pi—gPsy1, with gi=[(g+1)/e+1], 1<i<s.

It is easy to see that deg(G;) > 2¢—2+¢+1—-g¢g=2¢—1,1<i<s. Let

z; = dim(L(G;)), and let ugi), s ug) be a basis of £(G;) over F;, 1 <i <s.
Foreach 1 <i <s —1, we consider the chain

L(G;) C L(G;+ P;) C L(G;+2P;) C ...
of vector spaces over [F,. By starting from the basis ugi),..., ug) of L(G;) and

successively adding basis vectors at each step of the chain, we obtain for each
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n > g; a basis
940, ki)

of L(G;+ (n —gq; 4+ 1)P;). We note that we then have

(4.107) KY€ L(Gi+ (1 — i+ 1)P) \ £(Gi + (1 — ;) Py)
forg; <ji, 1 <j, <ejand 1 <i <s. Hence

div(kl )+ W = gPei1 + (i +1)Pi > 0 and vp,, (k|
From (2.4) and (2.6), we obtain

Ve (k1) = v (k) s n) = v (K) + v, (W),

) +VP5+1(W) Z g

Therefore
(4.108) vp,(W)=0 and vp (k' )>z¢.
Now, let G; = W + (e; + 1)Ps;1 — P.. We see that deg(G;) = 2¢ — 1. Let

ugi), e ug) be a basis of £(G;) over FF;. In a similar way, we construct a basis
D R0, KD KO KO of £(G 1 ) with

(4109) k. € £(G+ (i +1)P) \ L(G + jrP) for jo € [0,4), 12 € [Lei], i € [1,5].

Lemma 18. Let {,Bgi),...,ﬁg)} be a basis of Fp /IFy, s > 2, d; > 1 be integer
(i=1,..8)and n € [0,b™). Suppose that Resp_, , ¢, (fnkj(ll)]z) =0 for
f1€[0,d;—1], jo€[l,e]] andi € [1,s]. Then

Trr, /5, (B) fi1) =0 for ji€[0,di—1], p€[l,e]andi€[1,5s].
Proof. Using (4.107) and (4.109), we get
vp (k) )= —jy =1 —vp(W) for j1 >0, j€[le]andic[1,s].

juj2
From (2.4) and (2.6), we obtain
(4.110) vp(Ti) = vp(Tidti) = vp(dts1) = vp(div(dtsia)) = vp (W).
Hence
(4.111) vp (ki T) = —j1—1 for j1>0, p€le]andie[1,s]

By (4.107) and (4.109), we have
(4.112) div(kl". ) +div(dtein) + (1 + 1) P +aj, Peyy >0



ON THE LOWER BOUND OF THE DISCREPANCY OF (¢,s)-SEQUENCES: II

forj1 >0, jo € [1,¢;],i € [1,5] and some a;, € Z. According to (3.18) and (3.20),
we get f, € L((m + g —1)Psy1). Therefore

Vp(fnk ,dts11) >0 and Res(fnk dtsi1) =0 forall P € Pg\{P, P}
Applying the Residue Theorem, we derive
(4.113) Res(fn dts+1) = —Res(fn dt5+1)

s+1

forjj > 0, j» € [1,¢;] and i € [1,s]. Using (4.111), we get the following local
expansion

(ij2) yr—1 (i.j2) (i.2)
]1 ]2 : Z i b where all %y € IF, and % #0
r=—j

forjj >0, j» € [1,¢;] and i € [1,s]. By (3.23) and (4.113), we obtain

— Res (fnkj(ll)]) Res(fn”rl ]1] %3?(;0125 Z hriz £ 1)

Ps+1/ts+1 r_f]l

o 0 . . .
(4.114) Z Z Trey w, (£1) 7)) = ZTer /5, (fa) 547 = 0
: r=—j ] =0
for0<j; <d;i—1,1<j, <ejand 1 <i <s. Similarly to the proof of Lemma
14, we get from (4.114) the assertion of Lemma 18. [J

Lemma 19. Let s > 2,dg =d +t, € = 171(2sdge) ™, 71 = (1 + deg((ts:1)e0)) L,

A= {<<P5Res (fuk i ]2))d11<]1<d12 1<i<s 0, (n)/---/‘jds+1,2(n)> in €0, bm)}

s <p<
withe =ejex---es, €511 = 1,ds111 =t + (s — 1)dg[mele,
(4.115)  dsp10 =t — 1+ sdo[mele, di1 = qi, dip = do[mele/e; — g —1forie [1,s],
and m > ]2g—2—|—2(t—|—g—2)(17fl —1)|+2t+2/€. Then

s+1
(4.116) A = ]Fic with X = Z(dilz - di,l + 1)61'.
i=1

Proof. Suppose that (4.116) is not true. We get that there exists b )] e,
(i,71,j2 > 1) such that

s dip e . dsi12 N
(4.117) y B+ Y >0

i=1j1=d;1 p=1 1=ds 41,1
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and
s dip e ( dsy1,2 (s41)

(4.118) Y. Z ]szRes (fu M)+‘ Y, b a(n)=0
i=1j1=d; jo=1 st1dsi1 J1=ds 411

for all n € [0,b™). From (3.18)-(3.20), we obtain the following local expansion

m—1

(4.119) fo=fatfu= Y fSVET, with fo= Y ai(n)y,
r<m+g—1 i=g

and f, = Y5 0 a;j(n)v;, where n € [0,b™). Letr > g.

: : : rg—1
Using (3.18)-(3.20) and (3.28), we derive that vp , (fu) > —2¢+1,vp, (futi )
> 0and

(s+1) +g—1 7o+ 71 — _
fnSHg— Res (fat,,3 )= Res (fut..3 )= Res (Za

Psyits Poyits Popitsin N 2o

m—1
1 _ _
x ) vity] ]+r+g ) =Y ai(n) Y viibi,rg= Y, @&i(n)vj,4qforr>g.

j<i+g i=g j<i+g m—1>i>r
Taking into account that v;;;, = 1 and v;,, = 0 for i > r > ¢ (see (3.29)), we
get

(4.120) fnsrfg ar(n) for r>g and ne€[0,b™).
By (4.118), we have
i d’i 321 dsil'z (s+1) nt+g—1
by (fuk) + b; s (futsr ) =0
izl]'l d11]2 ]1]2 s+1 +1 ] ]2 ]1—d5+1,1 n Ps+1 s+1 st
for all n € [0,b™). Hence
(4.121) PRes (faw) =0 forall ne€[0,b™), where a=ua1+ay,
s+1:4s541
s dip e (0 ds 1,2 (s41) 1491
— — 1
a = Z“Lz‘/ ay ;= Z ) bh]2 i and ap = ) b UL
i=1 h=d;1 jo=1 J1=ds11
According to (4.108), we get the following local expansion
k](.i,)].z = Z ; l/f tZ +%, where all %](11:12) € IFy,
r=g+1
and
(4.122) a= Y @t with ¢, €F) r>g+1

r=g+1
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Using (2.12) and (4.119)-(4.121), we have

Res (fux) = Res ( Y. fns+1 toa Z §0rt£+%>

Ps+1rts+1 Ps+1/ts+1 j§m+g 1 r= g+1
S S —
= X fuj X e = Y fiei= Y ang =o.
jem+g—1 r=g+1 j=g+1 r=g+1

for n € [0,0™)). Hence
pr=0 for g+1<r<m+g-—1

By (4.122), we obtain
vp,, (&) >m+g—1.
Applying (4.106), (4.107) and (4.121), we derive

s
S E(Gl), with Gy = W + dePi + (d5+1,2 +9— 1) (ts11)o0 — (m +9— 1) s+1-
i=1

From (4.115), we have
deg(G1) =2g =2+ ) disei + (ds12 + g — 1)deg((ts41)e0) — (m +g — 1)
i=1
< 2g — 2+ sdoe[me] + (t — 1+ sdpe[me] + g — 1) (5, — 1) — (m+g—1)
<g-1+(t+g—2)(n; ' —1)+sdoemen; ' —m=g—1+(t+g-2)(n; ' =1)—m/2 <0
form > 2g —2+2(t+¢—2)(y; ' —1). Hence a = 0.

d;
Suppose that Y3_; Zjlid ]2 . |b] ]2| = 0. Then a; = 0. From (4.121), we

derive b](fﬂ) = 0 for all j; € [ds411,ds+12]. According to (4.117), we have a
contradiction. Hence there exists 1 € [1,s] with

dh,z ey
(4.123) Y. Z ]b] ]2] > 0.

Ji=dp1 2=1
Let 1 > 1. By (3.27) and (4.121), we get vp, (ts4+1) > 0 and vp, (22) > 0. Applying
(2.3) and (2.4), we derive vp, (W) = vp, (dts;1) = vp, (dts1/dty,) > 0.
By (4.112), we have VPh(le,j) > —vp, (W) for 1 < j <'s,j # h. Taking into
account that aq , = — Elgjgs,ﬁgh K1,; — &z, we get vp, (ayp) > —Vp, (W).

Using (4.110) and (4.111), we obtain vp, (k](hg ) = —j1 — 1 —vp, (W). Bearing

in mind (4.123) and that {”1 ,. ug),kl(;i?l, k,g?el,...,kx)l,...,
L(Gi+ (n—g;+1)P;), we get

arp € L(Gi+ (dip —qi +1)P) \ L(G; + (dig — q:) P).

k,(f)el} is a basis of
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From (4.115) and (4.121), we derive vp, (a1;) < —vp, (W) — 1. We have a contra-
diction.

Now let i = 1 and (4.123) is not true for h € [2,s]. Hence a7 = —ap and
vp,,,(&11) > dsy11 + & — 1. By (4.106), (4.107) and (4.121), we have

o171 c E(G) with G =W + (d1,2 + 1)P1 — (d5_|_1 1 +g - 1) s+1-
From (4.115), we get
deg(G) = 2¢ — 2 + doe[me] — gey — (s — 1)dpe[me] —g+1<2¢—-2—-2¢+1<0.

Hence a1 = 0. Therefore (4.123) is not true for & = 1. We have a contradiction.
Thus assertion (4.117) is not true, and Lemma 19 follows. [J

End of the proof of Theorem 4.
Letd;, =dip+g=dplmele/e;—1 (1 <i<s),

" (i) = =
A = {((PSE?:H(f”kjlsz))0<j1<zfi,2,1<jz<e,',1<i<s’ads+1,1 (n), ads+12( )) ‘n € [0, bm)}

and

() y _
Res (f”kjl,jz) =0

Ps+1/ts+1

Ao = {(@a,, (1), 5 (1)

for 0<j1<dip1<jp<e,1<i<s ne [O,bm)}-

By (4.97) and Lemma 19, we have dim]pb(All) > dimp, (A1) and

. T / T (l) i m
dimp, (Az) = dimg, (A;) — dimg, <{(PSE’etil(fnkh'jz))OSj1§1d§’;§j2§ei nelob )})
S . s
(4.124) > dimg, (A1) = Y (dip +1)e; > dsy12 —dsy11+1— ) (i + 8)ei.
i=1 i=1

Using Lemma 18, we get A3 2 A, and dimg, (A3) > dimg, (A2), where
s = (B0, (1), s, (1)) | T, e, (B £1) = 0

for0<ji<dpl<p<el<i<s nelob")}.

Taking into account that (x,)o<,<p is a (t,m,s) net in base b, we get from
(3.24) and (3.25) that

{ (f’sll)l)) 0<j1<d;,1<i<s

nelobm)} = HP““
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Bearing in mind that {5§i),...,ﬁg)} is a basis of Fp /IF, (see Lemma 18), we
obtain

Ay = {(Trppi /5, (B fﬁf}1)> ne o, bm)} — phoelme],

0<j1<d;2,1<jr<e;,1<i<s
Let

_ (i) £(i)

As = {<TrFPi/IFb(ﬁf2 f”rjl

By (4.124), (4.97) and (4.106), we have

)> 0<ji<dip1<jr<e;1<i<s’ (aj () ) ds1,1<j<ds 412

ne [O,bm)}.

dim]ph (A5) = dim]ph (Ag) + dim]pb (A4) > ds_|_1’2 - d5+1,1 + 1+ sdgerit — r

withr = (g4 1)(ep +s), e = e1ep...es and i1 = [me].

Let ri1y = dgeri1, € = 771(25d0€)_1, m; =0,1<i<s,and g1 = ds111+ g
ds_|_1,1 = t4 (S — 1)110[7716]6, ds+1,2 =t—-1+ sdo[me]e = ds+1,1 + 111 — 1 (see
(4.115)), d;n = do[mele/e; — 1=dip + g =11 /e; — 1 (i € [1,5]),

00 ey = Trey (B fog)  and O = 5T = o(n) (see (4.120))

for0<j1 <dip 1<j,<e, 1<i<s,2¢g<j and let

A :{((9‘.@ , ) ( 0,b" }
6 iit+doelit]i) 0<j;<m1<ji<dge1<i<s+1 ne| )

It is easy to verify that A¢ = As and dimg, (Ag) = (s + 1)rity — 7 with 0 <7 <
r=(g+1)(eo+3).

Letm > [2¢—2+2(t+g—2)(y; ' —1)| + 2t +2/¢e. Applying Lemma 2, with
$ = s+ 1, we get that there exists B; C {0,...,71 —1},1 < i < s+ 1 such that

Ay = ]FéSJrl)mlidOEB, where B =#By+...+#Bsy1 < (g + 1)(60 + S),

and
= {0 [ e ) [ o)
with B; = {0,...,n — 1} \ B;. Hence
(i)
{ (f”ffh'ﬁ]:ido@/eiﬂfl

withes1 1 =1, x; = doe(m — #Bi)/e,-, 1<i<s+1.
Taking into account that op, : Fp, — Z; is a bijection (see (3.21)), we obtain

(i)
{ (0’pl. (fﬂ,mi+jjd0€/€i+j;*1)
_ Z(s+1)n‘11—doeB.

(ams_s_lJerHdoeJr]ﬂ'SHilig(TZ)|j5+1 € BS+1,]TS+1 € [1,d0€]) ‘Tl € [O, bm)} =27,

: _ . d ) s ,
ji€Byjic [1,%6],1 € [1,s+1]) )n € [o,bm)} =TT FFES
i i=1

: I doe. .
Ji€Bi,ji €11, l],z € [1,5]),
€
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Let B; = B;, 1 <i <s,and let B;;; = {ri1 —j—1|j € Bs,1}. From (4.103), we
derive

, L. , 1)1it; —dgeB
{3 jesn | 1 € Bl € [Ldoeli € [Ls +1]) | € [o,5m)} = Z7 0™,

where x(sH) = ;”1 ff;rl)b j:=mn/b™, and x(SH) = ay_j-1(n) (1 <j<m),
m; =m; =0for 1 <i<sand figq —m—t—sm1 =m—1— (iigiq+mm; —1—
g)-

By Lemma 17 and Theorem L, we obtain that (x;,),>0 is a d —admissible (¢,s)-
sequence with x,, = (x,(}), e x,(f)), d=g+eandt=g+e —s.
Now applying Corollary 1 with s =s+1,7 =0, =mand é = ¢ = ej...e541,
we derive

. . d
0202 we ks, D" D*((xn @ W, 1 ® Q/b™)o<papm) = 2720 K 5 i,

with m > 22 F3pd st (g 4 1)5H12e (g +1) (g +5)17;°, and 71 = (1+deg((ts+1)0)) L
Using Lemma B, we get the first assertion in Theorem 4.

Consider the second assertion in Theorem 4.
By (3.23)-(3.25), we get that the net (x,)o<y<pn is constructed similarly to the
construction of the Niederreiter-Ozbudak net (see (4.61)-(4.69) and (3.15)). The
difference is that in the construction of Section 3.3 the map o; : Fp, — F} is
linear, while in the construction of Section 3.4 this map may be nonlinear.

It is easy to verify that this does not affect the proof of bound (3.31) and
Theorem 4 follows . O

4.5. Niederreiter-Xing sequence. Sketch of the proof of Theorem 5. First we
will prove that

(4.125) Cw = MiL(Py, ..., Ps; Gy) for m>g+1.
By (2.26) and (3.34), we get

e ={(5 i)

Using (4.58) with G = (¢ — 1)Ps;1, we derive G;; = Ly, where L, = L((m —
¢+ 1)Ps11 + W). From (3.33), we have

0§n<bm}.

0<j<m—-1,1<i<s

m—1
{FA1frelm}y={fu= ;) a;(n)o, | n € [0,6™)}.

Applying (3.34), we obtain

fnTi—an] |, where f)= chr“r ) €Ty, i€ [1,8], j>0.
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Therefore
(4.126) Cor = {(FiDo<jem-11i2s | 0 < 1 < b

We use notations (4.59)-(4.69) with the following modifications. In (4.61) we
take the field IF, instead of Fp, , and in (4.62) we consider the map 19L as the

identical map (1 < i < s). By (4.63), we have 0:; (fn) = fn] Jfor1 <j<m,
and 0:-(f,) = (fn o ...,fnim 1), 1 <i <'s. According to (4.69) and (4.126) we get

Em = 8n = {0-(fD)If" € LGy} = {05 (fu)ln € [0,6™)}

= {65 (fn), - 9%ﬁﬂmémbm}—ﬂf)Mﬁm1KKA0<n<V@—Cw

Now applying (3.13), (3.32) and Lemma 12, we obtain (4.125). By [DiPi, ref.
8.9], we have

Om(Mum) = om(Mu(Py, ..., Ps;Gm)) >m—g+1 for m>g+1.

Taking into account Proposition C, we get that X1 (C)p>o is a digital (T,s) se-
quence with T(m) = g form > g+ 1.

Now the d—admissible property follow from Lemma 16. In order to com-
plete the proof of Theorem 5, we use Theorem 3 and Theorem 4. O

4.6. General d—admissible (¢, s)-sequences. Proof of Theorem 6. First we will
prove Lemma 20. We need the following notations:

Let C(),. C (8) are mx m generating matrices of a digital (¢, m, s)-net ()?n)lr’l”;al

in base b, xn #+ xk ) for n £k CO = (e (?)1<T]<m, E]@ = (5%13,,61(7?]) e F,

ie€(l,8,¢ = (E](.l),...,E](. )) lF’lfS (1 <j<m). Let¢p: Z, — F, be a bijec-

tion with ¢(0) = 0, and let n = } ai(n)b~1, n = (a1(n), ..., am(n)) € F,
a(n) = @(aj(n), ju = G, . 7% € S, 3 = <y~,5”1,...,y,&%> € Fy,

(4.127) %o = (2,5, &l _.§:4f4 /bJ for 1<i<s,

(4.128) 7w =n@”,.. a7 =Y g’ =nCOT for 1<i<s,
j=1

Hence

m
Vn = Zﬁ]‘(ﬂ)ﬁj, for 0<n<b™
We put
By = {%n|n € [0,6™)}, Vo = {§uln € [0,6™)}, Yo = {31 € [0,b™)}.
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We see that ¥,, is a vector space over FFj,, with dim(¥,,) < m. Taking into

account that fff) # JEIES) for n # k, we obtain dim(¥,,) = m, ¢, ..., &, is the basis
of ¥,y and Y,, = F}".
Letd >1,dy=d+t m> 4d0(5 + 1), m = [(m — t)/(zdo(S — 1))],

(4.129) A —m—t+1—(5—1Ddoir  and  dS) =m —t— (s — 2)dori.

Bearing in mind that ®,, is a (¢, m, §) net, we get that for each j € [1, (§ — 1)drit]
withj = (j1 —1)(§ — 1) + jo, j1 € [1,dorit] and jp € [1,5 — 1] there exists n(j) €
[0,6™) such that

S8 (i _
(4130) xn(j),r1 - 5(]'171)(5'71)4»]'2,?‘1 and X o 5i,j25j1,1’2

forall vy € [1,(s — 1)dom], rp € [1,dom], i € [1,5 —1].
Taking into account that Yy, = [F}’, we derive that there exists n(j) € [0,b")
with

(4.131) gy, =8 for (s—Ddpii+1<j<m, 1<r<m.

We take a basis fy, ..., f of ¥;; in the following way:

Let fj = (i{", .. 1) € B with {7 = (1), ., i) e By, i € L], j € [1,m].
For j € [1,m], we put j; := §,(;)- We have from (4. 130) and (4.131) that

10 _ (1) _
f(]'1—1)(5-—1)+j2,r1 - 5(j1—1)(5—1)+jz,r1 and f(]'1—1)(5-—1)+j2,r2 = 0,01,

for r1 € [1,(s — V)dorit], rp € [1,dom], i € [1,5 —1], 1 € [1,dorit], j2 € [1,5 — 1]
and

(4.132) fj(sr) =i, for (s—1Ddym+1<j<m, 1<r<m.

It is easy to see that the vectors f1, e fm € ¥y are linearly independent over
IFy. Thus f4, ..., fm is a basis of ¥,.

Let
(4.133) 9! = i) = n( o §0)) = Y i) = nf 07,
j=1
where F() = (f,(,?)lgr,jgm for 1 <i < $. Hence
m
Yni:(y( z /Yn Z for 0<n<?b™

We put
Y= {yn0<n<b"}.
It is easy to see that ¥, = ¥,,.
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For f; = (i, .. 1) with 11V = (7). 7]

i 1,7 ]) we define

fj=1 for j€[(s—1)dom+1,m) and i =f" fori e [1,5 1], j € [1,m],
(4138) 1) =0 for je[1,(s—1)dorit), r €[4}, dy), and F) =il
for j € [1,(5 — 1)dorir) and r € [1,m] \ [d\",d{]. Let

/ / / o1 (7 m w7 .o [ *
(4.135) g = iy i) =05 = g =nfOT,

where F() = (fif;)lgr,jgm for 1 <i < $. Hence

m
(4.136) u = (50, 95 = Y @i(n)f; for 0<n<b"

j=1
We put
(4.137) Y= {§a|0<n<b"} and Y= {3 |n e 0,0}
Now let x,, = (x,S”,..., x,(f)) and X, = (55,(11),...,55(5)) where

xnz) — 24)—1(%(113)/17], and xn Z(P /bJ
j=1

for 1 <i < 3. We have
(4.138) Sy ={%, |0<n<b"}={x,|]0<n <"} and Y, =T}

Bearing in mind that §1, oo, fm and &, ..., &, are two basis of the vector space
Yn, we get that there exists a nonsingular matrix B = (b;,)1<j,<m with b; . € I,
such that (§1,..., fm) " = B(§1,...,ém) . Hence

SR (i) _ \ g Al)
fr = Z byt, and fk,]' = Z bk,rEr,j/
r=1 r=1
for1 <k,j <m,1 <i<s. Therefore

(4.139) G, LT = BEY, &) T and O = FOB1T fori € [1,3).

Let n’ € [0,b™), n' = (ay(n'),...,am(n")), and let n’ = nB~ 1.
Using (4.128) and (4.133), we get
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Let CO = (), i = FOBIT, 1 <i g6 = @), 1<i <

$, 1<j<mandlety,:=y,, X, := X,y forn’ = nB~1. We have
4140) g\ =y =/ FOT —nB 1 FOT — n¢OT for 1<i<s, 0<n<b™

Hence, C (1), ..,C ) are generating matrices of the net ()”(n)ogKbm. According to
(4.134) and (4.139), we obtain F() = F(),

4.141) CO=CD for 1<i<s—1, and CO —CE) = (FE) _ FEHYp1T

Let (B71)T = (Br,j)lgr,jgmz Acyj = c“gj) — éi’]) and Af,; = fr] — fr] for 1 <
r,j < m. Applying (4.133), (4.135) and (4.141), we derive
(4.142) Ac,j = ZAf,,b,] for 1<r,j<m.
From (4.134) and (4.139), we get
(4.143) Ac,j = Eﬁsj) - c( =0 for re[(s—Vdyit+1,m], 1<j<m.

By (4.139) and (4.132), we have

. mooo R
4140) o) =Y {)b;=b,; for re[(s—1)doit] +1,m] and 1<j<m.
=1

Using (4.129), we obtain d\) > (s — 1)dgrir. By (4.134), (4.142) and (4.144), we
get
49
2
(4.145) Ac,j= Y Aj6; for re(l(s—1)doir] and 1<j<m.
1=d®

Lemma 20. With notations as above. Let s > 3, (Xn)o<n<pm be a digital (t,m,$)-
net in base b, %5, # X5, for n # k. Then (X, )o<n<pn is a digital (t,m,$)-net in base b
with X%, # %} for n # k,

(4.146) 9 =zl . for 0<n <"

and

(4.147) A=TFY"" for m>2dos, 1= [(m—t)/(2dp(s —1))],
where

A=A 1 7 ) I e [0,67))
Mo /
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with d) =1, d) = dyi for 1 < i < s, d¥ = m—t+1— (5—1)dorir and
A =m —t — (s — 2)dyrh.

Proof. By (4.140), we have ¥, = ¥,/, X, = X,y and ¥, = y,», X, = X,y for
n’ = nB~l. Hence, in order to prove the lemma, it is sufficient to take X,
instead of and X;, and X, instead of X,. Applying (4.137) and (4.138), we derive
that &, # &} for n # k.

Suppose that a;j(n) = 0 for 1 < j < (s — 1)dgrir. By (4.134) and (4.136), we get
I, = 1%,

Let aj(n) = 0 for 1 < ] < jo < (s — 1)dgrin and let ajo(ﬁ) # 0. Frqm (4.134)
and (4.136), we have Hjc'ff) ’b ‘ xff) — p—Jo. Hence 5{7(15) ‘b — ’ ,'(;(f)

n € [1,b™) and (4.146) follows.

Letd = (dy, .., ds), d; > 0 (i = 1,..,8), v = (8", .. 8}, .61, ., 01)) € B,
withd = dq + ... + ds, and let

‘ for all
b b

(4.148) Uy ={0<n<b" |4 =0, 1<j<d,1<i<s}

In order to prove that (X )o<n<pm is a (t,m,$) net, it is sufficient to verify that
#Uvd = b for all ¥4 € IFZI and all d withd < m —¢. By (4.133), (4.134) and
(4.135), we get

() _ N 2 ()il () _ N 4 ()il i) _ (1)
(4.149) Vi = ;aj(n)fj and  §, = ;aj(n)fj , with ;7 =§;

j= j=

for1<i<s—1,1<j<mandi=35 (s—1)dym+1<j<m,0<n<b™
Hence

41500 g -y =0for 1<i<si—1, 3 -3V = Y amG? —i)
r=1
and 3%} — &) = 0 for j € [1, (5 — 1)dori], 0 < n < b™. Let

o) =6\ for j € [1,d;),i € [1,5 — 1] and 0" := ! for j € [1,min(ds, (5 — 1)doin)].
For d; > ($ — 1)dgrir and j € [(s — 1)dom + 1,ds], we define

© _ o0 TR 9 ) )
o =0+ ) G () — )

1] 7,j
r=1

By (4.132) and (4.149), we get

() _ ()

Ui = z;f = ai(n) = U]U — U]“ for je [1,min(ds, (s — 1)dgiir)], n € [0,b™).
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Using (4.150), we obtain for n € [0,b™) that
(4.151) yo =0 =y =0 for 1<j<d, 1<i<s,
Let

Uyy ={0<n <"y =0, 1<j<d; 1<i<s)
6V, oD sl sy

with vq = (7, peenr g rener 00 s ooy Vg

Taking into account that (X, )o<,<pm is a (f,m,$)-net in base b, we get from
(4.148) and (4.151) that #U;, = #U;, = b"™ 7.

Now consider the statement (4.147). Let v = (ﬁc(i?V .y Z'J';Ez)), ey z’)';?y ey UZZ)) S
lF‘g, with d = dél) + ..+ dés_l) + dés) — dgs) +1. Itis easy to see that to obtain
(4.147), it is sufficient to verify that (I, # @ for all v € IF4. where

i, ={0<n<b"|g =0V, a <j<d), 1<i<s)
According to (4.135) and (4.136), Ui, # @ if there exists n € [0,b™) such that

(4.152) Z ar(n = v]() for all dgi) <j< déi) and 1 <i <.

By (4.132) and (4.134), we have that (4.152) is true only if 4;(n) = ZJ](S)

. ‘ ®) o
for dgs) <j< dgs). Let ng = Zéi g 4)*1(1')'](5))17]*1 and let

Tl—Tlo—f—Z Z ‘P z _ynoj) pli—1dori+j—1

i= ] d )

Therefore a;(n) = ZJ()

erefc for j € [dgs),déé)] and a(_1)gyn+i(n) = Z')']@ for j €
[dgl),dg)], ie[l,s— 1]. Using (4.132) and (4.134), we get that (4.152) is true

and LI:, # D forall v e IF‘Z. Hence (4.147) is proved, and Lemma 20 follows. []

End of the proof of Theorem 6. Let C(),..,C(*) € F>** be the generating
matrices of a digital (t,s)-sequence (xn)n>0 For any m € IN we denote the

m x m left-upper sub-matrix of C) by [CO].
Let my = szd0(22k+2 - 1) k=0,1,.

(4.153) Zcp )/, g =nlcD T,

and y;(f’k) = (]/,(11;'{(), ,y;(q m)k) forn € [0,0™), i € [1,s].
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For x =} ;>4 xjpl._j, where x; € Z, = {0,...,b — 1}, we define the truncation

Xm =) ij_j with m > 1.
1<j<m

If x = (x), .., x6 )) [0,1)%, then the truncation [x],, is defined coordinatewise,
that is, [x];, = ([xM], [x(s)]m).
By (2.14) - (2.16), we have

(4.154) Xl = x5 = (9, x9) for e [0,6m).

Let C(5+10) — (@fj* YO i j<my With c(j+ YO i1, ij = 1w mp. We

will use (4.127) - (4.141) to construct a sequence of matrices C+Lh) ¢ IFZ”‘X'”"
(k=1,2,...), satisfying the following induction assumption:

For given sequence of matrices Ct10), . C(+1k=1) there exists a matrix
Cls+1k) — (C(sH k)

L

A(s+1k) A(s+1k-1)
(4.155) Comp—i+1,j — Cmy_y—i+1,]

)1<ij<m, such that

for i,j € [1,my_1] and CA(SHZ{?U =0

forie [my_1+1,my,j€[l,meq], (xy P O k))0§n<bmk is a (t,my,
s + 1)-net in base b with

(4.156) TR oL gl Rl t1R) Hb = ||n||, b~ for 0 < n < b™,
where

my
(4.157) fnﬁ—l k) Z s+1 k) /b] y(s+1 k) é(s+1 mg) T

and y(SJr1 o) (y,(fzrl k), ..,yff;,Z,f’k)) for n € [0,b™*).

Let k = 1. We take c(§+1 D~ Sim—j1 fori,j=1,..,my.
Now assume we known C (;J]:l'i‘) and we want to construct CGTLA+D) | We first
construct C+1k+1) — (c“l(‘j+ o ))1Si,j§mk+1 as following

A(sHLk+1)  _ A(s+Lk) - A(s+Lk+1) o _
(4.158) Congoy—itlj = Cmy—is1j for ije€ (1, my], Cii = Oimyq—j+1

for i€ [1,mq —myl, j€ [l me] and 5§’j.+1'k+1):(_)

for (i,j) € [1,mpq —my] x [1,my] and (i,j) € [mpp1 — my +1,mppq] X [y +
1, myiq].
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, , Lk+1 k1) (s+1k+1 :
Lemma 21. With notations as above, (x,(1 T xSk gLk ))O<n b1 1S

a (t,myyq,s + 1)-net in base b with AR #+ fl(sﬂ’kﬂ) forn # 1, and

~(s+1,k+1)

(4.159) ( 7 Hb = ||n|l,b""™+ for 0<n < bMe,

1 1 1 1 P
‘ Proof. Letd = (dy, ..., ds11), vqg = (vg ),..., vél),..., vger ),...,vc(i‘:: )) € ]Fg with
d=dy+..+ ds—i—lr

avd:{ogn<bmk+l|y,§{j‘):v](.i>, 1<j<d,1<i<s

(4.160) and g5 Y =0, 1< <dia)
In order to prove that (xﬁ}"‘“), ...,xff’kﬂ),JZ,(fH’kH))OSKbmkH is a (t,mg1,s+

1)-net, it is sufficient to verify that #U, 4= b4 for all vq € IFZI and all d
with d < My — L.

Suppose that dg 1 < my 1 — my.
Let n € [0,b™+1), ng = n (mod b"™+1~%+1), ny € [0,b"™+17%+1) and let ny =
n — nyp. It is easy to see that

(stLA4+1)  (s+Lkt1) | (s+Lk+1)
n,j - nOrj +ynlrj ’
Let j € [1, my, 1 — my]. By (4.158), we get
41 M1~ MMk
~(s+1,k+1 — ~(s+1,k+1 _ _
(4161) y;(:,] ) = Zl ai’(n)cj(',sr ) = Zl ar(”)5j,mk+1+1—r - amk+1+1—j(”)'
r= r=

Let it = Z?S;ll (p(v](SH))bmkH*]'. By (4.160), we get n € Uy, < ny = ii and

~ !
ng € U, » where

(y, = {0 < i< b= | y D — o0 D 1 < je [1,d7],i € [1,5]}.
Bearing in mind (4.157), (4.158), (4.160) and that (x(n))0<n<bmk+1,,;ls+1 isa (f,mygq —

dsy1,5)-net in base b , we obtain #l:lvd = #Z:I:,d = pMk+1—4,

Now let ds 1 > my, 1 — my. Let n € [0,0™+1), ng = n (mod b™*), ng € [0, b™*)
and let n; = n — ng. We have

(s4Lk+1)  (s+1k+1)

_(s+1,k+1)
n,j = Ingj :

+ ynl/j
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Letii = Z;nkf "k qb(v](.sﬂ))bmkﬂ—f. By (4.160) and (4.161), we get

(Pk+1) _ () _ (ik+1)

ely @nl—nandn0€{0<n<bmk|y =7; wi o 1<j<d,
1<i<s and y(SH A1) _ v](.SH) — yi(fl;rl'kH), Mg —me+1<j<dsi1}.
Letj € [mk+l —mg+1, mk+1] and let jo=my 1 +1—j € [1, mk].
By (4.158), we derive
S(s+Lk+1) _ o(s+Lk+1) Tt (s+1k+1) Lk
y”] M +1—=jo ar(n)cmk+1+1 —jor Z ar (7 mk+1+1 Joor
r=
& (s+1,k) (s+1,k)
— .y (541, _(s+1, .
(4.162) = Z{ ar ()8 1 iy = i1, forall 7 € [0,0™).
r=
Jk—+1 k) /- +1,k+1 +1,k .
We have that y(l ) = yf.;’j) (i=1,..,5) and y(s ) = yr(lsmﬁi _j, for it €

[0, b™k). Hence

nely, < n =iiand ng € Cl:,d = {O <7< b™ | yill;';‘) () %(quk“)’j € [1,dy],
. (s+1,k) __(s+1) (s+1k+1) .
i€[l,s], and Yijomyytmy = Cjmpsyem, — Vi , € (myyq —my, ds+1]}.

Taking into account that (x,(ql’k), oy xS0 T k)))0<n<bmk is a (t,my,s+1)-net

in base b, we obtain #flvd = #Cli, = pe—(d=ma+m) — pmai—d - Therefore

1k+1 J4+1) L(s+1k+1 . )
(x,(1 ), ...,xﬁf >,x£f ))0<n<bmk+1 is a (t,myy1,5 + 1)-net in base b.

From (4.158), (4.161), (4.162) and the induction assumption, we get that

Jz;(1s+1,k+1) 2 JZl(sﬂ,kﬂ) for n £ 1.

Consider the assertion (4.159). Let n € [0, b™+1) and let

(4.163)

3?£15+1’k+1)“ -
;(15]+1k+1) —0for1<j<j—1 andy (s+1k+1) 7& 0 (see (1.4)).

Let j1 € [1,mg 1 — my]. By (4.161), we get ”mk+1+1*]( n)=0forl1<j<j;—1
and @y, 4+1-j, (n) # 0. Therefore ||n||, = H 71"1” a;(n )bileb — P11,

Now let j1 € [myq — my +1,my4]. From (4.161), we obtain @, 11-j(n) =0

for 1 < j < my,q —my. Hence n € [0,b™). Using (4.158) and (4.161), we

have y(SJrl k) = y(sﬂ’k) for myq — my +1 < j < ji. Therefore yi SFLR g
# 0. Using the induction

1, — M1+
_(s+1,k)
~(s+1,k _
x,(f )Hb = ||n||, b=

Hence 7

for1 <j<ji—mgr+m—Tand g, =, .

assumption (4.156), we get b= /1M1~ =
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By (4.163), we obtain HX(SH A1) Hb = |[n]|, b~"™+1. Thus assertion (4.159) is

proved and Lemma 21 follows. O]

Now we apply (4.127) - (4.141) with § = s +1, m = myq, CVV) := [C ]mk+1
(i=1,..,5) and e+ := C6+LAH) to construct matrices C() ( 1,.,s+1).
From (4.141), we have

(4.164) CO = ¢l = [cD],,  for i=1,..,s.
Let C+1k+1) .= C+1) | According to (4.143) and (4.158), we get
(4165) el =Y — 0 for 1 € [sdotingr +1,mygq) and 1< j < g,
By (4.129) and (4.145), we obtain for r € [1,sdytitg, 1] and 1 < j < myq
d(s+1,k+1)
AS+LEHD)  A(s+Lk+]) _ (s+1k+1) ~(s+1k+1)
(4.166) & — & Y. Af ) ,
l:d(s+1,k+1)
1
where ngJrl'kJrl) = M1 — t+1— SdOkarl/ d§s+l,k+l) = My41 — t— (S — 1)d0mk+1,

Myy1 = s2do(22%F* — 1), dg = d + t and 1t = [(myyq — 1)/ (25do)].
We have dgsﬂ’k“) > (s — 1)dotityq, titgpq = 223 — 1 fork =0,1,... and

Myl — d§s+1,k+1) > (S - 1)d07flk+1 > 271 2d0(22k+3 — 1) > M.

By (4.158), we obtain C(S]Jr1 K 2 0 for r < d(s+1 ) < Mg —mpand 1 <j <
M.
From (4.166), we derive

ALk (s k+1
(4.167) gl A gy

Bearing in mind that
Mg — sdgtitgq = s2do(22%H4 — 1) — s2do (2243 — 1) = s2de2%+3 > my,
we get from (4.165) and (4.158)

A(s+1k+1) ~(s+1k+1) A(s+1k)

(4.168) Mg —i+1] = Cmpy—i+1j = Cm—i1,

Applying (4.158), (4.165) and (4.167), we have

G = g ) =0, for 1 < i < g —my, 1< < my
Now using (4.168), we obtain (4.155).
We see that (4.156) follows from (4.159) and (4.146). Consider the net (% gU) )ZWZ{S -1
Q) _ (R k) Gy g () )y o

J+1 k41 +1,k+1 +1,k+1
Ngp1 = {((y;(111 )r---ryfllld(i,kgl))gigsf yfjd(sﬂ k+2 ’y(s s+1k+3 ) ‘ ne|o, bmk“)}
1

=0 for re[l,sdyritgq] and 1 <j < my.

for 1<i,j <my.

with x;,
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with d0k+1) = dorige 1 for 1 < i < s. Using (4.129), (4.164) and Lemma 20, we
obtain

(4169)  Agpq = ESVDMfor iy = [(m — £)/(25dg)] = 521 — 1),

and (f(,(qkﬂ))0§n<bmk+1 is a (f,mgy1,s + 1)-net in base b. Thus we have that
Cs+1k+1) satisfy the induction assumption.

Lk+1 Lk+1 Als+1k+1
Let CEHATD — (Cz(,s'+ i ))1Si,j§mk+1 where Cz(j‘+ W= Cﬁs;l—ﬂi,j for
1 <1i,j < myyq. By (4.155), we get
(4.170) [cleHk)) = c6+1K) and cl(j.“"‘“) =0, i€ (mymea), j € [1,my.
Now let C6+D) = (CI(;H))i,jzl = limy_,o, CEHM0) je. [CEHV], = ClHLA),

k=1,2,.... We define
@A71)  hy(n) = Tg (1) + o A By ()™= 25T for 0 <n < b,
From (4.157), we have

ERPVINCER ) A+ LE) ey s A(s+1,k)
P(hei(n)) = ¢(R,, 0 Ziia) = Ty i = Ljg Aj(n) 8 715
(4.172) =2 a(n)ep Y for 0 <n < b

Applying (4.170), we obtain for n € [0, b") that

(4173)  hyi(n) =0fori > my and hi(n) = hy_1(n) € [0,b™ 1) for n € [0,b™1).

For n € [1,b"), we get from (4.172) and (4.156) that
(4.174) ()|, = lImly -

Let | # n € [0,b™). Using (4.156), we have (95, ., 9{" ")) 2
" k ~ k
ot ™). Hence (1 (1) o i (1)) # (i (1), s i (1)) and (1)
]’lk(i’l).
Therefore 5y is a bijection from [0, b™k) to [0, b™*). We define h,:l(n) such that
hi(h ' (n)) = n for all n € [0, b™).
Letn € [0,b™) and | = h,:l(n), then I € [0,b™ ) and hy,1(l) = hi(l) = n. Thus

(4.175) hly(n) =kt (n) =1 for nel0,b™).

Let h(n) = limy_0 (1), and h=1(n) = limy_yeo 1, ' (n).
Let n € [0,b™) and let | = h;, ' (n). By (4.173) and (4.175), we get

h(n) =he(n) =1, W '(1)=nh'(1)=n, and h '(h(n))=n.

Consider the d—admissible property of the sequence (xj,-1(,y)n>0- It is suffi-
cient to take k = 0 in (1.4).
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Let n € [0,b™k). By (4.174), we have ||h(n)||, = ||hk(n)||, = ||n||,- Taking into
account Definition 5 and that (x,),>0 is a d—admissible sequence, we obtain

@176)  nlly x|, = 101 Ixally = Wl Ixally = 577, with 1= 1" ().

Hence (x),-1(,))n>0 is a d—admissible sequence.

By the induction assumption, ([Xu]m,, hx(1) /0™ )g<p<pm is a (t, my, s +1)-net
in base b for k > 1. Hence (xu,h(1)/b™ )o<,<pm and (X,-1(,), 1/ 0™ )o<pcpm
are also (f,my, s + 1)-nets in base b for k > 1. By Lemma 1, (x;-1(,))n>0 is a
(t,5)-sequence in base b.

Let N € [b™, b™+1). Applying Lemma B, we get

oc:=1 min max MD*((x,_ w
+0§Q<bmk,weEfnk1§M§N (Xp-1(ne0) ® W)o<n<m)

>1+ min max MD*((x;1 D W)o<
= 0§Q<bmk,weEfﬂk < M<b™ (( h—1(neQ) )0_n<M)

= min b D™ ((x,- Dw,n/b" "
-~ 0<Q<b"k,weEs, (( h=1(noQ) / )O§n<b ‘)

> i b"D* L h(l b m
- 03Q<$E}ve%k ((xr&w,h(l) & Q/b™)o<icpm)
where | = h~1(n© Q) and n = h(I) ® Q. Bearing in mind that k(1) = h(n) for
0 < n < b™, and that 25 = 1 k(n)/b™ for 0 < n < b™, we get
~(s+1k)

4177 o> min b"D* Ow, % b ).
( : N 0SQ<bmi,weEfﬂk (Gen n S (Q/0™))o<n<tm)

By (4.176) and (1.4), we obtain that (x, h(n)/b™ )<,y is a d-admissible
net.

Applying (4.154) and the induction assumption, we get that (x,,, k(1) /0" )<,
isa (t,my, s+ 1) net in base b. Let

r_ GG S5HLK) (5K
Ak T {((]/nl,l'"'/ynlld(i,k))lgigs y Sd15+1k ,y ’ s+1k ) ’ ne [0, bmk)}.

Using (4.153), (4.154) and (4.171) , we obtain y'/ = yﬁl ]) for 1 < j < my,

n,j
1<i<s, and h(n)/b™ = 2% By (4.169), we have
Ay = A = FSD00 - for i = [(my — 1)/ (25d)] = dSSH0) — g0 g,

Now we apply Corollary 2 with § =s+1,e = (2sdy) ™! ,n =¢é=1,7 =+,
mo=mg, i =m—t g =d " —1,B; = @fori e [I,5+1],and B = 0.
Taking into account (4.177), we get the assertion in Theorem 6. [
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