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Abstract. Let (x(n))n≥1 be an s−dimensional Niederreiter-Xing’s sequence in base
b. Let D((x(n))N

n=1) be the discrepancy of the sequence (x(n))N
n=1. It is known that

ND((x(n))N
n=1) = O(lns N) as N → ∞. In this paper, we prove that this estimate is

exact. Namely, there exists a constant K > 0, such that

inf
w∈[0,1)s

sup
1≤N≤bm

ND((x(n)⊕w)N
n=1) ≥ Kms for m = 1, 2, ... .

We also get similar results for other explicit constructions of (t, s)-sequences.
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1. Introduction.

1.1 Let (β
(s)
n )n≥1 be a sequence in unit cube [0, 1)s, (β

(s)
n,N)

N−1
n=0 points set in

[0, 1)s, Jy = [0, y1)× · · · × [0, ys),

(1.1) ∆(Jy, (β
(s)
n,N)

N
k=1) = #{1 ≤ n ≤ N | β

(s)
n,N ∈ Jy} − Ny1 . . . ys.

We define the star discrepancy of a (β
(s)
n,N)

N−1
n=0 as

(1.2) D∗(N) = D∗((β
(s)
n,N)

N−1
n=0 ) = sup

0<y1,...,ys≤1

∣∣∣ 1
N

∆(Jy, (β
(s)
n,N)

N
n=1)

∣∣∣.

Definition 1. A sequence (β
(s)
n )n≥0 is of low discrepancy (abbreviated l.d.s.) if

D((β
(s)
n )N−1

n=0 ) = O(N−1(ln N)s) for N → ∞.

Definition 2. A sequence of point sets ((β
(s)
n,N)

N−1
n=0 )

∞
N=1 is of low discrepancy (ab-

breviated l.d.p.s.) if D((β
(s)
n,N)

N−1
n=0 ) = O(N−1(ln N)s−1), for N → ∞.
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For examples of such a sequence, see, e.g., [BC], [DiPi], and [Ni].
In 1954, Roth proved that there exists a constant Cs > 0, such that

ND∗((β
(s)
n,N)

N−1
n=0 ) > Cs(ln N)

s−1
2 , and limND∗((β

(s)
n )N−1

n=0 )(ln N)−s/2 > 0

for all N-point sets (β
(s)
n,N)

N−1
n=0 and all sequences (β

(s)
n )n≥0.

According to the well-known conjecture (see, e.g., [BC, p.283], [DiPi, p.67],
[Ni, p.32]), these estimates can be improved

(1.3) ND∗((β
(s̈)
n,N)

N−1
n=0 )(ln N)−s̈+1 > C

′
s̈ and lim

N→∞
N(ln N)−ṡD∗((β

(ṡ)
n )N

n=1) > 0

for all N-point sets (β
(s̈)
n,N)

N−1
n=0 and all sequences (β

(ṡ)
n )n≥0 with some C

′
s̈ > 0.

In 1972, W. Schmidt proved (1.3) for ṡ = 1 and s̈ = 2. In [FaCh], (1.3) is
proved for a class of (t, 2)−sequences.

In 1989, Beck [Be1] proved that ND∗(N) ≥ ċ ln N(ln ln N)1/8−ε for s = 3 and
some ċ > 0. In 2008, Bilyk, Lacey and Vagharshakyan (see [Bi, p.147], [BiLa,
p.2]), proved in all dimensions s ≥ 3 that there exists some ċ(s), η > 0 for which
the following estimate holds for all N-point sets : ND∗(N) > ċ(s)(ln N)

s−1
2 +η.

There exists another conjecture on the lower bound for the discrepancy func-
tion: there exists a constant ċ3 > 0, such that

ND∗((βk,N)
N−1
k=0 ) > ċ3(ln N)s/2

for all N-point sets (βk,N)
N−1
k=0 (see [Bi, p.147], [BiLa, p.3] and [ChTr, p.153]).

A subinterval E of [0, 1)s of the form

E =
s

∏
i=1

[aib−di , (ai + 1)b−di),

with ai, di ∈ Z, di ≥ 0, 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary interval
in base b ≥ 2.

Definition 3. Let 0 ≤ t ≤ m be an integer. A (t, m, s)-net in base b is a point set
x0, ..., xbm−1 in [0, 1)s such that #{n ∈ [0, bm − 1]|xn ∈ E} = bt for every elementary
interval E in base b with vol(E) = bt−m.

Definition 4. Let t ≥ 0 be an integer. A sequence x0, x1, ... of points in [0, 1)s is a
(t, s)-sequence in base b if, for all integers k ≥ 0 and m ≥ t, the point set consisting
of xn with kbm ≤ n < (k + 1)bm is a (t, m, s)-net in base b.

By [Ni, p. 56,60], (t, m, s)-nets and (t, s)-sequences are of low discrepancy.
See reviews on (t, m, s)-nets and (t, s)-sequences in [DiPi] and [Ni].

For x = ∑j≥1 xib−i, and y = ∑j≥1 yib−i where xi, yi ∈ Zb := {0, 1, ...., b− 1},
we define the (b-adic) digital shifted point v by v = x⊕ y := ∑j≥1 vib−i, where
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vi ≡ xi + yi mod(b) and vi ∈ Zb. For higher dimensions s > 1, let y =
(y1, ..., ys) ∈ [0, 1)s. For x = (x1, ..., xs) ∈ [0, 1)s we define the (b-adic) digital
shifted point v by v = x ⊕ y = (x1 ⊕ y1, ..., xs ⊕ ys). For n1, n2 ∈ [0, bm), we
define n1 ⊕ n2 := (n1/bm ⊕ n2/bm)bm.

For x = ∑j≥1 xi p−i
i , where xi ∈ Zb, xi = 0 (i = 1, ..., k) and xk+1 6= 0, we

define the absolute valuation ‖.‖b of x by ‖x‖b = b−k−1. Let ‖n‖b = bk for
n ∈ [bk, bk+1).

Definition 5. A point set (xn)0≤n<bm in [0, 1)s is d−admissible in base b if

(1.4) min
0≤k<n<bm

‖xn 	 xk‖b > b−m−d where ‖x‖b :=
s

∏
i=1

∥∥∥x(i)j

∥∥∥
b

.

A sequence (xn)n≥0 in [0, 1)s is d−admissible in base b if infn>k≥0 ‖n	 k‖b ‖xn 	 xk‖b
≥ b−d.

Let (xn)n≥0 be a d−admissible (t, s)-sequence in base b. In [Le4], we proved
for all m ≥ 9s2(d + t) that

(1.5) 1 + max
1≤N≤bm

ND∗((xn ⊕w)0≤n<N) ≥ b−dK−s
d,t,s+1ms

with some w ∈ [0, 1)s and Kd,t,s = 4(d + t)(s− 1)2.
In this paper we consider some known constructions of (t, s)-sequences (e.g.,

Niederreiter’s sequences, Xing-Niederreiter’s sequences, Halton type (t, s)-sequences)
and we prove that they have d−admissible properties. Moreover, we prove that
for these sequences the bound (1.5) is true for all w ∈ [0, 1)s. This result sup-
ports conjecture (1.3) (see also [Be2], [LaPi], [Le2] and [Le3]).

We describe the structure of the paper. In Section 2, we fix some definitions.
In Section 3, we state our results. In Section 4, we prove our outcomes.

2. Definitions and auxiliary results.

2.1 Notation and terminology for algebraic function fields. For the theory of
algebraic function fields, we follow the notation and terminology in the books
[St] and [Sa].

Let b be an arbitrary prime power, k = Fb a finite field with b elements,
k(x) = Fb(x) the rational function field over Fb, and k[x] = Fb[x] the polyno-
mial ring over Fb. For α = f /g, f , g ∈ k[x], let

(2.1) ν∞(α) = deg(g)− deg( f )

be the degree valuation of k(x). We define the field of Laurent series as

k((x)) :=
{ ∞

∑
i=m

aixi | m ∈ Z, ai ∈ k
}

.
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A finite extension field F of k(x) is called an algebraic function field over k.
Let k is algebraically closed in F. We express this fact by simply saying that F/k
is an algebraic function field. The genus of F/k is denoted by g.

A place P of F is, by definition, the maximal ideal of some valuation ring of F.
We denote by OP the valuation ring corresponding to P and we denote by PF
the set of places of F. For a place P of F, we write νP for the normalized discrete
valuation of F corresponding to P , and any element t ∈ F with νP (t) = 1 is
called a local parameter (prime element) at P .

The field FP := OP/P is called the residue field of F with respect to P . The
degree of a place P is defined as deg(P) = [FP : k]. We denote by Div(F) the
set of divisors of F/k.

Let y ∈ F \ {0} and denote by Z(y), respectively N(y), the set of zeros,
respectively poles, of y. Then we define the zero divisor of y by (y)0 =
∑P∈Z(y) νP (y)P and the pole divisor of y by (y)∞ = ∑P∈N(y) νP (y)P . Fur-
thermore, the principal divisor of y is given by div(y) = (y)0 − (y)∞.

Theorem A (Approximation Theorem). [St, Theorem 1.3.1] Let F/k be a
function field, P1, ...,Pn ∈ PF pairwise distinct places of F/k, x1, ..., xn ∈ F and
r1, ..., rn ∈ Z. Then there is some y ∈ F such that

νPi(y− xi) = ri for i = 1, ..., n.

The completion of F with respect to νP will be denoted by F(P). Let t be
a local parameter of P . Then F(P) is isomorphic to FP ((t)) (see [Sa, Theorem
2.5.20]), and an arbitrary element α ∈ F(P) can be uniquely expanded as (see
[Sa, p. 293])

(2.2) α =
∞

∑
i=νP (α)

Siti where Si = Si(t, α) ∈ FP ⊆ F(P).

The derivative dα
dt , or differentiation with respect to t, is defined by (see [Sa,

Definition 9.3.1])

(2.3)
dα

dt
=

∞

∑
i=νP (α)

iSiti−1.

For an algebraic function field F/k, we define its set of differentials (or Hasse
differentials, H-differentials) as

∆F = {y dz | y ∈ F, z is a separating element for F/k}
(see [St, Definition 4.1.7]).

Proposition A. ( [St, Proposition 4.1.8] or [Sa, Theorem 9.3.13]) Let z ∈ F be
separating. Then every differential γ ∈ ∆F can be written uniquely as γ = y dz for
some y ∈ F.
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We define the order of α dβ at P by

(2.4) νP (α dβ) := νP (α dβ/dt),

where t is any local parameter for P (see [Sa, Definition 9.3.8]).
Let ΩF be the set of all Weil differentials of F/k. There exists a F−linear

isomorphism of the differential module ∆F onto ΩF (see [St, Theorem 4.3.2] or
[Sa, Theorem 9.3.15]).

For 0 6= ω ∈ ΩF, there exists a uniquely determined divisor div(ω) ∈ Div(F).
Such a divisor div(ω) is called a canonical divisor of F/k. (see [St, Definition
1.5.11]). For a canonical divisor Ẇ, we have (see [St, Corollary 1.5.16])

(2.5) deg(Ẇ) = 2g− 2 and `(Ẇ) = g.

Let α dβ be a nonzero H-differential in F and let ω the corresponding Weil
differential. Then (see [Sa, Theorem 9.3.17], [St, ref. 4.35])

(2.6) νP (div(ω)) = νP (α dβ), for all P ∈ PF.

Let α dβ be a H-differential, t a local parameter of P , and

α dβ =
∞

∑
i=νP (α)

Sitidt ∈ F(P).

Then the residue of α dβ (see [Sa, Definition 9.3.10) is defined by

(2.7) ResP (α dβ) := TrFP/k(S−1) ∈ k.

Let

(2.8) ResP ,t(α) := ResP (αdt).

Theorem B (Residue Theorem). ([St, Corollary 4.3.3], [Sa Theorem 9.3.14])
Let α dβ be any H-differential. Then ResP (α dβ) = 0 for almost all places P .
Furthermore,

∑
P∈PF

ResP (α dβ) = 0.

For a divisor D of F/k, let L(D) denote the Riemann-Roch space

L(D) = LF(D) = LF/k(D) = {y ∈ F \ 0 | div(y) +D ≥ 0} ∪ {0}.
Then L(D) is a finite-dimensional vector space over F, and we denote its di-
mension by `(D). By [St, Corollary 1.4.12], `(D) = {0} for deg(D) < 0.

Theorem C (Riemann-Roch Theorem). [St, Theorem 1.5.15, and St, Theorem
1.5.17 ] Let W be a canonical divisor of F/k. Then for each divisor A ∈ div(F),
`(A) = deg(A) + 1− g + `(W − A), and

`(A) = deg(A) + 1− g for deg(A) ≥ 2g− 1.

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03
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Let P ∈ PF, eP = deg(P), and let F′ = FFP be the compositum field (see [Sa,
Theorem 5.4.4]). By [St, Proposition 3.6.1] FP is the full constant field of F′.

For a place P ∈ PF, we define its conorm (with respect to F′/F) as

(2.9) ConF′/F(P) := ∑
P′|P

e(P′|P)P′,

where the sum runs over all places P′ ∈ PF′ lying over P (see [St, Definition
3.1.8.]) and e(P′|P) is the ramification index of P′ over P.

Theorem D. ([St, Theorem 3.6.3]) In an algebraic constant field extension F′ =
FFP of F/k, the following hold:

(a) F′/F is unramified (i.e., e(P′|P) = 1 for all P ∈ PF and all P′ ∈ PF′ with P′|P).
(b) F′/FP has the same genus as F/k.
(c) For each divisor A ∈ Div(F), we have deg(ConF′/F(A)) = deg(A).
(d) For each divisor A ∈ Div(F), `(ConF′/F(A)) = `(A). More precisely: Every

basis of LF/k(A) is also a basis of LF′/FP(ConF′/F(A)).

Theorem E. ([St, Proposition 3.1.9]) For 0 6= x ∈ F let (x)F
0 , (x)F

∞, div(x)F,
resp. (x)F′

0 , (x)F′
∞ , div(x)F′ denote the zero, pole, principal divisor of x in Div(F)

resp. in Div(F′). Then

ConF′/F((x)F
0 ) = (x)F′

0 , ConF′/F((x)F
∞) = (x)F′

∞ and ConF′/F(div(x)F) = div(x)F′ .

Let B1, ...,Bµ be all the places of F′/FP lying over P. By [St, Proposition
3.1.4.], [St, Definition 3.1.5.] and Theorem D(a), we have

(2.10) νBi(α) = νP(α) for α ∈ F, 1 ≤ i ≤ µ.

We will denote by F(P) resp. F
′(Bi) (1 ≤ i ≤ µ) the completion of F resp. F′

with respect to the valuation νP resp. νBi . Applying [Sa, p.132, 133], we obtain

F ⊆ F(P) ⊆ F
′(Bi) and F ⊆ F′ ⊆ F

′(Bi) , 1 ≤ i ≤ µ.

Let t be a local parameter of P , and let α ∈ F(P). By (2.10), we have νBi(t) = 1.
Consider the local expansion (2.2). Using (2.10), we get νBi(α) = νP(α). Hence

(2.11) νBi(α) = νP(α) for α ∈ F′ ∩ F(P) 1 ≤ i ≤ µ.

Theorem F. ([LiNi, Theorem 2.24]) Let M be a finite extension of the finite field
L, both considered as vector spaces over L. Then the linear transformations from M
into L are exactly the mappings Kβ, β ∈ F where Kβ = TrM/L(βα) for all α ∈ F.



ON THE LOWER BOUND OF THE DISCREPANCY OF (t, s)-SEQUENCES: II 7

Furthermore, we have Kβ 6= Kγ whenever β and γ are distinct elements of L.

Theorem G. ([St, Proposition 3.3.3] or [LiNi, Definition 2.30, and p.58]) Let
L be a finite field and M a finite extension of L. Consider a basis {α1, ..., αm} of M/L.
Then there are uniquely determined elements β1, ..., βm of M, such that

(2.12) TrM/L(αiβ j) = δi,j =

{
1 if i = j,
0 if i 6= j.

The set β1, ..., βm is a basis of M/L as well; it is called the dual basis of {α1, ..., αm}
(with respect to the trace).

2.2 Digital sequences and (T, s) sequences ([DiPi, Section 4]).

Definition 6. ([DiPi, Definition 4.30]) For a given dimension s ≥ 1, an integer
base b ≥ 2, and a function T : N0 →N0 with T(m) ≤ m for all m ∈N0, a sequence
(x0, x1, ...) of points in [0, 1)s is called a (T, s)-sequence in base b if for all integers
m ≥ 0 and k ≥ 0, the point set consisting of the points xkbm , ..., xkbm+bm−1 forms a
(T(m), m, s)-net in base b.

Lemma A. ([DiPi, Lemma 4.38]) Let (x0, x1, ...) be a (T, s)-sequence in base b.
Then, for every m, the point set {y0, y1, ..., ybm−1} with yk := (xk, k/bm), 0 ≤ k <
bm, is an (r(m),m, s+1)-net in base b with r(m) := max{T(0), ..., T(m)}.

Repeating the proof of this lemma, we obtain

Lemma 1. Let (xn)n≥0 be a sequence in [0, 1)s, mn ∈ N, mi > mj for i > j, and
let (xn, n/bmk)0≤n<bmk be a (t, mk, s + 1)-net in base b for all k ≥ 1. Then (xn)n≥0 is
a (t, s)-sequence in base b.

Lemma B. ([Ni, Lemma 3.7]) Let (xn)n≥0 be a sequence in [0, 1)s. For N ≥ 1, let
H be the point set consisting of (xn, n/N) ∈ [0, 1)s+1 for n = 0, ..., N − 1. Then

1 + max
1≤M≤N

MD∗((xn)
M−1
n=0 ) ≥ ND∗((xn, n/N)N−1

n=0 ).

Definition 7. ([DiNi, Definition 1]) Let m, s ≥ 1 be integers. Let C(1,m), ...,
C(s,m) be m× m matrices over Fb. Now we construct bm points in [0, 1)s. For n =
0, 1, ..., bm − 1, let n = ∑m−1

j=0 aj(n)bj be the b-adic expansion of n. Choose a bijection
φ : Zb := {0, 1, ...., b− 1} 7→ Fb with φ(0) = 0̄, the neutral element of addition in
Fb. Let |φ(a)| := |a| for a ∈ Zb. We identify n with the row vector

(2.13) n = (ā0(n), ..., ām−1(n)) ∈ Fm
b with āi(n) = φ(ai(n)), 0 ≤ i ≤ m− 1.

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03
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We map the vectors

(2.14) y(i)n = (y(i)n,1, ..., y(i)n,m) := nC(i,m)> ∈ Fm
b

to the real numbers

(2.15) x(i)n =
m

∑
j=1

φ−1(y(i)n,j)/bj

to obtain the point

(2.16) xn := (x(1)n , ..., x(s)n ) ∈ [0, 1)s.

The point set {x0, ..., xbm−1} is called a digital net (over Fb) (with generating matrices
(C(1,m), ..., C(s,m))).

For m = ∞, we obtain a sequence x0, x1, ... of points in [0, 1)s which is called a
digital sequence (over Fb) (with generating matrices (C(1,∞), ..., C(s,∞))).

We abbreviate C(i,m) as C(i) for m ∈N and for m = ∞.

Definition 8. Let 0 ≤ D(1) ≤ D(2) ≤ D(3) ≤ ... be a sequence of integers. A
sequence (xn)n≥0 in [0, 1)s is D−admissible in base b if

(2.17) min
0≤k<n<bm

‖xn 	 xk‖b > b−m−D(m) where ‖x‖b :=
s

∏
i=1

∥∥∥x(i)j

∥∥∥
b

,

‖x‖b = b−k−1, x = ∑j≥1 xi p−i
i with xi ∈ Zb, xi = 0 (i = 1, ..., k) and xk+1 6= 0.

Note that for D(m) = d, m = 1, 2, ... this definition is equal to Definition 5.
It is easy to see that condition (2.17) coincides for the case of digital sequences
with the following inequality

(2.18) min
0<n<bm

‖xn‖b > b−m−D(m), m = 1, 2, ... .

2.3 Duality theory ( see [DiPi, Section 7], [DiNi], [NiPi], [Skr]).

Let N be an arbitrary Fb-linear subspace of Fsm
b . Let H be a matrix over Fb

consisting of sm columns such that the row-space of H is equal to N . Then we
define the dual space N⊥ ⊆ Fsm

b of N to be the null space of H (see [DiPi, p.
244]). In other words, N⊥ is the orthogonal complement of N relative to the
standard inner product in Fsm

b ,

(2.19) N⊥ = {A ∈ Fsm
b | B · A = 0 for all B ∈ N}.
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For any vector a = (a1, ..., am) ∈ Fm
b , let

(2.20) vm(a) = 0 if a = 0 and vm(a) = max{j : aj 6= 0} if a 6= 0.

Then we extend this definition to Fms
b by writing a vector A ∈ Fms

b as the
concatenation of s vectors of length m, i.e. A = (a1, ..., as) ∈ Fms

b with ai ∈ Fm
b

for 1 ≤ i ≤ s and putting

(2.21) Vm(A) = ∑
1≤i≤s

vm(ai).

Definition 9. For any nonzero Fm
b -linear subspace N of Fms

b , the minimum
distance of N is defined by

δm(N ) = min{Vm(A) | A ∈ N \ {0}}.

We define a weight function on Fms
b dual to the weight function Vm (2.21).

For any vector a = (a1, ..., am) ∈ Fm
b , let

(2.22) v⊥m(a) = m + 1 if a = 0 and v⊥m(a) = min{j : aj 6= 0} if a 6= 0.

Then we extend this definition to Fms
b by writing a vector A ∈ Fms

b as the
concatenation of s vectors of length m, i.e. A = (a1, ..., as) ∈ Fms

b with ai ∈ Fm
b

for 1 ≤ i ≤ s and putting

(2.23) V⊥m (A) = ∑
1≤i≤s

v⊥m(ai).

Definition 10. For any nonzero Fm
b -linear subspace N of Fms

b , the maximum
distance of N is defined by

(2.24) δ⊥m (N ) = max{V⊥m (A) | A ∈ N \ {0}}.

Definition 11. ([DiPi], Definition 7.4) Let k, m, s be positive integers. The
system {ċ(i)j ∈ Fm

b | 1 ≤ j ≤ m, 1 ≤ i ≤ s} is called a (k, m, s)− system over Fb
if for any k1, ..., ks ∈ N0 with 0 ≤ ki ≤ m for 1 ≤ i ≤ s and k1 + ... + ks = k the
system

{ċ(i)j ∈ Fm
b | 1 ≤ j ≤ ki, 1 ≤ i ≤ s}

is linearly independent over Fb.
For a given (k, m, s)− system {ċ(i)j ∈ Fm

b | 1 ≤ j ≤ m, 1 ≤ i ≤ s} let

Ċ(i), 1 ≤ i ≤ s be the m×m matrix with the row vectors ċ(i)1 , ..., ċ(i)m . With these
m×m matrices over is linearly independent over Fb, we build up the matrix

Ċ = (Ċ(1)>|Ċ(2)>|...|Ċ(s)>) ∈ Fm×sm
b .

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03
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Let Ċ denote the row space of the matrix Ċ. The dual space is then given by

Ċ⊥ = {A ∈ Fsm
b | B · A = 0 for all B ∈ Ċ}.

Lemma C. ([DiPi, Theorem 7.5]) The system {ċ(i)j ∈ Fm
b | 1 ≤ j ≤ m, 1 ≤ i ≤ s}

is a (k, m, s)−system over Fb if and only if the dual space Ċ⊥ of the row space Ċ satis-
fies δm(Ċ⊥) ≥ k + 1.

Let C(1), ..., C(s) ∈ F∞×∞
b be generating matrices of a digital sequence xn(C)n≥0

over Fb. For any m ∈ N, we denote the m × m left-upper sub-matrix of C(i)

by [C(i)]m. The matrices [C(1)]m, ..., [C(s)]m are then the generating matrices of a
digital net. We define the overall generating matrix of this digital net by

(2.25) [C]m = ([C(1)]>m |[C(2)]>m |...|[C(s)]>m) ∈ Fm×sm
b , m = 1, 2, ... .

Let Cm denote the row space of the matrix [C]m i.e.,

(2.26) Cm =
{( m−1

∑
r=0

c(i)j,r ār(n)
)

0≤j≤m−1,1≤i≤s
| 0 ≤ n < bm

}
.

The dual space is then given by

(2.27) C⊥m = {A ∈ Fsm
b | B · A = 0 for all B ∈ Cm}.

Consider a matrix
C̃m = (C̃(1)>

m |C̃(2)>
m |...|C̃(s)>

m ) ∈ Fm×sm
b

with row space C̃m = C⊥m . Let c̃(i)j = (c̃(i)j,1 , ..., c̃(i)j,m) with j ∈ [1, m] are row vectors

of the matrix C̃(i)
m , i = 1, ..., s. Hence

(2.28) C̃m = C⊥m =
{( m−1

∑
r=0

c̃(i)j,r ār(n)
)

0≤j≤m−1,1≤i≤s
| 0 ≤ n < bm

}
.

Let c̃(∗,i)j = (c̃(i)j,m−1, ..., c̃(i)j,1 , c̃(i)j,0), j = 0, ..., m− 1, i = 1, ..., s. Consider the matrix

C̃(∗,i)
m , with row vectors c̃

(∗,i)
j , j = 0, ..., m− 1, i = 1, ..., s.

Let C̃(∗)
m = (C̃(∗,1)>

m |...|C̃(∗,s)>
m ). The row space of C̃(∗)

m is then given by

(2.29) C̃(∗)m =
{( m−1

∑
r=0

c̃(i)m−j−1,r ār(n)
)

0≤j≤m−1,1≤i≤s
| 0 ≤ n < bm

}
.

Using (2.14) and (2.26), we get

(2.30) Cm = {(y(1)n,1, ..., y(1)n,m, ..., y(s)n,1, ..., y(s)n,m) | 0 ≤ n < bm}.
Let

(2.31) Ym = {(y(∗,1)n , ..., y(∗,s)n ) = (y(1)n,m, ..., y(1)n,1, ..., y(s)n,m, ..., y(s)n,1) | 0 ≤ n < bm},
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where y(∗,i)n := (y(i)n,m, ..., y(1)n,2, y(i)n,1), 1 ≤ i ≤ s.
Bearing in mind (2.27), (2.30) and (2.28), we get
s

∑
i=1

m−1

∑
r=0

m−1

∑
j=0

c̃(i)m−j−1,r ār(n1)y
(i)
n2,m−j =

s

∑
i=1

m−1

∑
r=0

m−1

∑
j=0

c̃(i)j,r ār(n1)y
(i)
n2,j+1 = 0, 0 ≤ n1, n2 < bm.

Now, from (2.27), (2.31) and (2.29), we derive that C̃(∗)m is the dual space of Ym :

C̃(∗)⊥m = Ym.

Proposition B. Let C(1), ..., C(s) ∈ F∞×∞
b be generating matrices of a digital se-

quence xn(C)n≥0 over Fb. Then xn(C)n≥0 is D−admissible in base b if and only
if for all m ∈ N the system {c̃(∗,i)j ∈ Fm

b | 1 ≤ j ≤ m, 1 ≤ i ≤ s} is a
(m(s− 1)− D(m) + s, m, s)−system over Fb .

Proof. Applying Lemma C, we get that the system {c̃(∗,i)j ∈ Fm
b | 0 ≤ j ≤

m − 1, 1 ≤ i ≤ s} is a (m(s − 1) − D(m) + s, m, s)−system over Fb if and
only if the dual space C̃(∗)⊥m = Ym of the row space C̃(∗)m satisfies δm(Ym) ≥
m(s− 1)− D(m) + s + 1 =: αm.

By Definition 9, we have

δm(Ym) ≥ αm ⇔
s

∑
i=1

vm(bi) ≥ αm for all (b1, ..., bs) ∈ Ym \ {0}.

Using (2.31), we obtain

δm(Ym) ≥ αm ⇔
s

∑
i=1

vm(y
(∗,i)
n ) ≥ αm for all n ∈ {1, ..., bm − 1}.

From (2.15), (2.20), (2.22), (2.31) and Definition 5, we derive

logb(‖x
(i)
n ‖b) = −v⊥m(y

(i)
n ) = vm(y

(∗,i)
n )−m− 1, 1 ≤ i ≤ s.

Therefore

δm(Ym) ≥ αm ⇔ min
1≤n<bm

s

∑
i=1

(m + 1− v⊥m(y
(i)
n )) ≥ αm ⇔ min

1≤n<bm

s

∑
i=1
−v⊥m(y

(i)
n )

= min
1≤n<bm

s

∑
i=1

logb(‖xn‖b) ≥ αm − (m + 1)s = −m− D(m) + 1.

Hence δm(Ym) ≥ αm if and only if min1≤n<bm ‖xn‖b > b−m−D(m).
By Definition 8, Proposition B is proved. �
We will also need the following assertion.
Proposition C. ([DiPi, Proposition 7.22] For s ∈N, s ≥ 2, the matrices C(1), ..., C(s)

generate a digital (T, s)-sequence if and only if for all m ∈N we have

T(m) ≥ m− δm(C⊥m ) + 1, for all m ∈N.

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03
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2.4 Admissible latices.

Let k(x) = Fb(x) be the rational function field over Fb, k[x] = Fb[x] the
polynomial ring over Fb, and let k((x)) be the perfect completion of k with
respect to valuation (2.1).

A lattice Γ in k((x))s is the image of (k[x])s under an invertible k((x))-linear
mapping of the vector space k((x))s into itself. The points of Γ will be called
lattice points. We will consider only unimodular lattices.

Define the norm of a vector γ = (γ1, ..., γs) ∈ k((x))s as |γ| := max1≤i≤s |γi|,
where |γi| = b−ν∞(γi) and ν∞ is the discrete exponential valuation (2.1).

Now let < y, z > be a standard inner product ( < y, z >= y1z1 + ... + yszs for
y = (y1, ..., ys) and z = (z1, ..., zs)).

The dual (or polar) lattice Γ⊥ of a lattice Γ is defined by Γ⊥ = {x ∈ k((x))s |
< x, y > is a polynomial for all y ∈ Γ}.

First, we describe Mahler’s variant of Minkowski’s theorem on a convex body
in a field of series for the following special case:

The first successive minimum λ1 is defined as the norm of a nonzero shortest
vector b1 of a lattice Γ in k((x))s. For 2 ≤ i ≤ s, a ith successive minimum λi of
Γ is recursively defined as the norm of a smallest vector bi in Γ that is linearly
independent of b1, ..., bi−1 over k((x)).

As an immediate consequence, we get

0 < λ1 ≤ λ2 ≤ ... ≤ λs.

We have a famous theorem due to Mahler (see [Ma], [Te2, p. 33]).
Theorem H. Let λ1, ..., λs be the successive minima of a lattice Γ and let λ⊥1 , ..., λ⊥s

be the successive minima of the dual lattice Γ⊥. We then have

λ1λ2...λs = λ⊥1 λ⊥2 ...λ⊥s = 1, λjλ
⊥
s−j+1 = 1 for 1 ≤ j ≤ s.

Hence λs−1
1 λs ≤ 1 and

(2.32) λ1 ≤ λ
−1/(s−1)
s .

Definition 12. A lattice Γ ⊂ k((x))s is d−admissible if

Nm(Γ) = inf
γ∈Γ\{0}

Nm(γ)/ det(Γ) ≥ b−d, where Nm(γ) = ∏
1≤i≤s

|γi|.

A lattice Γ ⊂ k((x))s is said to be admissible if Γ is d−admissible with some real d.

Proposition D. Let a lattice Γ ⊂ k((x))s be d−admissible, det(Γ) = 1. Then the
dual lattice Γ⊥ is (d + 1)(s− 1) + 2−admissible.
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Proof. Suppose that there exists γ⊥ = (γ⊥1 , ..., γ⊥s ) ∈ Γ⊥ \ {0}with Nm(γ⊥) =

b−a, ∞ > a > c := (d + 1)(s − 1) + 2, a = a1s + a2, a1 = [a/s] and a2 ∈
{0, ..., s− 1}. We have that a1 > (c− s− 1)/s. Consider the following unimod-
ular diagonal matrix U = diag(u1, ..., us), where ui = γ⊥i xa1 for 1 ≤ i < s and
us = γ⊥s xa1+a2 .

Let γ̇ := γ⊥U−1 = (x−a1 , ..., x−a1 , x−a1−a2). Therefore |γ̇| ≤ b−a1 < b−(c−s−1)/s.
It is easy that γ̇ ∈ Γ⊥U−1 and

(2.33) λ⊥1 (Γ
⊥U−1) ≤ |γ̇| < b−(c−s−1)/s.

Note that (UΓ)⊥ = Γ⊥U−1, Nm(y) ≤ |y|s for y ∈ k((x))s, and

(2.34) b−d ≤ Nm(Γ) = Nm(UΓ) ≤ inf
γ∈UΓ\0

|γ|s = (λ1(UΓ))s.

Using (2.32) and (2.33), we get

(2.35) b−d/s ≤ λ1(UΓ) ≤ (λs(UΓ))−1/(s−1) = (λ⊥1 (Γ
⊥U−1))1/(s−1) < b−

c−s−1
(s−1)s .

Thus −d/s < −(c− s− 1)/(s2 − s) and

d > (c− s− 1)/(s− 1) = ((d + 1)(s− 1) + 2− s− 1)/(s− 1) = d.

We have a contradiction.

Now suppose that there exists γ⊥ ∈ Γ⊥ \ {0} with Nm(γ⊥) = 0. Let γ⊥i 6= 0
for i ∈ J ⊂ {1, ..., s}, γ⊥i = 0 for i ∈ J̄ = {1, ..., s} \ J, a = card(J) ∈ [1, s− 1],
s ∈ J̄, and let b f := ∏i∈J |γ⊥i |.

Let γ̇ := (γ̇1, ..., γ̇s) with γ̇i = x−c for i ∈ J and γ̇i = 0 for i ∈ J̄, where
c = 2d(s− a). Therefore |γ̇| = b−c.

Consider the following diagonal matrix U = diag(u1, ..., us), where ui = γ⊥i xc

for i ∈ J, ui = x−c1 for i ∈ J̄ \ {s}, and us = x−c1− f , with c1 = 2ad.
Note that logb |det(U)| = f + ac− (s− a)c1 − f = 2ad(s− a)− 2(s− a)ad =

0. Hence U is a unimodular matrix.
It is easy to see that γ̇ = γ⊥U−1 ∈ Γ⊥U−1, and λ⊥1 (Γ

⊥U−1) ≤ |γ̇| = b−c <

b−d.
By (2.34) and (2.35), we get

b−d/s ≤ λ1(UΓ) ≤ (λs(UΓ))−1/(s−1) = (λ⊥1 (Γ
⊥U−1))1/(s−1) ≤ b−c/(s−1) < b−d/s.

We have a contradiction. Therefore Proposition D is proved. �

Remark 1. In [Le1, Theorem 3.2], we proved the following analog of the
main theorem of the duality theory (see, [DiPi, Section 7], [NiPi] and [Skr]): if
a unimodular lattice Γk((x))s+1 is d−admissible, then from the dual lattice Γ⊥

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03
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we can get a (t, s)-sequence (xn)n≥0 with t = d− s. Using Definition 5, Defini-
tion 12, and Proposition D, we get that (xn)n≥0 is (d + 1)s + 2−admissible. In
[Le5] and in this paper we consider a more general object. We consider nets in
[0, 1)s having simultaneously both (t, m, s) properties and d-admissible prop-
erties. The d-admissible properties have a direct connection to the notion of
the weight in the duality theory (see Definition 5, Definition 8 - Definition 11,
Lemma C and Proposition B). Thus we can consider this paper as a part of the
duality theory.

2.5 Auxiliary results.

Lemma D. ([Le4, Lemma 1]) Let ṡ ≥ 2, d ≥ 1, (xn)0≤n<bm̃ be a d−admissible
(t, m̃, ṡ)-net in base b, d0 = d + t, ê ∈ N, 0 < ε ≤ (2d0ê(ṡ − 1))−1, ṁ = [m̃ε],
m̈i = 0, ṁi = d0êṁ (1 ≤ i ≤ ṡ− 1), m̈ṡ = m̃− (ṡ− 1)ṁ1 − t ≥ 1, ṁṡ = m̈ṡ + ṁ1,
Bi ⊂ {0, ..., ṁ− 1} (1 ≤ i ≤ ṡ), w ∈ Eṡ

m̃ and let γ(i) = γ
(i)
1 /b + ... + γ

(i)
ṁi

/bṁi ,

(2.36) γ
(i)
m̈i+d0( ĵi ê+ j̆i)+ ǰi

= 0 for 1 ≤ ǰi < d0, γ
(i)
m̈i+d0( ĵi ê+ j̆i)+ ǰi

= 1 for ǰi = d0

and ĵi ∈ {0, ..., ṁ − 1} \ Bi, 0 ≤ j̆i < ê, 1 ≤ i ≤ ṡ, γ = (γ(1), ..., γ(ṡ)), B =
#B1 + ...+ #Bṡ and m̃ ≥ 4ε−1(ṡ− 1)(1+ ṡB) + 2t. Let there exists n0 ∈ [0, bm̃) such
that [(xn0 ⊕w)(i)]ṁi = γ(i), 1 ≤ i ≤ ṡ. Then

(2.37) ∆((xn ⊕w)0≤n<bm̃ , Jγ) ≤ −b−d(êε(2(ṡ− 1))−1)ṡ−1m̃ṡ−1 + bt+sd0êBm̃ṡ−2.

Corollary 1. With notations as above. Let ṡ ≥ 3, r̃ ≥ 0, m̃ = m− r̃, (xn)0≤n<bm̃ be
a d−admissible (t, m̃, ṡ)-net in base b, d0 = d + t, ê ∈N, ε = η(2d0ê(ṡ− 1))−1, 0 <
η ≤ 1, ṁ = [m̃ε], m̈i = 0, ṁi = d0êṁ, m̈ṡ = m̃− (ṡ− 1)ṁ1− t ≥ 1, ṁṡ = m̈ṡ + ṁ1,
Bi ⊂ {0, ..., ṁ− 1}, B̄i = {0, ..., ṁ− 1} \ Bi, 1 ≤ i ≤ ṡ, B = #B1 + ...+ #Bṡ. Suppose
that

(2.38) {(x(i)
n,m̈i+d0 ê ĵi+ j̆i

| ĵi ∈ B̄i, j̆i ∈ [1, d0ê], i ∈ [1, ṡ]) | n ∈ [0, bm)} = Zµ
b ,

with m ≥ 2t + 8(d + t)ê(ṡ − 1)2η−1 + 22ṡbd+ṡ+t(d + t)ṡ ê(ṡ − 1)2(ṡ−1)η−ṡ+1B +
4(ṡ − 1)r̃ and µ = d0ê(ṡṁ − B). Then there exists n0 ∈ [0, bm̃) such that [(xn0 ⊕
w)(i)]ṁi = γ(i), 1 ≤ i ≤ ṡ, and for each w ∈ Eṡ

m̃, we have

bm̃D∗((xn ⊕w)0≤n<bm̃) ≥
∣∣∣∆((xn ⊕w)0≤n<bm̃ , Jγ)

∣∣∣ ≥ 2−2b−dK−ṡ+1
d,t,ṡ η ṡ−1mṡ−1

with Kd,t,ṡ = 4(d + t)(ṡ− 1)2.
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Proof. Let γ(n, w) = γ = (γ(1), ..., γ(ṡ)) with γ(i) := [(xn ⊕w)(i)]ṁi , i ∈ [1, ṡ].
Using (2.38), we get that there exists n0 ∈ [0, bm̃) such that γ(n0, w) satisfy
(2.36). Hence (2.37) is true. Taking into account (1.2) and that w ∈ Eṡ

m̃ is arbi-
trary, we get the assertion in Corollary 1. �

Let φ : Zb 7→ Fb be a bijection with φ(0) = 0̄, and let x(i)n,j = φ−1(y(i)n,j) for
1 ≤ i ≤ s, j ≥ 1 and n ≥ 0. We obtain from Corollary 1 :

Corollary 2. Let ṡ ≥ 3, r̃ ≥ 0, m̃ = m − r̃, (xn)0≤n<bm̃ be a d−admissible
(t, m̃, ṡ)-net in base b, d0 = d + t, ê ∈ N, ε = η(2d0ê(ṡ − 1))−1, 0 < η ≤ 1,
ṁ = [m̃ε], m̈i = 0, ṁi = d0êṁ, m̈ṡ = m̃ − (ṡ − 1)ṁ1 − t ≥ 1, ṁṡ = m̈ṡ + ṁ1,
Bi ⊂ {0, ..., ṁ − 1}, B̄i = {0, ..., ṁ − 1} \ Bi, 1 ≤ i ≤ ṡ, B = #B1 + ... + #Bṡ.
Suppose that

{(y(i)
n,m̈i+d0 ê ĵi+ j̆i

| ĵi ∈ B̄i, j̆i ∈ [1, d0ê], i ∈ [1, ṡ]) | n ∈ [0, bm)} = F
µ
b ,

with m ≥ 2t + 8(d + t)ê(ṡ − 1)2η−1 + 22ṡbd+ṡ+t(d + t)ṡ ê(ṡ − 1)2(ṡ−1)η−ṡ+1B +
4(ṡ − 1)r̃ and µ = d0ê(ṡṁ − B). Then there exists n0 ∈ [0, bm̃) such that [(xn0 ⊕
w)(i)]ṁi = γ(i), 1 ≤ i ≤ ṡ, and for each w ∈ Eṡ

m̃, we have

bm̃D∗((xn ⊕w)0≤n<bm̃) ≥
∣∣∣∆((xn ⊕w)0≤n<bm̃ , Jγ)

∣∣∣ ≥ 2−2b−dK−ṡ+1
d,t,ṡ η ṡ−1mṡ−1.

With notations as above, we consider the case of (t, s)-sequence in base b:

Corollary 3. Let s ≥ 2, d ≥ 1, (xn)n≥0 be a d−admissible (t, s) sequence in
base b, d0 = d + t, ê ∈ N, ε = η(2d0ês)−1, 0 < η ≤ 1, ṁ = [mε], m̈i = 0,
1 ≤ i ≤ s, m̈s+1 = t− 1+(s− 1)d0êṁ, B

′
i ⊂ {0, ..., ṁ− 1}, B̄

′
i = {0, ..., ṁ− 1} \ B

′
i ,

1 ≤ i ≤ s + 1, B = #B
′
1 + ... + #B

′
s+1. Suppose that

{(y(i)
n,m̈i+d0 ê ĵi+ j̆i

| ĵi ∈ B̄
′
i , j̆i ∈ [1, d0ê], i ∈ [1, s],

ām̈s+1+d0 ê j̃s+1+ ǰs+1
(n), j̃s+1 ∈ B̄

′
s+1, ǰs+1 ∈ [1, d0ê], ) | n ∈ [0, bm)} = F

µ
b .

with µ = d0ê((s + 1)ṁ − B), and m ≥ 2t + 8(d + t)ês2η−1 + 22s+2bd+s+t+1(d +
t)s+1ês2sη−sB. Then

1 + min
0≤Q<bm

min
w∈Es

m
max

1≤N≤bm
ND∗((xn⊕Q ⊕w)0≤n<N) ≥ 2−2b−dK−s

d,t,s+1ηsms.
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Proof. Using Lemma B, we have

1 + sup
1≤N≤bm

ND∗((xn⊕Q ⊕w)0≤n<N) ≥ bmD∗((xn⊕Q ⊕w, n/bm)0≤n<bm)

= bmD∗((xn ⊕w, (n	Q)/bm)0≤n<bm).

By (1.4) and [DiPi, Lemma 4.38], we have that ((xn, n/bm)0≤n<bm) is a d−admissible
(t, m, s + 1)−net in base b. We apply Corollary 2 with ṡ = s + 1, r̃ = 0, B

′
i = Bi,

1 ≤ i < ṡ, B
′
ṡ = {ṁ− j− 1|j ∈ Bṡ}, ĵs+1 = ṁ− j̃s+1 − 1, j̆s+1 = d0ê− ǰs+1 + 1,

and x(s+1)
n = n/bm. Taking into account that y(s+1)

n,m−j = āj(n) (0 ≤ j < m), we get

y(s+1)
n,m−m̈s+1−d0 êṁ−1+d0 ê ĵs+1+ j̆s+1

= ām̈s+1+d0 ê j̃s+1+ ǰs+1
(n), and Corollary 3 follows. �

Lemma 2. Let ṡ ≥ 2, d0 ≥ 1, ê ≥ 1, ṁ ≥ 1, ṁ1 = d0êṁ, m̈i ∈ [0, m − ṁ1]
(1 ≤ i ≤ ṡ), m ≥ ṡṁ1, ṁ ≥ r, and let

(2.39) Φ := {(y(1)n,m̈1+1, ..., y(1)n,m̈1+ṁ1
, ..., y(ṡ)n,m̈ṡ+1, ..., y(ṡ)n,m̈ṡ+ṁ1

)|n ∈ [0, bm)} ⊆ F
ṡṁ1
b .

Suppose that Φ is a Fb linear subspace of F
ṡṁ1
b and dimFb(Φ) = ṡṁ1 − r. Then there

exists Bi ∈ {0, ..., ṁ− 1}, 1 ≤ i ≤ ṡ, with B = #B1 + ... + #Bṡ ≤ r and

(2.40) Ψ = F
d0 ê(ṡṁ−B)
b ,

where

(2.41) Ψ = {(y(i)
n,m̈i+d0 ê( j̇i−1)+ j̈i

| j̇i ∈ B̄i, j̈i ∈ [1, d0ê], i ∈ [1, ṡ]) | n ∈ [0, bm)}

with B̄i = {0, ..., ṁ− 1} \ Bi.

Proof. Let r̂ = ṡṁ1 − r, and let f1, ..., fr̂ be a basis of Φ with

fµ = ( f (1)µ,m̈1+1, ..., f (1)µ,m̈1+ṁ1
, ..., f (s)µ,m̈s+1, ..., f (s)µ,m̈s+ṁ1

), 1 ≤ µ ≤ r̂.

Let

v(fµ) = max
{

m̈i + (i− 1)ṁ1 + j | f (i)µ,m̈i+j 6= 0, j ∈ [1, ṁ1], i ∈ [1, ṡ]
}

for µ ∈ [1, r̂].

Without loss of generality, assume now that v(fi) ≤ v(fj) for 1 ≤ i < j ≤ r̂. Let

v(fj) = m̈l1 + (l1 − 1)ṁ1 + l2, and let ḟk = fk − fj f (l1)k,m̈l1
+l2

/ f (l1)j,m̈l1
+l2

for 1 ≤ k ≤
j− 1.
We have v(ḟk) < v(fj) for all 1 ≤ k ≤ j− 1.

By repeating this procedure for j = r̂, r̂− 1, ..., 2, we obtain a basis f̂1, ..., f̂r̂ of
Φ with v(f̂i) < v(f̂j) for 1 ≤ i < j ≤ r̂. Let

Ai = {m̈i + j | v(f̂µ) = (i− 1)ṁ1 + m̈i + j, 1 ≤ j ≤ ṁ1, 1 ≤ µ ≤ r̂}, i ∈ [1, ṡ].



ON THE LOWER BOUND OF THE DISCREPANCY OF (t, s)-SEQUENCES: II 17

Taking into account that f̂1, ..., f̂r̂ is a basis of Φ, we get from (2.39)

(2.42) {(y(i)n,j | j ∈ Ai, i ∈ [1, ṡ]) | n ∈ [0, bm)} = F
ṡṁ1−r
b .

Now let

B̄i := { j̇i ∈ [0, ṁ1) | ∃ j̈i ∈ [1, d0ê], with m̈i + j̇id0ê + j̈i ∈ Ai)}, i ∈ [1, ṡ].

It is easy to see that B = #B1 + ... + #Bṡ ≤ r, where B̄i = {0, ..., ṁ− 1} \ Bi.
Bearing in mind (2.41), we obtain (2.40) from (2.42). Hence Lemma 2 is

proved. �

3. Statements of results.

If s = 2 for the case of nets, or s = 1 for the case of sequences, then (1.5)
follows from the W. Schmidt estimate (1.3) (see [Ni, p.24]). In this paper we
take s ≥ 2 for the case of sequences, and s ≥ 3 for the case of nets.

3.1 Generalized Niederreiter sequence. In this subsection, we introduce a
generalization of the Niederreiter sequence due to Tezuka (see [Te2, Section
6.1.2], [DiPi, Section 8.1.2]). By [Te2, p.165], the Sobol’s sequence [DiPi, Section
8.1.2], the Faure’s sequence [DiPi, Section 8.1.2]) and the original Niederreiter
sequence [DiPi, Section 8.1.2]) are particular cases of a generalized Niederreiter
sequence.

Let b be a prime power and let p1, ..., ps ∈ Fb[x] be pairwise coprime polyno-
mials over Fb. Let ei = deg(pi) ≥ 1 for 1 ≤ i ≤ s. For each j ≥ 1 and 1 ≤ i ≤ s,
the set of polynomials {yi,j,k(x) : 0 ≤ k < ei} needs to be linearly independent
(mod pi(x)) over Fb. For integers 1 ≤ i ≤ s, j ≥ 1 and 0 ≤ k < ei, consider the
expansions

(3.1)
yi,j,k(x)
pi(x)j = ∑

r≥0
a(i)(j, k, r)x−r−1

over the field of formal Laurent series Fb((x−1)). Then we define the matrix
C(i) = (c(i)j,r )j≥1,r≥0 by

c(i)j,r = a(i)(Q + 1, k, r) ∈ Fb for 1 ≤ i ≤ s, j ≥ 1, r ≥ 0,

where j − 1 = Qei + k with integers Q = Q(i, j) and k = k(i, j) satisfying
0 ≤ k < ei.

A digital sequence (xn)n≥0 over Fb generated by the matrices C(1), ..., C(s) is
called a generalized Niederreiter sequence (see [DiPi, p.266]).

Theorem I. (see [DiPi, p.266]) The generalized Niederreiter sequence with gener-
ating matrices, defined as above, is a digital (t, s)-sequence over Fb with t = e0− s and

Online Journal of Analytic Combinatorics, Issue 12 (2017), #03



18 MORDECHAY B. LEVIN

e0 = e1 + ... + es.

Theorem 1. With the notations as above, (xn)n≥0 is d−admissible with d = e0.
(a) For s ≥ 2, e = e1e2 · · · es, η1 = s/(s + 1) m ≥ 9(d + t)es(s + 1) and Kd,t,s =
4(d + t)(s− 1)2, we have

1 + min
0≤Q<bm

min
w∈Es

m
max

1≤N≤bm
ND∗((xn⊕Q ⊕w)0≤n<N) ≥ 2−2b−dK−s

d,t,s+1ηs
1ms.

(b) Let s ≥ 3, η2 ∈ (0, 1) and m ≥ 8(d + t)e(s− 1)2η−1
2 + 2(1 + t)η−1

2 (1− η2)
−1.

Suppose that minm/2−t≤jei0≤m,0≤k<ei0
(1− deg(yi0,j,k(x))j−1e−1

i0
) ≥ η2 for some i0 ∈

[1, s]. Then
min

w∈Es
m

bmD∗((xn ⊕w)0≤n<bm) ≥ 2−2b−dK−s+1
d,t,s ηs−1

2 ms−1.

3.2 Xing-Niederreiter sequence (see [DiPi, Section 8.4 ]). Let F/Fb be an
algebraic function field with full constant field Fb and genus g = g(F/Fb).
Assume that F/Fb has at least one rational place P∞, and let G be a positive
divisor of F/Fb with deg(G) = 2g and P∞ /∈ supp(G). Let P1, ..., Ps be s distinct
places of F/Fb with Pi 6= P∞ for 1 ≤ i ≤ s. Put ei = deg(Pi) for 1 ≤ i ≤ s.

By [DiPi, p.279 ], we have that there exists a basis w0, w1, ..., wg of L(G) over
Fb such that

νP∞(wu) = nu for 0 ≤ u ≤ g,

where 0 = n0 < n1 < .... < ng ≤ 2g. For each 1 ≤ i ≤ s, we consider the chain

L(G) ⊂ L(G + Pi) ⊂ L(G + 2Pi) ⊂ ...

of vector spaces over Fb. By starting from the basis w0, w1, ..., wg of L(G) and
successively adding basis vectors at each step of the chain, we obtain for each
n ∈N a basis

(3.2) {w0, w1, ..., wg, ki,1, ki,2, ..., ki,nei}

of L(G + nPi). We note that we then have

(3.3) ki,j ∈ L(G + ([(j− 1)/ei + 1)]Pi) for 1 ≤ i ≤ s and j ≥ 1.

By the Riemann-Roch theorem, there exists a local parameter z at P∞, e.g.,
with

(3.4) deg((z)∞) ≤ 2g + e1 for z ∈ L(G + P1 − P∞) \ L(G + P1 − 2P∞).

For r ∈N∪ {0}, we put

(3.5) zr =

{
zr if r /∈ {n0, n1, ..., ng},
wu if r = nu for some u ∈ {0, 1, ..., g}.



ON THE LOWER BOUND OF THE DISCREPANCY OF (t, s)-SEQUENCES: II 19

Note that in this case νP∞(zr) = r for all r ∈ N ∪ {0}. For 1 ≤ i ≤ s and j ∈ N,
we have ki,j ∈ L(G + nPi) for some n ∈N and also P∞ /∈ supp(G + nPi), hence

νP∞(k
(i)
j ) ≥ 0. Thus we have the local expansions

(3.6) ki,j =
∞

∑
r=0

a(i)j,r zr for 1 ≤ i ≤ s and j ∈N,

where all coefficients a(i)j,r ∈ Fb. For 1 ≤ i ≤ s and j ∈ N, we now define the
sequences

(3.7) c(i)j = (c(i)j,0 , c(i)j,1 , ...) := (a(i)j,n)n∈N0\{n0,...,ng}

= (â(i)j,n0
, a(i)j,n0+1, ..., â(i)j,n1

, a(i)j,n1+1, ...., â(i)j,ng
, a(i)j,ng+1, ....) ∈ FN

b ,

where the hat indicates that the corresponding term is deleted. We define the
matrices C(1), ..., C(s) ∈ FN×N

b by

(3.8) C(i) = (c(i)1 , c(i)2 , c(i)3 , ...)> for 1 ≤ i ≤ s,

i.e., the vector c(i)j is the jth row vector of C(i) for 1 ≤ i ≤ s.

Theorem J (see [DiPi, Theorem 8.11]). With the above notations, we have that the
matrices C(1), ..., C(s) given by (3.8) are generating matrices of the Xing-Niederreiter
(t, s)-sequence (xn)n≥0 with t = g + e0 − s and e0 = e1 + ... + es.

Theorem 2. With the above notations, (xn)n≥0 is d−admissible, where d = g + e0.
(a) For s ≥ 2, e = e1...es, m ≥ 9(d + t)es2η−1

1 and Kd,t,s = 4(d + t)(s− 1)2, we have

1 + min
0≤Q<bm

min
w∈Es

m
max

1≤N≤bm
ND∗((xn⊕Q ⊕w)0≤n<N) ≥ 2−2b−dK−s

d,t,s+1ηs
1ms

with η1 = (1 + deg((z)∞))−1 (see (3.4)).
(b) Let s ≥ 3, η2 ∈ (0, 1) and m ≥ 8(d + t)e(s− 1)2η−1

2 + 2(1 + 2g + η2t)η−1
2 (1−

η2)
−1. Suppose that minm/2−t≤j≤m νP∞(ki0,j)/j ≥ η2, for some i0 ∈ [1, s]. Then

(3.9) min
w∈Es

m
bmD∗((xn ⊕w)0≤n<bm) ≥ 2−2b−dK−s+1

d,t,s ηs−1
2 ms−1.

3.3 Niederreiter-Özbudak nets (see [DiPi, Section 8.2 ]). Let F/Fb be an
algebraic function field with full constant field Fb and genus g = g(F/Fb).
Let s ≥ 2, and let P1, ..., Ps be s distinct places of F with degrees e1, ..., es. For
1 ≤ i ≤ s, let νPi be the normalized discrete valuation of F corresponding to Pi,
let ti be a local parameter at Pi. Further, for each 1 ≤ i ≤ s, let FPi be the residue
class field of Pi, i.e., FPi = OPi /Pi, and let ϑi = (ϑi,1, ..., ϑi,ei) : FPi → F

ei
b be an Fb-

linear vector space isomorphism. Let m > g+∑s
i=1(ei− 1). Choose an arbitrary
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divisor G of F/Fb with deg(G) = ms− m + g− 1 and define ai := νPi(G) for
1 ≤ i ≤ s. For each 1 ≤ i ≤ s, we define an Fb-linear map θi : L(G) → Fm

b on
the Riemann-Roch space L(G) = {y ∈ F \ 0 : div(y) + G ≥ 0} ∪ {0}. We fix i
and repeat the following definitions related to θi for each 1 ≤ i ≤ s.

Note that for each f ∈ L(G) we have νPi( f ) ≥ −ai, and so the local expansion
of f at Pi has the form

(3.10) f =
∞

∑
j=−ai

Sj(ti, f )tj
i , with Sj(ti, f ) ∈ FPi , j ≥ −ai.

We denote Sj(ti, f ) by fi,j. Let mi = [m/ei] and ri = m − eimi. Note that

0 ≤ ri < ei. For f ∈ L(G), the image of f under θ
(G)
i , for 1 ≤ i ≤ s, is defined

as

(3.11) θ
(G)
i ( f ) = (θi,1( f ), ..., θi,m( f )) := (0ri , ϑi( fi,−ai+mi−1), ..., ϑi( fi,−ai)) ∈ Fm

b ,

where we add the ri-dimensional zero vector 0ri = (0, ..., 0) ∈ F
ri
b in the begin-

ning. Now we set

(3.12) θ(G)( f ) := (θ
(G)
1 ( f ), ..., θ

(G)
s ( f )) ∈ Fms

b ,

and define the Fb-linear map

θ(G) : L(G)→ Fms
b , f 7→ θ(G)( f ).

The image of θ(G) is denoted by

(3.13) Nm = Nm(P1, ..., Ps; G) := {θ(G)( f ) ∈ Fms
b | f ∈ L(G)}.

According to [DiPi, p.274],

dim(Nm) = dim(L(G)) ≥ deg(G) + 1− g = ms−m for m > g− s + e1 + ... + es.

Using the Riemann-Roch theorem, we get

(3.14) dim(Nm) = ms−m for m > g− s + e1 + ... + es, s ≥ 3.

Let N⊥m = N⊥m (P1, ..., Ps; G) be the dual space of Nm(P1, ..., Ps; G) (see (2.27)).
The space N⊥m can be viewed as the row space of a suitable m× ms matrix C
over Fb. Finally, we consider the digital net P1(N⊥m ) = {xn(C)|n ∈ [0, bm)}
with overall generating matrix C (see (2.25)).

Let x̃i(hi) = ∑m
j=1 φ−1(hi,j)b−j, where hi = (hi,1, ..., hi,m) ∈ Fm

b (i = 1, ..., s)
and let x̃(h) = (x̃1(h1), ..., x̃s(hs)) where h = (h1, ..., hs). From (2.15), (2.16) and
(2.26), we derive

(3.15) P1 := P1(N⊥m ) = {x̃(h) | h ∈ N⊥m (P1, ..., Ps; G)}.
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Theorem K (see [DiPi, Corollary 8.6]).With the above notations, we have that P1
is a (t, m, s)-net over Fb with t = g + e0 − s and e0 = e1 + ... + es.

To obtain a d−admissible net, we will consider also the following net:

(3.16) P2 := {({br1z1}, ..., {brs zs}) | z = (z1, ..., zs) ∈ P1}.

Without loss of generality, let

(3.17) es = min
1≤i≤s

ei.

Theorem 3. Let s ≥ 3, m0 = 22s+3bd+t+s(d + t)s(s− 1)2s−1(g + e0)eη−s+1 and
η = (1 + deg((ts)∞))−1. Then

min
w∈Es

m
max

1≤N≤bm
ND∗(P1 ⊕w) ≥ 2−2b−dK−s+1

d,t,s η−s+1ms−1, for m ≥ m0,

P2 is a d−admissible (t, m− r0, s)-net in base b with d = g + e0, t = g + e0 − s, and

min
w∈Es

m−r0

bmD∗((P2 ⊕w)) ≥ 2−2b−dK−s+1
d,t,s ηs−1m−s+1, for m ≥ m0,

where Pi ⊕w := {z⊕w | z ∈ Pi}.
.

3.4 Halton-type sequence (see [NiYe]). Let F/Fb be an algebraic function
field with full constant field Fb and genus g = g(F/Fb). We assume that F/Fb
has at least one rational place, that is, a place of degree 1. Given a dimension
s ≥ 1, we choose s + 1 distinct places P1,...,Ps+1 of F with deg(Ps+1) = 1. The
degrees of the places P1,...,Ps are arbitrary and we put ei = deg(Pi) for 1 ≤ i ≤ s.
Denote by OF the holomorphy ring given by

OF =
⋂

P 6=Ps+1

OP,

where the intersection is extended over all places P 6= Ps+1 of F, and OP is the
valuation ring of P. We arrange the elements of OF into a sequence by using
the fact that

OF =
∞⋃

m=0
L(mPs+1).

The terms of this sequence are denoted by f0, f1, ... and they are obtained as
follows. Consider the chain

L(0) ⊆ L(Ps+1) ⊆ L(2Ps+1) ⊆ · · ·

of vector spaces over Fb. At each step of this chain, the dimension either re-
mains the same or increases by 1. From a certain point on, the dimension
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always increases by 1 according to the Riemann-Roch theorem. Thus we can
construct a sequence v0, v1, ... of elements of OF such that

(3.18) {v0, v1, ..., v`(mPs+1)−1}

is a Fb-basis of L(mPs+1). For n ∈N, let

n =
∞

∑
r=0

ar(n)br with all ar(n) ∈ Zb

be the digit expansion of n in base b. Note that ar(n) = 0 for all sufficiently
large r. We fix a bijection φ : Zb → Fb with φ(0) = 0̄. Then we define

(3.19) fn =
∞

∑
r=0

ār(n)vr ∈ OF with ār(n) = φ(ar(n)) for n = 0, 1, ... .

Note that the sum above is finite since for each n ∈N we have ar(n) = 0 for all
sufficiently large r. By the Riemann-Roch theorem, we have

(3.20) { f̃ | f̃ ∈ L((m + g− 1)Ps+1)} = { fn | n ∈ [0, bm)} for m ≥ g.

For each i = 1, ..., s, let ℘i be the maximal ideal of OF corresponding to Pi. Then
the residue class field FPi := OF/℘i has order bei (see [St, Proposition 3.2.9]).
We fix a bijection

(3.21) σPi : FPi → Zbei .

For each i = 1, ..., s, we can obtain a local parameter ti ∈ OF at ℘i, by applying
the Riemann-Roch theorem and choosing

(3.22) ti ∈ L(kPs+1 − Pi) \ L(kPs+1 − 2Pi)

for a suitably large integer k. We have a local expansion of fn at ℘i of the form

(3.23) fn = ∑
j≥0

f (i)n,j tj
i with all f (i)n,j ∈ FPi , n = 0, 1, ... .

We define the map ξ : OF → [0, 1]s by

(3.24) ξ( fn) =
( ∞

∑
j=0

σP1

(
f (1)n,j
)
b−e1(j+1), ...,

∞

∑
j=0

σPs

(
f (s)n,j
)
(b−es(j+1)

)
.

Now we define the sequence x0, x1, ... of points in [0, 1]s by

(3.25) xn = ξ( fn) for n = 0, 1, ... .

From [NiYe, Theorem 1], we get the following theorem :

Theorem L. With the notation as above, we have that (xn)n≥0 is a (t, s)-sequence
in base b with t = g + e0 − s and e0 = e1 + ... + es.
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By Lemma 17, (xn)n≥0 is d−admissible with d = g+ e0. Using [Le4, Theorem
2], we get

(3.26) 1 + max
1≤N≤bm,

ND∗((xn⊕Q ⊕w)0≤n<N) ≥ 2−2b−dK−s
d,t,s+1ms

for some Q ∈ [0, bm) and w ∈ Es
m.

In order to obtain (3.26) for every Q and w, we choose a specific sequence
v0, v1, ... as follows. Let

ts+1 ∈ L(([(2g + 1)/e1] + 1)P1 − Ps+1) \ L(([(2g + 1)/e1] + 1)P1 − 2Ps+1).

It is easy to see that

(3.27) νPs+1(ts+1) = 1, νPi(ts+1) ≥ 0, i ∈ [2, s] and deg((ts+1)∞) ≤ 2g + e1 + 1.

By (3.18) and the Riemann-Roch theorem, we have νPs+1(vi) = −i− g for i ≥ g.
Hence

(3.28) vi = ∑
j≤i+g

vi,jt
−j
s+1 with all vi,j ∈ Fb, vi,i+g 6= 0, i ≥ g.

Using the orthogonalization procedure, we can construct a sequence v0, v1, ...
such that {v0, v1, ..., v`(mPs+1)−1} is a Fb-basis of L(mPs+1),

(3.29) vi,i+g = 1, and vi,j+g = 0 for j ∈ [g, i), i ≥ g.

Subsequently, we will use just this sequence.

Theorem 4. With the above notations, (xn)n≥0 is d−admissible, where d = g + e0.
(a) For s ≥ 2, m ≥ 22s+3bd+t+s+1(d + t)s+1s2se(g + 1)(e0 + s)η−s

1 and
η1 = (1 + deg((ts+1)∞))−1, we have

(3.30) 1 + min
0≤Q<bm

min
w∈Es

m
max

1≤N≤bm
ND∗((xn⊕Q ⊕w)0≤n<N) ≥ 2−2b−dK−s

d,t,s+1ηs
1ms.

(b) Let s ≥ 3, m ≥ 22s+3bd+t+s(d + t)s(s− 1)2s−1(g + e0)eη−s+1
2 ,

es = min1≤i≤s ei and η2 = (1 + deg((ts)∞))−1. Then

(3.31) min
w∈Es

m
bmD∗((xn ⊕w)0≤n<bm) ≥ 2−2b−dK−s+1

d,t,s ηs−1
2 ms−1.

3.5. Niederreiter-Xing sequence.
Let F/Fb be an algebraic function field with full constant field Fb and genus
g = g(F/Fb). Assume that F/Fb has at least s+ 1 rational places. Let P1, ..., Ps+1
be s+ 1 distinct rational places of F. Let Gm = m(P1 + ...+ Ps)− (m− g+ 1)Ps+1,
and let ti be a local parameter at Pi, 1 ≤ i ≤ s + 1. For any f ∈ L(Gm) we have
νPi( f ) ≥ m, and so the local expansion of f at Pi has the form

f =
∞

∑
j=−m

fi,jt
j
i , with fi,j ∈ Fb, j ≥ −m, 1 ≤ i ≤ s.
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For 1 ≤ i ≤ s, we define the Fb-linear map ψm,i( f ) : L(Gm)→ Fm
b by

ψm,i( f ) = ( fi,−1, ..., fi,−m) ∈ Fm
b , for f ∈ L(Gm).

Let

(3.32) Mm =Mm(P1, ..., Ps; Gm) := {(ψm,1( f ), ..., ψm,s( f )) ∈ Fms
b | f ∈ L(Gm)}.

Let C(1), ..., C(s) ∈ F∞×∞
b be the generating matrices of a digital sequence

xn(C)n≥0, and let (Cm)m≥1 be the associated sequence of row spaces of overall
generating matrices [C]m, m = 1, 2, ... (see (2.25)).

Theorem M. (see [DiPi, Theorem 7.26 and Theorem 8.9]) There exist ma-
trices C(1), ..., C(s) such that xn(C)n≥0 is a digital (t, s)-sequence with t = g and
Cm =M⊥

m(P1, ..., Ps; Gm) for m ≥ g + 1, s ≥ 2.

According to [DiNi, p.411] and [DiPi, p.275], the construction of digital se-
quences of Niederreiter and Xing [NiXi] can be achieved by using the above
approach. We propose the following way to get xn(C)n≥0.

We consider the H-differential dts+1. Let ω be the corresponding Weil differ-
ential, div(ω) the divisor of ω, and W := div(dts+1) = div(ω). By (2.5), we
have deg(W) = 2g− 2. Similarly to (3.18)-(3.29), we can construct a sequence
v̇0, v̇1, ... of elements of F such that {v̇0, v̇1, ..., v̇`((m−g+1)Ps+1+W)−1} is a Fb-basis
of
Lm := L((m− g + 1)Ps+1 + W) and

(3.33) v̇r ∈ Lr+1 \ Lr, νPs+1(v̇r) = −r + g− 2, r ≥ g, and v̇r,r+2−g = 1, v̇r,j = 0

for 2 ≤ j < r + 2− g, where

v̇r := ∑
j≤r−g+2

v̇r,jt
−j
s+1 for v̇r,j ∈ Fb and r ≥ g.

According to Proposition A, we have that there exists τi ∈ F (1 ≤ i ≤ s), such
that dts+1 = τidti for 1 ≤ i ≤ s.

Bearing in mind (2.4), (2.6) and (3.33), we get

νPi(v̇rτi) = νPi(v̇rτidti) = νPi(v̇rdts+1) ≥ νPi(div(dts+1)−W) = 0, 1 ≤ i ≤ s, r ≥ 0.

We consider the following local expansions

(3.34) v̇rτi :=
∞

∑
j=0

ċ(i)j,r tj
i , where all ċ(i)j,r ∈ Fb, 1 ≤ i ≤ s, j ≥ 0.

Now let Ċ(i) = (ċ(i)j,r )j,r≥0, 1 ≤ i ≤ s, and let Ċm be the row space of overall
generating matrix [Ċ]m (see (2.25)).
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Theorem 5. With the above notations, xn(Ċ)n≥0 is a digital d−admissible (t, s)-
sequence, satisfying the bounds (3.30) and (3.31), with d = g + s, t = g, and
Ċm =M⊥

m(P1, ..., Ps; Gm) for all m ≥ g + 1.

3.6 General d−admissible digital (t, s)-sequences. In [KrLaPi], discrepancy
bounds for index-transformed uniformly distributed sequences was studied. In
this subsection, we consider a lower bound of such a sequences.

Let s ≥ 2, d ≥ 1, t ≥ 0, d0 = d + t and mk = s2d0(22k+2 − 1) for k = 1, 2, ... .
Let C(s+1) = (c(s+1)

i,j )i,j≥1 be a N×N matrix over Fb, and let [C(s+1)]mk be a non-
singular matrix, k = 1, 2, ... . For n ∈ [0, bmk), let hk(n) = (hk,1(n), ..., hk,mk

(n)) =
n[C(s+1)]>mk

and hk(n) = ∑m
j=1 φ−1(hk,j(n))bj−1 (k ≥ 1). We have hk(l) 6= hk(n)

for l 6= n, l, n ∈ [0, bmk). Let h−1
k (hk(n)) = n for n ∈ [0, bmk). It is easy to see

that h−1
k is a bijection from [0, bmk) to [0, bmk) (k = 1, 2, ...).

Theorem 6. Let (xn)n≥0 be a digital d−admissible (t, s)-sequence in base b. Then
there exists a matrix C(s+1) and a sequence (h−1(n))n≥0 such that [C(s+1)]mk is non-
singular, h−1(n) = h−1

l (n) = h−1
k (n) for n ∈ [0, bmk) (l > k, k = 1, 2, ...),

(xh−1(n))n≥0 a d−admissible (t, s)-sequence in base b, and

1 + min
0≤Q<bmk ,w∈Es

mk

max
1≤N≤bmk

ND∗((xh−1(n)⊕Q ⊕w)0≤n<N) ≥ 2−2b−dK−s
d,t,s+1ms

k, k ≥ 1 .

Remark 2. Halton-type sequences were introduced in [Te1] for the case of
rational function fields over finite fields. Generalizations to the general case of
algebraic function field were obtained in [Le1] and [NiYe]. The constructions in
[Le1] and [NiYe] are similar. The difference is that the construction in [NiYe] is
more simple, but the construction in [Le1] a somewhat more general.

Remark 3. We note that all explicit constructions of this article are expressed
in terms of the residue of a differential and are similar to the Halton construc-
tion (see, e.g., (4.6), (4.28), (4.62) and (4.113)-(4.121)). The earlier constructions
of (t, s)−sequences using differentials, see e.g. [MaNi].

4. Proof of theorems.

4.1. Generalized Niederreiter sequence. Proof of Theorem 1. Using [Le4,
Lemma 2] and [Te3, Theorem 1], we obtain that (xn)n≥0 is d−admissible with
d = e0.

We apply Corollary 3 with B
′
i = ∅, 1 ≤ i ≤ s + 1, B = 0, ê = e = e1e2 · · · es,

d0 = d + t, ε = η1(2sd0e)−1 and η1 = s/(s + 1). In order to prove the first
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assertion in Theorem 1, it is sufficient to verify that

(4.1) Λ1 = F
(s+1)d0e[mε]
b , for m ≥ 9(d + t)es(s + 1),

where

Λ1 = {(y(1)n,1, ..., y(1)n,d1
, ..., y(s)n,1, ..., y(s)n,ds

, āds+1,1(n), ..., āds+1,2(n)) | n ∈ [0, bm)}

with

(4.2) di = ṁi = d0e[mε] (1 ≤ i ≤ s), ds+1,1 = m̈s+1 + 1 := t + (s− 1)d0e[mε],

ds+1,2 = ṁs+1 := t− 1 + sd0e[mε], and n = ∑0≤j≤m−1 aj(n)bj.
Suppose that (4.1) is not true. Then there exists bi,j ∈ Fb (i, j ≥ 1) such that

(4.3)
s

∑
i=1

di

∑
j=1
|bi,j|+

ds+1,2

∑
j=ds+1,1

|bs+1,j| > 0

and

(4.4)
s

∑
i=1

di

∑
j=1

bi,jy
(i)
n,j +

ds+1,2

∑
j=ds+1,1

bs+1,j āj(n) = 0 for all n ∈ [0, bm).

From (2.14) and (3.1), we have

y(i)n,j =
m−1

∑
r=0

c(i)j,r ār(n),

with

(4.5) c(i)j,r = a(i)(Q + 1, k, r) ∈ Fb, j− 1 = Qei + k, 0 ≤ k < ei,

Q = Q(i, j), k = k(i, j), where a(i)(j, k, r) are defined from the expansions

yi,j,k(x)
pi(x)j = ∑

r≥0
a(i)(j, k, r)x−r−1.

We consider the field F = Fb(x), the valuation ν∞ (see (2.1)) and the place
P∞ = div(x−1). By (2.8), we get

a(i)(j, k, r) = Res
P∞,x−1

(
yi,j,k(x)pi(x)−jxr+2).

Hence

(4.6) y(i)n,j = Res
P∞,x−1

(yi,Q(i,j)+1,k(i,j)(x)

pi(x)Q(i,j)+1

m−1

∑
r=0

ār(n)xr+2
)
= Res

P∞,x−1

(yi,Q(i,j)+1,k(i,j)(x)

pi(x)Q(i,j)+1
n(x)

)
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with n(x) = ∑m−1
j=0 āj(n)xj+2 for all j ∈ [1, di], i ∈ [1, s].

We have āj(n) = Res
P∞,x−1

(n(x)x−j−1). From (4.4), we derive

(4.7) Res
P∞,x−1

(n(x)α) = 0 with α =
s

∑
i=1

di

∑
j=1

bi,j
yi,Q(i,j)+1,k(i,j)(x)

pi(x)Q(i,j)+1
+

ds+1,2

∑
j=ds+1,1

bs+1,jx−j−1

for all n ∈ [0, bm). Consider the local expansion

α =
∞

∑
r=0

ϕrx−r−1 with ϕr ∈ Fb, r ≥ 0.

Applying (2.12) and (4.7), we derive

Res
P∞,x−1

(n(x)α) = Res
P∞,x−1

( m−1

∑
µ=0

āµ(n)xµ+2
∞

∑
r=0

ϕrx−r−1
)
=

m−1

∑
µ=0

∞

∑
r=0

āµ(n)ϕr

× Res
P∞,x−1

(xµ+2−r−1) =
m−1

∑
µ=0

∞

∑
r=0

āµ(n)ϕrδµ,r =
m−1

∑
µ=0

āµ(n)ϕµ = 0

for all n ∈ [0, bm). Hence

(4.8) ϕr = 0 for r ∈ [0, m− 1] and ν∞(α) ≥ m.

According to (4.5), we obtain

Q(i, j) + 1 ≤ Q(i, di) + 1 ≤ [(di − 1)/ei] + 1 = di/ei for j ∈ [1, di], i ∈ [1, s].

By (4.7), we get

(4.9) α ∈ L(G1) with G1 =
s

∑
i=1

di/eidiv(pi(x)) + (ds+1,2 + 1)div(x)−mP∞.

From (4.1) and (4.2), we have for m ≥ 2t + 8(d + t)es(s + 1)

deg(G1) =
s

∑
i=1

di + ds+1,2 + 1−m = sd0e[mε] + t− 1 + sd0e[mε] + 1−m

≤ t−m(1− 2sd0eε) = t−m(1− η1) = t−m/(s + 1) < 0.
Hence α = 0.
Let g.c.d.(x, pj(x)) = 1 for all j 6= i with some i ∈ [1, s]. For example, let i = 1,
and let p1(x) = xe1,1 ṗ1(x) with e1,2 = deg( ṗ1(x)), e1 = e1,1 + e1,2, e1,1 ≥ 0,
g.c.d.(x, ṗ1(x)) = 1. According to (4.7), we get α = α1 + α2 + α3, where

α1 =
s

∑
i=2

di

∑
j=1

bi,j
yi,Q(i,j)+1,k(1,j)(x)

pi(x)Q(i,j)+1
, α2 =

d1

∑
j=1

b1,j
ÿi,Q(1,j)+1,k(1,j)(x)

ṗ1(x)Q(1,j)+1

and α3 =
d1

∑
j=1

b1,j
ẏ1,Q(1,j)+1,k(1,j)(x)

xe1,1(Q(1,j)+1)
+

ds+1,2

∑
j=ds+1,1

bs+1,j

xj+1
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with some polynomials ẏ1,j,k(x) and ÿ1,j,k(x).
Using (4.2), we obtain for s ≥ 2 and j ∈ [1, d1] that

ds+1,1 + 1 = t + 1 + (s− 1)d0e[mε] > d0e[mε] = d1 ≥ e1,1d1/e1 ≥ e1,1deg(Q(1, d1) + 1).

We have that the polynomials p2, ..., ps, ṗ1 and x are pairwise coprime over Fb.
By the uniqueness of the partial fraction decomposition of a rational function,
we have that α3 = 0 and bs+1,j = 0 for all j ∈ [ds+1,1, ds+1,2].

Bearing in mind that p1, ..., ps are pairwise coprime polynomials over Fb, we
obtain from [Te3, p.242] or [Te2, p. 166,167] that bi,j = 0 for all j ∈ [1, di] and
i ∈ [1, s].
By (4.3), we have the contradiction. Hence assertion (4.1) is true. Thus the first
assertion in Theorem 1 is proved.

Now consider the second assertion in Theorem 1:
Let, for example, i0 = s, i.e.

(4.10) min
m/2−t≤jes≤m,0≤k<es

(1− deg(ys,j,k(x))j−1e−1
s ) ≥ η2.

We apply Corollary 2 with ṡ = s ≥ 3, Bi = ∅, 1 ≤ i ≤ s, B = 0, r̃ = 0, m = m̃,
d0 = d + t, ê = e = e1e2 · · · es, ε = η2(2(s − 1)d0e)−1. In order to prove the
second assertion in Theorem 1, it is sufficient to verify that

(4.11) Λ2 = F
sd0e[mε]
b for m ≥ 8(d + t)e(s− 1)2η−1

2 + 2(1 + t)η−1
2 (1− η2)

−1,

where

Λ2 = {(y(1)n,1, ..., y(1)n,d1
, ..., y(s−1)

n,1 , ..., y(s−1)
n,ds−1

, y(s)n,ds,1
, ..., y(s)n,ds,2

) | n ∈ [0, bm)},

with

(4.12) di = ṁi = d0e[mε], i ∈ [1, s), ds,1 = m̈s + 1 := m− t + 1− (s− 1)d0e[mε]

and ds,2 = ṁs := m− t− (s− 2)d0e[mε].
Suppose that (4.11) is not true. Then there exists bi,j ∈ Fb (i, j ≥ 1) such that

(4.13)
s−1

∑
i=1

di

∑
j=1
|bi,j|+

ds,2

∑
j=ds,1

|bs,j| > 0

and

(4.14)
s−1

∑
i=1

di

∑
j=1

bi,jy
(i)
n,j +

ds,2

∑
j=ds,1

bs,jy
(s)
n,j = 0 for all n ∈ [0, bm).

Similarly to (4.7), we have

Res
P∞,x−1

(n(x)α) = 0 for all n ∈ [0, bm), with α = α1 + α2,
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where

(4.15) α1 =
s−1

∑
i=1

di

∑
j=1

bi,j
yi,Q(i,j)+1,k(i,j)(x)

pi(x)Q(i,j)+1
and α2 =

ds,2

∑
j=ds,1

bs,j
ys,Q(s,j)+1,k(s,j)(x)

ps(x)Q(s,j)+1
.

Consider the local expansions

α1 =
∞

∑
r=0

ϕ1,rx−r−1 and α2 =
∞

∑
r=0

ϕ2,rx−r−1 with ϕi,r ∈ Fb i = 1, 2, r ≥ 0.

Analogously to (4.8), we obtain from (4.14)

(4.16) ϕ1,r + ϕ2,r = 0 for all r ∈ [0, m− 1].

Taking into account that j ≤ (Q(s, j) + 1)es and ds,1 ≥ m/2− t, we get from
(2.1) and (4.10) that

ν∞

(ys,Q(s,j)+1,k(s,j)(x)

ps(x)Q(s,j)+1

)
= (Q(s, j) + 1)es − deg(ys,Q(s,j)+1,k(s,j)(x)) =

(Q(s, j) + 1)
(

1−
deg(ys,Q(s,j)+1,k(s,j)(x))

(Q(s, j) + 1)es

)
es ≥ (Q(s, j) + 1)esη2 ≥ η2 j, j ≥ ds,1.

Applying (4.15)-(4.16), we have ϕ2,r = 0 for r < [η2ds,1]. Therefore ϕ1,r = 0
for r < [η2ds,1]. Hence

ν∞(α1) ≥ [η2ds,1].
Similarly to (4.9), we obtain

α1 ∈ L(G2) with G2 =
s−1

∑
i=1

di/eidiv(pi(x))− [η2ds,1]P∞.

From (4.11) and (4.12), we have that m > 2(1 + t)η−1
2 (1− η2)

−1 and

deg(G2) =
s−1

∑
i=1

di − [ds,1η2] = (s− 1)d0e[mε]− [(m− t + 1− (s− 1)d0e[mε])η2]

≤ (s− 1)d0e[mε]− (m− t− (s− 1)d0e[mε])η2 + 1 = (1 + η2)(s− 1)d0e[mε]

−mη2 + 1 + t ≤ m((1 + η2)((s− 1)d0eε− η2) + 1 + t
= mη2((1 + η2)/2− 1) + 1 + t = 1 + t−mη2(1− η2)/2 < 0.

Hence α1 = 0 and ϕ1,r = 0 for r ≥ 0.
Using [Te3, p.242] or [Te2, p. 166,167], we get bi,j = 0 for all j ∈ [1, di] and
i ∈ [1, s− 1].
According to (4.16), we have ϕ2,r = 0 for r ∈ [0, m− 1] . Thus ν∞(α2) ≥ m.
From (4.15), we obtain

α2 ∈ L(G3) with G3 = [ds,2/es + 1]div(ps(x))−mP∞.

Applying (4.1) and (4.2), we derive for m > 2/ε and s ≥ 3

deg(G3) ≤ m− t− (s− 2)d0e[mε] + es −m < 0.
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Hence α2 = 0.
By the uniqueness of the partial fraction decomposition of a rational function,

we have from (4.15) that bs+1,j = 0 for all j ∈ [ds,1, ds,2].
By (4.13), we have a contradiction. Thus assertion (4.11) is true. Therefore

Theorem 1 is proved. �

4.2. Xing-Niederreiter sequence. Proof of Theorem 2. Lemma 3. Let P ∈ PF,
t be a local parameter of P over F, k j ∈ F, νP(k j) = j (j = 0, 1, ...). Then there exists
k⊥j ∈ F with νP(k⊥j ) = −j (j = 1, 2, ...), such that

(4.17) S−1(t, k j1k⊥j2+1) = δj1,j2 for j1, j2 ≥ 0.

Proof. Let k⊥1 = (tk0)
−1. We see νP(k jk⊥1 ) ≥ 0 for j ≥ 1. Using (2.2) and

(2.12), we get that (4.17) is true for j2 = 0. Suppose that the assertion of the
lemma is true for 0 ≤ j2 ≤ j0 − 1, j0 ≥ 1. We take

(4.18) k⊥j0+1 =
j0

∑
µ=1

ρµ,j0k⊥µ + (tk j0)
−1, where ρµ,j0 = S−1(t, kµ−1(tk j0)

−1).

We see that νP(k⊥j0+1) = −j0 − 1. By the condition of the lemma and the as-
sumption of the induction, we have νP(k j1k⊥j0+1) ≥ 0 for j1 > j0 and

(4.19) S−1(t, k j1k⊥j0+1) = δj1,j0 for j1 ≥ j0.

Now consider the case j1 ∈ [0, j0). Applying (4.18), we derive

S−1(t, k j1k⊥j0+1) =
j0

∑
µ=1

ρµ,j0S−1(t, k j1k⊥µ ) + S−1(t, k j1(tk j0)
−1).

Using (2.12), (4.18) and the assumption of the induction, we get

S−1(t, k j1k⊥j0+1) =
j0

∑
µ=1

ρµ,j0δj1,µ−1 + S−1(t, k j1(tk j0)
−1) = ρj1+1,j0 − ρj1+1,j0 = 0.

Hence (4.19) is true for all j1 ≥ 0. By induction, Lemma 3 is proved. �

Lemma 4. (xn)n≥0 is d−admissible with d = g + e0, where e0 = e1 + ... + es.

Proof. Consider Definition 5. Taking into account that (xn)n≥0 is a digital
sequence in base b, we can take k = 0. Suppose that the assertion of the lemma
is not true. By (1.4), there exists ñ > 0 such that ‖ñ‖b ‖xñ‖b < b−d = b−g−e0 .

Let di = ḋiei + d̈i with 0 ≤ d̈i < ei, 1 ≤ i ≤ s, ‖ñ‖b = bm−1 and let
∥∥∥x(i)ñ

∥∥∥
b
=
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b−di−1, 1 ≤ i ≤ s. Hence ñ ∈ [bm−1, bm), x(i)ñ,di+1 6= 0,

x(i)ñ,j = 0 for all j ∈ [1, di], i ∈ [1, s] and
s

∑
i=1

(di + 1)−m ≥ d = g + e0.

By (2.14), we have

(4.20) y(i)ñ,j = 0 for all j ∈ [1, ḋiei], i ∈ [1, s] with
s

∑
i=1

ḋiei ≥ m + g.

Let

(4.21) {ṅ0, ..., ṅg−1} = {0, 1, ..., 2g} \ {n0, n1, ..., ng} and ṅi = g + i + 1 for i ≥ g.

Let n = ∑m−1
i=0 ai(n)bi with ai(n) ∈ Zb (i = 0, 1...), and let āi(n) = φ(ai(n))

(i = 0, 1, ...) (see (2.13)). From (2.14), (3.6) and (3.7), we get

(4.22) y(i)n,j =
m−1

∑
µ=0

āµ(n)c
(i)
j,µ =

m−1

∑
µ=0

āµ(n)a(i)j,ṅµ
for j ∈ [1, m], i ∈ [1, s].

By (3.5), we have

(4.23) νP∞(zr) = r, for r ≥ 0, and znu = wu with u = 0, 1, ..., g.

Using Lemma 3, (2.2) and (2.8), we obtain that there exists a sequence (z⊥j )j≥1

such that νP∞(z
⊥
j ) = −j and

(4.24) Res
P∞,z

(ziz⊥j+1) = S−1(z, ziz⊥j+1) = δi,j for all i, j ≥ 0.

We put

(4.25) fn =
m−1

∑
µ=0

āµ(n)z⊥ṅµ+1.

Hence

(4.26) āµ(n) = Res
P∞,z

( fnzṅµ) for 0 ≤ µ ≤ m− 1, n ∈ [0, bm).

By (2.12) and (4.21), we have δṅµ,nu = 0 for all 0 ≤ u ≤ g, µ ≥ 0.
Applying (4.23) and (4.24), we derive

(4.27) Res
P∞,z

( fnwu) = Res
P∞,z

( m−1

∑
µ=0

āµ(n)z⊥ṅµ+1 znu

)

=
m−1

∑
µ=0

āµ(n)Res
P∞,z

(
z⊥ṅµ+1 znu

)
=

m−1

∑
µ=0

āµ(n)δṅµ,nu = 0 for u = 0, 1, ..., g, n ≥ 0.
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According to (3.6) and (4.25), we have

Res
P∞,z

( fnki,j) = Res
P∞,z

( m−1

∑
µ=0

āµ(n)z⊥ṅµ+1

∞

∑
r=0

a(i)j,r zr

)

=
m−1

∑
µ=0

∞

∑
r=0

āµ(n)a(i)j,r Res
P∞,z

(z⊥ṅµ+1 zr) =
m−1

∑
µ=0

∞

∑
r=0

āµ(n)a(i)j,r δṅµ,r =
m−1

∑
µ=0

āµ(n)a(i)j,ṅµ
.

From (4.22), we get

(4.28) Res
P∞,z

( fnki,j) = y(i)n,j for all j ∈ [1, m], i ∈ [1, s], n ∈ [0, bm).

Using (4.20) and (4.27), we derive

Res
P∞,z

(
fñ

( g

∑
r=0

brwr +
s

∑
i=1

ḋiei

∑
j=1

bi,jki,j

))
= 0 for all bi, bi,j ∈ Fb.

Taking into account that (w0, ..., wg, k1,1, ...k1,ḋ1e1
, ..., ks,1, ..., ks,ḋses

) is the basis of
L(G + ∑s

i=1 ḋiPi) (see (3.2)), we obtain

(4.29) Res
P∞,z

( fñγ) = 0 for all γ ∈ L(Ġ) with Ġ = G +
s

∑
i=1

ḋiPi.

By (4.20), we have

deg(Ġ− (m+ g+ 1)P∞) = 2g+
s

∑
i=1

ḋiei− (m+ g+ 1) ≥ 2g+m+ g− (m+ g+ 1) = 2g− 1.

Using the Riemann-Roch theorem, we get

G̈ = (Ġ− (m + g)P∞) \ (Ġ− (m + g + 1)P∞) 6= ∅.

We take v ∈ G̈. Hence νP∞(v) = m + g.
From (3.5), we derive v = ∑r≥m+g b̂rzr with some b̂r ∈ Fb (r ≥ m + g)

and b̂m+g 6= 0. According to (4.21), we have ṅm−1 = m + g. Therefore v =

∑r≥ṅm−1
b̂rzr.

Taking into account that ñ ∈ [bm−1, bm), we get am−1(ñ) 6= 0.
By (4.24), (4.25) and(4.29), we obtain

0 = Res
P∞,z

( fñv) =
m−1

∑
µ=0

∑
r≥ṅm−1

aµ(ñ)b̂rRes
P∞,z

(z⊥ṅµ+1 zr) =
m−1

∑
µ=0

∑
r≥ṅm−1

aµ(ñ)b̂rδṅµ,r.

Bearing in mind that δṅµ,r = 1 for µ ∈ [0, m − 1], r ≥ ṅm−1 if and only if
µ = m− 1 and r = ṅm−1 (see (4.21)), we get ResP∞,z( fñv) = am−1(ñ)b̂ṅm−1 6= 0.
We have a contradiction. Hence Lemma 4 is proved. �
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Lemma 5. Let s ≥ 2, di = d0e[mε], 1 ≤ i ≤ s, ds+1,1 = t + (s − 1)d0e[mε],
ds+1,2 = t− 1+ sd0e[mε], d0 = d + t, t = g + e0− s, e = e1...es and m ≥ 2/ε. Then
the system {w0, w1, ..., wg}∪ {zj+g+1}ds+1,1≤j≤ds+1,2 ∪{ki,j}1≤i≤s,1≤j≤di of elements of
F is linearly independent over Fb.

Proof. Suppose that

α :=
g

∑
j=0

b0,jwj +
s

∑
i=1

di

∑
j=1

bi,jki,j +
ds+1,2

∑
j=ds+1,1

bs+1,jzj+g+1 = 0

for some bi,j ∈ Fb and ∑
g
j=0 |b0,j|+ ∑s

i=1 ∑di
j=1 |bi,j|+ ∑

ds+1,2
j=ds+1,1

|bs+1,j| > 0. Let

(4.30) β1 =
g

∑
j=0

b0,jwj, β2,i =
di

∑
j=1

bi,jki,j, β2 =
s

∑
i=1

β2,i, β3 =
ds+1,2

∑
j=ds+1,1

bs+1,jzj+g+1.

We have

(4.31) α = β1 + β2 + β3 = 0.

Suppose that∑s
i=1 ∑di

j=1 |bi,j| = 0 and α = 0. By (4.30) and (4.31), we have
β1 + β3 = 0 and νP∞(β1) ≥ ds+1,1. Taking into account that β1 ∈ L(G) with
deg(G) = 2g, we obtain from the Riemann-Roch theorem that β1 = 0. There-
fore ∑

g
j=0 |b0,j| = 0 and ∑

ds+1,2
j=ds+1,1

|bs+1,j| = 0. We have a contradiction.

According to [DiPi, Lemma 8.10], we get that if ∑
ds+1,2
j=ds+1,1

|bs+1,j| = 0 and

α = 0, then ∑
g
j=0 |b0,j| = 0 and ∑s

i=1 ∑di
j=1 |bi,j| = 0. So, we will consider only the

case then ∑s
i=1 ∑di

j=1 |bi,j| > 0 and ∑
ds+1,2
j=ds+1,1

|bs+1,j| > 0.

Let ∑dh
j=1 |bh,j| > 0 for some h ∈ [1, s], and let νPh(z) ≥ 0.

By the construction of kh,j, we have β2,h /∈ L(G) and β2,h 6= 0. Applying (3.3)
and (4.30), we obtain νP(β2,h) ≥ −νP(G) for any place P 6= Ph and hence we
obtain that νPh(β2,h) ≤ −νPh(G)− 1 with νPh(G) ≥ 0.

On the other hand, using (3.3) (4.30) and (4.31), we get

νPh(β2,h) = νPh

(
− β1 −

s

∑
i=1,i 6=h

β2,i − β3

)

≥ min
(

νPh(β1), νPh(β3), min
1≤i≤s,i 6=h

νPh(β2,i)
)
≥ −νPh(G).

We have a contradiction.
Now let νPh(z) ≤ −1. Bearing in mind that ∑

ds+1,2
j=ds+1,1

|bs+1,j| > 0, we obtain
that β3 6= 0, and νPh(β3) ≤ −ds+1,1 − g− 1. On the other hand, using (3.3) and
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(4.31), we have

νPh(β3) = νPh(β1 + β2) ≥ −νPh(G)− [(dh − 1)/eh + 1]eh ≥ −2g− dh.

Taking into account that

ds+1,1 + g + 1− (2g + dh) = t + g + 1 + (s− 2)d0e[mε]− 2g ≥ t− g + 1 ≥ 1,

we have a contradiction. Thus Lemma 5 is proved. �

Lemma 6. Let s ≥ 2, d0 = d + t, t = g + e0 − s, ε = η1(2sd0e)−1, η1 =
(1 + deg((z)∞))−1,

Λ1 := {(y(1)n,1, ..., y(1)n,d1
, ..., y(s)n,1, ..., y(s)n,ds

, āds+1,1(n), ..., āds+1,2(n)) | n ∈ [0, bm)},
where

(4.32) di = m̈i := d0e[mε] (1 ≤ i ≤ s), ds+1,1 = m̈s+1 + 1 := t + (s− 1)d0e[mε],

ds+1,2 = ṁs+1 := t − 1 + sd0e[mε], e = e1e2 · · · es, and n = ∑0≤j≤m−1 aj(n)bj.
Then

(4.33) Λ1 = F
(s+1)d0e[mε]
b , with m ≥ 9(d + t)es2η−1

1 .

Proof. Suppose that (4.33) is not true. Then there exists bi,j ∈ Fb (i, j ≥ 1)
such that

(4.34)
s

∑
i=1

di

∑
j=1
|bi,j|+

ds+1,2

∑
j=ds+1,1

|bs+1,j| > 0

and

(4.35)
s

∑
i=1

di

∑
j=1

bi,jy
(i)
n,j +

ds+1,2

∑
j=ds+1,1

bs+1,j āj(n) = 0 for all n ∈ [0, bm).

From (4.26) and (4.28), we obtain for n ∈ [0, bm)

āj−1(n) = Res
P∞,z

( fnzṅj−1) and y(i)n,j = Res
P∞,z

( fnki,j) with j ∈ [1, m], i ∈ [1, s].

Applying (3.5) and (4.21), we get ṅj−1 = g + j and zṅj−1 = zg+j for j ≥ ds+1,1.
Hence

(4.36)
s

∑
i=1

di

∑
j=1

bi,jRes
P∞,z

( fnki,j) +
ds+1,2

∑
j=ds+1,1

bs+1,jRes
P∞,z

( fnzg+j+1) = Res
P∞,z

( fnα1) = 0

with

(4.37) α1 =
s

∑
i=1

di

∑
j=1

bi,jki,j +
ds+1,2

∑
j=ds+1,1

bs+1,jzg+j+1 for n ∈ [0, bm).
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Let

b0,u = −
s

∑
i=1

di

∑
j=1

bi,ja
(i)
j,nu

, β1 =
g

∑
u=0

b0,uwu, β2 =
s

∑
i=1

di

∑
j=1

bi,jki,j,

(4.38) β3 =
ds+1,2

∑
j=ds+1,1

bs+1,jzg+j+1 and α2 = β1 + β2 + β3 = β1 + α1.

By (4.34) and Lemma 5, we get

(4.39) α2 6= 0.

Consider the local expansion

(4.40) α2 =
∞

∑
r=0

ϕrzr with ϕr ∈ Fb, r ≥ 0.

Using (3.5), (3.6) and (4.38), we have

(4.41) ϕnu = 0 for 0 ≤ u ≤ g.

From (4.27), we derive Res
P∞,z

( fnwu) = 0 (0 ≤ u ≤ g). By (4.36) and (4.38), we get

Res
P∞,z

( fnβ1) = 0 and Res
P∞,z

( fnα2) = 0 for all n ∈ [0, bm).

Applying (4.24), (4.25) and (4.40), we obtain

Res
P∞,z

( fnα2) = Res
P∞,z

( m−1

∑
µ=0

āµ(n)z⊥ṅµ+1

∞

∑
r=0

ϕrzr

)

=
m−1

∑
µ=0

∞

∑
r=0

āµ(n)ϕrRes
P∞,z

(z⊥ṅµ+1 zr) =
m−1

∑
µ=0

∞

∑
r=0

āµ(n)ϕrδṅµ,r =
m−1

∑
µ=0

āµ(n)ϕṅµ = 0

for all n ∈ [0, bm).
Hence ϕṅµ = 0 for µ ∈ [0, m− 1]. According to (4.21) and (4.41), we have

(4.42) ϕr = 0 for r ∈ [0, m + g].

Therefore

(4.43) νP∞(α2) > m + g.

From (3.3) and (4.38), we derive

β1 + β2 ∈ L
(
G +

s

∑
i=1

[(di − 1)/ei + 1]Pi
)

and β3 ∈ L
(
(ds+1,2 + g + 1)(z)∞

)
.

By (4.43), we obtain

α2 ∈ L(G1) with G1 = G+
s

∑
i=1

[(di− 1)/ei + 1]Pi +(ds+1,2 + g+ 1)(z)∞− (m+ g+ 1)P∞.
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Using (4.32), we have

deg(G1) = 2g +
s

∑
i=1

di + (ds+1,2 + g + 1)deg((z)∞)− (m + g + 1)

= 2g + sd0e[mε] + (t + g + sd0e[mε])(η−1
1 − 1)− (m + g + 1)

≤ 2g + (t + g)(η−1
1 − 1) + sd0emεη−1

1 − (m + g + 1)

= g− 1 + (t + g)(η−1
1 − 1)−m(1− sd0eεη−1

1 ) = g− 1 + (t + g)(η−1
1 − 1)−m/2 < 0

for m ≥ 9(d + t)es2η−1
1 > 2(g− 1) + 2(t + g)(η−1

1 − 1) and d = g + e0. Hence
α2 = 0. By (4.39), we have a contradiction. Therefore assertion (4.35) is not true.
Thus Lemma 6 is proved. �

End of the proof of Theorem 2. Using Lemma 4 and Theorem J, we get
that (x(n))n≥0 is a d−admissible digital (t, s) sequence with d = g + e0 and
t = g + e0 − s. Applying Lemma 6 and Corollary 3 with B

′
i = ∅, 1 ≤ i ≤ s + 1,

B = 0 and ê = e = e1e2 · · · es, we get the first assertion in Theorem 2.

Consider the second assertion in Theorem 2 :
Let, for example, i0 = s, i.e.

(4.44) νP∞

(
ks,j
)
≥ η2 j for j ≥ m/2− t, and η2 ∈ (0, 1).

From (1.4), Lemma 4 and Theorem J, we get that (x(n))0≤n<bm is a d−admissible
digital (t, m, s)-net with d = g + e0 and t = g + e0 − s.

We apply Corollary 2 with ṡ = s ≥ 3, Bi = ∅, 1 ≤ i ≤ s, B = 0, r̃ = 0, m = m̃,
ê = e = e1e2 · · · es, d0 = d + t, t = g + e0 − s and e0 = e1 + ... + es. In order to
prove the second assertion in Theorem 2, it is sufficient to verify that

(4.45) Λ2 = F
sd0e[mε]
b for m ≥ 8(d + t)e(s− 1)2η−1

2 + 2(1 + 2g + η2t)η−1
2 (1− η2)

−1,

where

Λ2 = {(y(1)n,1, ..., y(1)n,d1
, ..., y(s−1)

n,1 , ..., y(s−1)
n,ds−1

, y(s)n,ds,1
, ..., y(s)n,ds,2

) | n ∈ [0, bm)}

with

(4.46) di = ṁi := d0e[mε], i ∈ [1, s), ds,1 = m̈s + 1 := m− t + 1− (s− 1)d0e[mε],

ds,2 = ṁs := m− t− (s− 2)d0e[mε], and ε = η2(2(s− 1)d0e)−1.
Suppose that (4.45) is not true. Then there exists bi,j ∈ Fb (i, j ≥ 1) such that

(4.47)
s−1

∑
i=1

di

∑
j=1
|bi,j|+

ds,2

∑
j=ds,1

|bs,j| > 0
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and
s−1

∑
i=1

di

∑
j=1

bi,jy
(i)
n,j +

ds,2

∑
j=ds,1

bs,jy
(s)
n,j = 0 for all n ∈ [0, bm).

Similarly to (4.36), we get

Res
P∞,z

( fnα1) = 0 for all n ∈ [0, bm), with α1 = α2 − β1

where α2 = β1 + β2 + β3, with

(4.48) β1 =
g

∑
u=0

b0,uwu, β2 =
s−1

∑
i=1

di

∑
j=1

bi,jki,j and β3 =
ds,2

∑
j=ds,1

bs,jks,j

and b0,u = −∑s−1
i=1 ∑di

j=1 bi,ja
(i)
j,nu
−∑

ds2
j=ds1

bs,ja
(s)
j,nu

. Consider the local expansions

β1 + β2 =
∞

∑
r=0

ϕ̇rzr and β3 =
∞

∑
r=0

ϕ̈rzr with ϕi,r ∈ Fb i = 1, 2, r ≥ 0.

Analogously to (4.42), we obtain

(4.49) ϕ̇r + ϕ̈r = 0 for r ∈ [0, m + g].

Using (4.44), (4.46) and (4.48), we get

νP∞

(
ks,j
)
≥ η2 j for j ≥ ds,1 ≥ m/2− t, and ϕ̈r = 0 for r ≤ [η2ds,1]− 1.

Therefore ϕ̇r = 0 for r ≤ [η2ds,1]− 1. Hence

νP∞(β1 + β2) ≥ [η2ds,1].

By (4.48), we obtain

β1 + β2 ∈ L(G2) with G2 = G +
s−1

∑
i=1

[(di − 1)/ei + 1]Pi − [η2ds,1]P∞.

According to (4.45) and (4.46), we have

deg(G2) = 2g+
s−1

∑
i=1

di− [η2ds,1] = 2g+ (s− 1)d0e[mε]− [η2(m− t+ 1− (s− 1)d0e[mε])]

≤ 2g + (s− 1)d0e[mε]− η2(m− t + 1− (s− 1)d0e[mε]) + 1 = (1 + η2)(s− 1)d0e[mε]

−mη2 + 2g + 1 + η2(t− 1) ≤ mη2((1 + η2)/2− 1) + 1 + 2g + η2t < 0
for m > 2(1 + 2g + η2t)η−1

2 (1− η2)
−1. Hence β1 + β2 = 0.

By [DiPi, Lemma 8.10] (or Lemma 5), we get that bi,j = 0 for all j ∈ [1, di],
i ∈ [1, s− 1] and b0,j = 0 for j ∈ [0, g].
From (4.49) we have ϕ̈r = 0 for r ∈ [0, m + g] . Thus νP∞(β3) ≥ m + g + 1.
Applying (4.48), we derive

β3 ∈ L(G3) with G3 = G + [(ds,2 − 1)/es + 1]Ps − (m + g + 1)P∞.
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By (4.46), we obtain

deg(G3) = 2g+m− t− (s− 2)d0e[mε]+ es−m− g− 1 ≤ g− t− 1+ es− (s− 2)d0e[mε] < 0

for m ≥ ε−1 and s ≥ 3. Hence β3 = 0. Using (3.2) and (4.48), we get that bs,j = 0
for all j ∈ [ds,1, ds,2].

By (4.47), we have a contradiction. Thus assertions (4.45) and (3.9) are true.
Therefore Theorem 2 is proved. �

4.3. Niederreiter-Özbudak nets. Proof of Theorem 3. Let

(4.50) m = miei + ri, with 0 ≤ ri < ei, 1 ≤ i ≤ s and r̃0 =
s−1

∑
i=1

ri, r0 =
s

∑
i=1

ri.

Lemma 7. There exists a divisor G̃ of F/Fb with deg(G̃) = g− 1 + r̃0, such that
νPi(G̃) = 0 for 1 ≤ i ≤ s, and

Nm(P1, ..., Ps; G) = Nm(P1, ..., Ps; Ĝ), where Ĝ = m1P1 + ... + ms−1Ps−1 + G̃.

Proof. We have νPi(G) = ai and νPi(ti) = 1 for 1 ≤ i ≤ s. Using the
Approximation Theorem, we obtain that there exists y ∈ F, such that

(4.51) νPi(y− tai−mi
i ) = ai + 1, for 1 ≤ i ≤ s− 1, νPs(y− tas

s ) = as + ms + 1.

Let ḟ = f y and Ĝ = G− div(y). We note

(4.52) f ∈ L(G)⇔ div( f ) + G ≥ 0⇔ div( f y) + G− div(y) ≥ 0⇔ ḟ = f y ∈ L(Ĝ).

It is easy to see that νPi(Ĝ) = mi (1 ≤ i ≤ s− 1), νPs(Ĝ) = 0 and deg(Ĝ) =

deg(G) = m(s− 1)+ g− 1. Let G̃ = Ĝ−m1P1− ...−ms−1Ps−1. We get νPi(G̃) =
0 for 1 ≤ i ≤ s. Hence

deg(G̃) = m(s− 1) + g− 1− e1m1 − ...− es−1ms−1 = g− 1 + r̃0.

Let ḟi,j = Sj(ti, ḟ ) (see (3.10)). By (4.51), we have

ḟi,−j = fi,−ai+mi−j 1 ≤ i ≤ s− 1, and ḟs,ms−j = fs,−as+ms−j with 1 ≤ j ≤ ms.

Using notations (3.11), we get

θ
(Ĝ)
i ( ḟ ) = (0ri , ϑi( ḟi,−1), ..., ϑi( ḟi,−mi)) = (0ri , ϑi( fi,−ai+mi−1), ..., ϑi( fi,−ai)) = θ

(G)
i ( f )

for 1 ≤ i ≤ s− 1, and

θ
(Ĝ)
s ( ḟ ) = (0rs , ϑs( ḟs,ms−1), ..., ϑs( ḟs,0)) = (0rs , ϑs( fs,−as+ms−1), ..., ϑs( fs,−as)) =

θ
(G)
s ( f ). By (3.12), we have

θ(Ĝ)( ḟ ) := (θ
(Ĝ)
1 ( ḟ ), ..., θ

(Ĝ)
s ( ḟ )) = (θ

(G)
1 ( f ), ..., θ

(G)
s ( f )) = θ(G)( f )
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for all f ∈ L(G). From (3.13) and (4.52) , we obtain the assertion of Lemma
7. �

By Lemma 7, we can take Ĝ instead of G. Hence

(4.53) G = m1P1 + ... + ms−1Ps−1 + G̃, and ai = mi, 1 ≤ i ≤ s− 1, as = 0.

Let ϑi = (ϑi,1, ..., ϑi,ei). From (3.11), we get for 0 ≤ ǰi ≤ mi − 1, 1 ≤ ĵi ≤ ei, that

θ
(G)
i ( f ) = (θi,1( f ), ..., θi,m( f )) = (0ri , ϑi( fi,−1), ..., ϑi( fi,−mi)), 1 ≤ i ≤ s− 1,

with θi,ri+ ǰiei+ ĵi
( f ) = ϑi, ĵi

( fi,− ǰi−1), and

(4.54) θ
(G)
s ( f ) = (θs,1( f ), ..., θs,m( f )) = (0rs , ϑs( fs,ms−1), ..., ϑs( fs,0)),

with θs,rs+ ǰses+ ĵi
( f ) = ϑs, ĵs( fs,ms− ǰs−1).

Lemma 8. Let ϑi = (ϑi,1, ..., ϑi,ei) : FPi → F
ei
b be an Fb-linear vector space isomor-

phism. Then there exists an Fb-linear vector space isomorphism ϑ⊥i = (ϑ⊥i,1, ..., ϑ⊥i,ei
) :

FPi → F
ei
b such that

TrFPi /Fb
(ẋẍ) =

ei

∑
j=1

ϑi,j(ẋ)ϑ⊥i,j(ẍ) f or all ẋ, ẍ ∈ FPi , 1 ≤ i ≤ s.

Proof. Using Theorem F, we get that there exists βi,j ∈ FPi such that

(4.55) ϑi,j(y) = TrFPi /Fb
(yβi,j) for 1 ≤ j ≤ ei,

and (βi,1, ..., βi,ei) is the basis of FPi over Fb (1 ≤ i ≤ s). Applying Theorem G,
we obtain that there exists a basis (β⊥i,1, ..., β⊥i,ei

) of FPi over Fb such that

TrFPi /Fb
(βi,j1 β⊥i,j2) = δj1,j2 with 1 ≤ j1, j2 ≤ ei.

Let ẋ = ∑ei
j=1 γ̇jβ

⊥
i,j, ẍ = ∑ei

j=1 γ̈jβi,j and let

(4.56) ϑ⊥i,j(ẍ) := γ̈j = TrFPi /Fb
(ẍβ⊥i,j).

By (4.55), we have γ̇j = ϑi,j(ẋ). Now, we get

TrFPi /Fb
(ẋẍ) =

ei

∑
j1,j2=1

γ̇j1 γ̈j2TrFPi /Fb
(β⊥i,j1 βi,j2) =

ei

∑
j=1

γ̇jγ̈j =
ei

∑
j=1

ϑi,j(ẋ)ϑ⊥i,j(ẍ).

Hence Lemma 8 is proved. �

We consider the H-differential dts. Let ω be the corresponding Weil differen-
tial, div(ω) the divisor of ω, and W := div(dts) = div(ω). By (2.4) and (2.6),
we have

(4.57) deg(W) = 2g− 2 and νPs(W) = νPs(dts) = νPs(dts/dts) = 0.
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Using notations of Lemma 7, we define

(4.58) G⊥ = msPs − G̃ + W, where deg(G̃) = g− 1 + r̃0 and νPi(G̃) = 0

for 1 ≤ i ≤ s. Let a⊥i := νPi(G
⊥ −W) for 1 ≤ i ≤ s. We obtain from (4.58) that

a⊥i = 0 for 1 ≤ i ≤ s− 1 and a⊥s = ms. Let f⊥ ∈ L(G⊥), then div( f⊥) + W +

G⊥ −W ≥ 0 and νPi(div( f⊥) + W) ≥ −νPi(G
⊥ −W). Applying (2.6), we get

(4.59) νPi( f⊥dts) = νPi( f⊥) + νPi(W) ≥ −νPi(G
⊥ −W) = −a⊥i , with a⊥i = 0,

1 ≤ i ≤ s− 1, and a⊥s = ms for f⊥ ∈ L(G⊥). According to Proposition A, we
have that there exists τi ∈ F, such that

(4.60) dts = τidti, 1 ≤ i ≤ s.

From (2.4) and (4.59), we get

νPi( f⊥τi) = νPi( f⊥τidti) = νPi( f⊥dts) ≥ −a⊥i , 1 ≤ i ≤ s.

By (2.2), we have the local expansions

(4.61) f⊥τi :=
∞

∑
j=−a⊥i

Sj(ti, f⊥τi)t
j
i , where all Sj(ti, f⊥τi) ∈ FPi

for 1 ≤ i ≤ s and f⊥ ∈ L(G⊥). We denote Sj(ti, f⊥τi) by f⊥i,j .
Using (2.7), (2.8) and (4.56), we denote

(4.62) ϑ⊥i, ĵi
( f⊥i, ǰi) := TrFPi /Fb

(β⊥i, ĵi
f⊥i, ǰi) = Res

Pi,ti
(β⊥i, ĵi

t− ǰi−1
i f⊥τi)

and ϑ⊥i = (ϑ⊥i,1, ..., ϑ⊥i,ei
) with 1 ≤ ĵi ≤ ei, −a⊥i ≤ ǰi ≤ −a⊥i + mi − 1, 1 ≤ i ≤ s.

For f⊥ ∈ L(G⊥), the image of f⊥ under θ̇⊥i , for 1 ≤ i ≤ s, is defined as

θ̇⊥i ( f⊥) = (θ̇⊥i,1( f⊥), ..., θ̇⊥i,m( f⊥)) := (ϑ⊥i ( f⊥i,−a⊥i
), ..., ϑ⊥i ( f⊥i,−a⊥i +mi−1), 0ri) ∈ Fm

b ,

It is easy to verify that

(4.63) θ̇⊥i, ǰiei+ ĵi
( f⊥) = ϑ⊥i, ĵi

( f⊥i, ǰi), for 1 ≤ ĵi ≤ ei, 0 ≤ ǰi ≤ mi − 1,

(4.64) 1 ≤ i ≤ s− 1 and θ̇⊥s, ǰses+ ĵs
( f⊥) = ϑ⊥s, ĵs

( f⊥s,−ms+ ǰs
), 0 ≤ ǰs ≤ ms − 1.

Let

(4.65) θ̇(G,⊥)( f⊥) :=
(
θ̇⊥1 ( f⊥), ..., θ̇⊥s ( f⊥)

)
∈ Fms

b .

Let ϕi = (ϕi,1, ..., ϕi,ri) with ϕi,j ∈ Fb (1 ≤ j ≤ ri, 1 ≤ i ≤ s), and let

(4.66) Φ = {ϕ = (ϕ1, ...,ϕs) | ϕi ∈ F
ri
b , i = 1, ..., s} with dim(Φ) = r0 =

s

∑
i=1

ri.

Now, we set

(4.67) θ(G,⊥)( f⊥,ϕ) :=
(
θ⊥1 ( f⊥,ϕ), ..., θ⊥s ( f⊥,ϕ)

)
∈ Fms

b ,
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where

θ⊥i ( f⊥,ϕ) = (θ⊥i,1( f⊥,ϕ), ..., θ⊥i,m( f⊥,ϕ)) := (ϕi, θ̇⊥i,1( f⊥), ..., θ̇⊥i,m−ri
( f⊥)) ∈ Fm

b .

We define the Fb-linear maps

(4.68) θ(G,⊥) :
(
L(G⊥), Φ

)
→ Fms

b , ( f⊥,ϕ) 7→ θ(G,⊥)( f⊥,ϕ)

and θ̇(G,⊥) : L(G⊥)→ Fms
b , f⊥ 7→ θ̇(G,⊥)( f⊥).

The images of θ(G,⊥) and θ̇(G,⊥) are denoted by

(4.69) Ξm := {θ(G,⊥)( f⊥,ϕ) | f⊥ ∈ L(G⊥), ϕ ∈ Φ}

and Ξ̇m := {θ̇(G,⊥)( f⊥) | f⊥ ∈ L(G⊥)}.

Lemma 9 With notation as above, we have ker(θ(G,⊥)) = 0 and

δ⊥m (Ξ̇m) ≤ m + g− 1 + e0 − r0.

Proof. Consider (4.57)-(4.60). Let f⊥ ∈ L(G⊥) \ {0}, and let

(4.70) νPi( f⊥τi) = di for 1 ≤ i ≤ s− 1, νPs( f⊥) = ds −ms.

We see that

(4.71) div( f⊥) + G⊥ ≥ 0, with G⊥ = msPs − G̃ + W and W = (dts).

Hence

(4.72) νP
(
div( f⊥) + msPs − G̃ + W

)
≥ 0, for all P ∈ PF.

By (2.4) and (2.6), we obtain νPi(W) = νPi(dts) = νPi(τi), 1 ≤ i ≤ s.
Bearing in mind (4.70) and that νPi(G̃) = 0 for i ∈ [1, s], we get

νPi(div( f⊥) + msPs − G̃ + W) = di ≥ 0, 1 ≤ i ≤ s.

Therefore

νPi(div( f⊥) + Ġ) ≥ 0 for f⊥ ∈ L(G⊥) \ {0}, where Ġ = G⊥ −
s

∑
i=1

diPi

and G⊥ = msPs − G̃ + W. Taking into account that f⊥ ∈ L(G⊥) \ {0}, we
obtain

0 ≤ deg(Ġ) = deg
(

G⊥ −
s

∑
i=1

diPi

)
= deg(G⊥)−

s

∑
i=1

diei.

By (4.57), (4.58) and (4.50), we get
s

∑
i=1

diei ≤ deg(msPs − G̃ + W) = mses − (g− 1 + r̃0) + 2g− 2 = m− r0 + g− 1.
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According to (4.61), (4.62) and (4.70), we obtain

f⊥i,a⊥i +j = 0 for 0 ≤ j < di and f⊥i,a⊥i +di
6= 0, 1 ≤ i ≤ s.

From (2.22), (4.64) and Lemma 8, we have

v⊥m(θ̇
⊥
i ( f⊥)) ≤ (di + 1)ei for 1 ≤ i ≤ s.

Applying (4.65) and (2.23), we derive

V⊥m
(
θ̇(G,⊥)( f⊥)

)
≤

s

∑
i=1

(di + 1)ei ≤ m + g− 1 + e0 − r0.

By (2.24), δ⊥m (Ξ̇m) ≤ m + g − 1 + e0 − r0. Taking into account (2.22) and that
s ≥ 3, we get ker(θ(G,⊥)) = 0.

Therefore Lemma 9 is proved. �

Lemma 10. With notation as above, we have that dim(Ξm) = m.

Proof. By (4.57) and (4.58), we have

deg(G⊥) = deg(msPs− G̃+W) = mses−deg(G̃)+ 2g− 2 = m− rs + 2g− 2− r̃0− g+ 1.

Using (4.50) and the Riemann-Roch theorem, we obtain for m ≥ g + e0 − 1 ≥
g + r0 that

dim(L(G⊥)) = deg(msPs − G̃ + W)− g + 1 = m− r0 + 2g− 2− 2g + 2 = m− r0.

From (4.66), we have dim(Φ) = r0. Hence

dim
(
(L(G⊥), Φ)

)
= dim(L(G⊥)) + dim(Φ) = m− r0 + r0 = m.

By Lemma 9, we get ker(θ(G,⊥)) = 0. Bearing in mind that θ(G,⊥)((L(G⊥), Φ)
)
=

Ξm, we obtain the assertion of Lemma 10. �

Lemma 11. Let f ∈ L(G), and f⊥ ∈ L(G⊥). Then

(4.73)
s

∑
i=1

Res
Pi

( f f⊥dts) = 0,

(4.74) Res
Pi

( f f⊥dts) =
mi−1

∑
j=0

TrFPi /Fb

(
fi,−j−1 f⊥i,j

)
, 1 ≤ i ≤ s− 1

(4.75) and Res
Ps

( f f⊥dts) =
ms−1

∑
j=0

TrFPs /Fb

(
fs,ms−j−1 f⊥s,−ms+j

)
.

Proof. By (4.53) and (4.58), we have

G = m1P1 + ... + ms−1Ps−1 + G̃, and G⊥ = msPs − G̃ + W.
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Bearing in mind that div( f ) + G ≥ 0, div( f⊥) + G⊥ ≥ 0 and that W = div(dts),
we obtain

div( f ) +
s

∑
i=1

miPi + G̃ +div( f⊥)− G̃ +W = div( f ) +div( f⊥) +
s

∑
i=1

miPi +div(dts) ≥ 0.

From (2.6), we derive

νP( f f⊥dts) = νP( f f⊥) + νP(div(dts)) ≥ 0 and Res
P
( f f⊥dts) = 0

for all P ∈ P f \ {P1, ..., Ps}.
Applying the Residue Theorem, we get assertion (4.73).
By (3.10) and (4.61), we derive

Res
Ps

( f f⊥dts) = Res
Ps

( ∞

∑
j1=0

Sj1(ts, f )tj1
s

∞

∑
j2=−ms

Sj2(ts, f⊥)tj2
s dts

)
=

∞

∑
j1=0

∞

∑
j2=−ms

Res
Ps

(
Sj1(ts, f ) Sj2(ts, f⊥)tj1+j2

s dts
)

= ∑
0≤j1≤ms−1, j1+j2=−1

TrFPs /Fb

(
Sj1(ts, f ) Sj2(ts, f⊥)

)
=

ms−1

∑
j=0

TrFPs /Fb

(
Sms−j−1(ts, f ) S−ms+j(ts, f⊥)

)
=

ms−1

∑
j=0

TrFPs /Fb

(
fs,ms−j−1 f⊥s,−ms+j

)
.

Hence assertion (4.75) is proved.
Analogously, using (4.60), we have

Res
Pi

( f f⊥dts) = Res
Pi

( f f⊥τidti) = Res
Pi

( ∞

∑
j1=−mi

Sj1(ti, f )tj1
i

∞

∑
j2=0

Sj2(ti, f⊥τi)t
j2
i dti

)
= ∑

0≤j2≤mi−1, j1+j2=−1
TrFPi /Fb

(
Sj1(ti, f ) Sj2(ti, f⊥τi)

)
,

=
mi−1

∑
j=0

TrFPi /Fb

(
fi,−j−1 f⊥i,j

)
, for 1 ≤ i ≤ s− 1.

Thus Lemma 11 is proved. �

Lemma 12. With notation as above, we have Ξm = N⊥(P1, ..., Ps, G).

Proof. Using (3.14) and Lemma 10, we have

dimFb(Nm) = ms−m and dimFb(Ξm) = m.

From (3.13), (4.68) and (4.69), we get that Nm, Ξm ⊂ Fms
b .

By (2.19), in order to obtain the assertion of the lemma, it is sufficient to prove
that A · B = 0 for all A ∈ Nm and B ∈ Ξm.
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According to (3.11), (3.13), (4.54) and (4.64) - (4.69), it is enough to verify that

(4.76) A · B =
s

∑
i=1

ði = 0 with ði =
m

∑
j=1

θi,j( f )θ⊥i,j(( f⊥,ϕ)) for all f ∈ L(G),

and ( f⊥,ϕ) ∈ (L(G⊥), Φ). From (4.54) and (4.62) - (4.64), we derive

(4.77) ði =
mi−1

∑
ǰi=0

κi,j1 with κi, ǰi
=

ei

∑
ĵi=1

θi,ri+ ǰiei+ ĵi
( f ) θ⊥i,ri+ ǰiei+ ĵi

(( f⊥,ϕ)).

Using (4.54) and (4.64)-(4.67), we have for ǰi ∈ [0, mi − 1], ĵi ∈ [1, ei]

θs,rs+ ǰses+ ĵs( f ) = ϑs, ĵs( fs,ms− ǰs−1) and θ⊥s,rs+ ǰses+ ĵs
(( f⊥,ϕ)) = ϑ⊥s, ĵs

( f⊥s,−ms+ ǰs
),

θi,ri+ ǰiei+ ĵi
( f ) = ϑi, ĵi

( fi,− ǰi−1) and θ⊥i,r1+ ǰiei+ ĵi
(( f⊥,ϕ)) = ϑ⊥i, ĵi

( f⊥i, ǰi), 1 ≤ i ≤ s− 1.

By Lemma 8 and (4.77), we obtain

κs, ǰs =
es

∑̂
ji=s

ϑs, ĵs( fs,ms− ǰs−1) ϑ⊥s, ĵs
( f⊥s,−ms+ ǰs

) = TrFPs /Fb

(
fs,ms− ǰs−1 f⊥s,−ms+ ǰs

)
and

κi, ǰi
=

ei

∑
ĵi=1

ϑi, ĵi
( fi,− ǰi−1) ϑ⊥i, ĵi

( f⊥i, ǰi) = TrFPi /Fb

(
fi,− ǰi−1 f⊥i, ǰi

)
for 1 ≤ i ≤ s− 1.

From (4.74), (4.75) and (4.77), we get

ði = Res
Pi

( f f⊥dts) for 1 ≤ i ≤ s.

Applying Lemma 11, we get assertion (4.76). Hence Lemma 12 is proved. �

Let

(4.78) Gi = G̃ + qiPi − qsPs with qs = [
g + r̃0

es
] + 1 and qi = [

g− r̃0 + qses

ei
] + 1

for i ∈ [1, s− 1]. By (4.58), we have deg(G̃) = g− 1 + r̃0 and νPi(G̃) = 0, i ∈
[1, s]. It is easy to see that deg(Gi) ≥ 2g− 1, i ∈ [1, s− 1]. Let zi = dim(L(Gi)),
and let u(i)

1 , ..., u(i)
zi be a basis of L(Gi) over Fb, i ∈ [1, s− 1].

For each i ∈ [1, s− 1], we consider the chain

L(Gi) ⊂ L(Gi + Pi) ⊂ L(Gi + 2Pi) ⊂ ...

of vector spaces over Fb. By starting from the basis u(i)
1 , ..., u(i)

zi of L(Gi) and
successively adding basis vectors at each step of the chain, we obtain for each
n ≥ qi a basis

(4.79) {u(i)
1 , ..., u(i)

zi , k(i)qi,1
, ..., k(i)qi,ei , ..., k(i)n,1, ..., k(i)n,ei}
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of L(Gi + (n− qi + 1)Pi). We note that we then have

(4.80) k(i)j1,j2
∈ L(Gi + (j1 − qi + 1)Pi) and νPi(k

(i)
j1,j2

) = −j1 − 1, νPs(k
(i)
j1,j2

) ≥ qs

for j1 ≥ qi, 1 ≤ j2 ≤ ei, 1 ≤ i ≤ s− 1.
Let Ǧ = G̃ + gPs. We see that deg(Ǧ) = g − 1 + r̃0 + ges ≥ 2g − 1. Let
u(0)

1 , ..., u(0)
z0 be a basis of L(Ǧ) over Fb. In a similar way, we construct a ba-

sis
{u(0)

1 , ..., u(0)
z0 , k(i)0,1, ..., k(i)0,ei

, ..., k(i)
(qi−1),1, ..., k(i)

(qi−1),ei
} of L(Ǧ + qiPi) with

(4.81) k(i)j1,j2
∈ L(Ǧ + (j1 + 1)Pi) and νPi(k

(i)
j1,j2

) = −j1 − 1 for j1 ∈ [0, qi),

1 ≤ j2 ≤ ei, 1 ≤ i ≤ s− 1.

Now, consider the chain

L(qsPs − G̃ + W) ⊂ L((qs + 1)Ps − G̃ + W) ⊂ ... ⊂ L(G⊥ − Ps) ⊂ L(G⊥),

where G⊥ = msPs − G̃ + W and qs = [(g + r̃0)/es] + 1. By (4.57) and (4.58), we
have deg(G̃) = g− 1 + r̃0, deg(W) = 2g− 2 and νPs(G̃) = νPs(W) = 0. Hence
deg(qsPs− G̃ +W) ≥ 2g− 1. Let u(s)

1 , ..., u(s)
zs be a basis of L(qsPs− G̃ +W) over

Fb. In a similar way, we construct a basis {u(s)
1 , ..., u(s)

zs , k(s)qs,1, ..., k(s)qs,es , ..., k(s)n,1, ..., k(i)n,es}
of L((n + 1)Ps − Ǧ + W) with

(4.82) k(s)j1,j2
∈ L((j1 + 1)Ps − Ǧ + W) and νPs(k

(s)
j1,j2

) = −j1 − 1 for j1 ≥ qs

and j2 ∈ [1, es]. By (4.79)-(4.81), we have the following local expansions

(4.83) k(i)j1,j2
:=

∞

∑
r=−j1

κ(i,j2)
j1,r tr−1

i for κ(i,j2)
j1,r ∈ FPi , i ∈ [1, s].

Lemma 13. Let ji ≥ 0 for i ∈ [1, s− 1] and let js ≥ qs. Then {κ(i,1)
ji,−ji

, ...,κ(i,ei)
ji,−ji
} is

a basis of FPi over Fb for i ∈ [1, s].

Proof. Let i ∈ [1, s− 1] and let ji ≥ qi. Suppose that there exist a1, ..., aei ∈ Fb,

such that ∑1≤j≤ei
aiκ

(i,j)
ji,−ji

= 0 and (a1, ..., aei) 6= (0̄, ..., 0̄). By (4.83), we get

νPi(α) ≥ −ji, where α := ∑1≤j2≤ei
aik

(i)
ji,j2

. Hence α ∈ L(Gi + (ji− qi)Pi). We have
a contradiction with the construction of the basis vectors (4.79).

Similarly, we can consider the cases i ∈ [1, s − 1], ji ∈ [0, qi − 1] and i = s.
Therefore Lemma 13 is proved. �
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Lemma 14. Let di ≥ 1 be an integer (i = 1, ..., s− 1) and f⊥ ∈ G⊥. Suppose that
ResPs,ts( f⊥k(i)j1,j2

) = 0 for j1 ∈ [0, di − 1], j2 ∈ [1, ei] and i ∈ [1, s− 1]. Then

(4.84) ϑ⊥i,j2( f⊥i,j1) = 0 for j1 ∈ [0, di − 1], j2 ∈ [1, ei] and i ∈ [1, s− 1].

Proof. By (4.71), (4.72), (4.78), (4.80) and (4.81), we have νP
(
div( f⊥) + msPs−

G̃ + W
)
≥ 0, for all P ∈ PF and k(i)j1,j2

∈ L(G̃ + aj1 Ps + (j1 + 1)Pi) with some
integer aj1 .
From (2.4), (2.6) and (2.7), we derive

νP( f⊥k(i)j1,j2
dts) ≥ 0 and Res

P
( f⊥k(i)j1,j2

dts) = 0 for all P ∈ PF \ {Pi, Ps}.

Applying (4.60) and the Residue Theorem, we get

Res
Pi,ti

( f⊥τik
(i)
j1,j2

) = Res
Pi

( f⊥k(i)j1,j2
dts) = −Res

Ps
( f⊥k(i)j1,j2

dts) = −Res
Ps,ts

( f⊥k(i)j1,j2
)

for all 0 ≤ j1, 1 ≤ j2 ≤ ei, 1 ≤ i ≤ s− 1.
By (4.61), (4.83) and the conditions of the lemma, we obtain

−Res
Ps,ts

( f⊥k(i)j1,j2
) = Res

Pi,ti
( f⊥τik

(i)
j1,j2

) = Res
Pi,ti

( ∞

∑
j=0

f⊥i,j t
j
i

∞

∑
r=−j1

κ(i,j2)
j1,r tr−1

i

)

(4.85) =
∞

∑
j=0

∞

∑
r=−j1

TrFPi /Fb
( f⊥i,jκ

(i,j2)
j1,r )δj,−r =

j1

∑
j=0

TrFPi /Fb
( f⊥i,jκ

(i,j2)
j1,−j) = 0

for 0 ≤ j1 ≤ di − 1, 1 ≤ j2 ≤ ei, and 1 ≤ i ≤ s− 1.
Consider (4.85) for j1 = 0. We have TrFPi /Fb

( f⊥i,0κ
(i,j2)
0,0 ) = 0 for all j2 ∈ [1.ei].

By Lemma 13, we obtain that f⊥i,0 = 0. Suppose that f⊥i,j = 0 for 0 ≤ j < j0.

Consider (4.85) for j1 = j0. We get TrFPi /Fb
( f⊥i,j0κ

(i,j2)
j0,−j0

) = 0 for all j2 ∈ [1.ei]. Ap-

plying Lemma 13, we have that f⊥i,j0 = 0. By induction, we obtain that f⊥i,j = 0
for all j ∈ [0, di − 1] and i ∈ [1, s− 1]. Now, using (4.62), we get that assertion
(4.84) is true. Hence Lemma 14 is proved. �

Lemma 15. Let s ≥ 3 , {β⊥s,1, ..., β⊥s,es} be a basis of FPs /Fb,

Λ1 =
{(

Res
Ps,ts

( f⊥k(i)j1,j2
)
)

di,1≤j1≤di,2,1≤j2≤ei,1≤i≤s−1,(
Res
Ps,ts

(β⊥s,j2 f⊥tms−j1−1
s )

)
ds,1≤j1≤ds,2,1≤j2≤es

| f⊥ ∈ L(G⊥)
}

with ds,1 = ms + 1− [t/es]− (s− 1)d0ṁe/es, ṁ = [m̃ε], m̃ = m− r0,

(4.86) ds,2 = ms − 2− [t/es]− (s− 2)d0ṁe/es, di,1 = qi, di,2 = d0ṁ]e/ei − 1,
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i ∈ [1, s − 1], d0 = d + t, e = e1e2 · · · es, ε = η(2(s − 1)d0e)−1, η = (1 +
deg((ts)∞))−1. Then

(4.87) Λ1 = F
χ
b , with χ =

s

∑
i=1

(di,2 − di,1 + 1)ei f or m > 2(g− 1 + e0)es + 2t(η−1 − 1).

Proof. Suppose that (4.87) is not true. Then there exists b(i)j1,j2
∈ Fb (i, j1, j2 ≥

1) such that

(4.88)
s

∑
i=1

di,2

∑
j1=di,1

ei

∑
j2=1
|b(i)j1,j2

| > 0

and

(4.89)
s−1

∑
i=1

di,2

∑
j1=di,1

ei

∑
j2=1

b(i)j1,j2
Res
Ps,ts

( f⊥k(i)j1,j2
) +

ds,2

∑
j1=ds,1

es

∑
j2=1

b(s)j1,j2
Res
Ps,ts

(β⊥s,j2 f⊥tms−j1−1
s ) = 0

for all f⊥ ∈ L(G⊥). Let α = α1 + α2 with

(4.90) α1 =
s−1

∑
i=1

di,2

∑
j1=di,1

ei

∑
j2=1

b(i)j1,j2
k(i)j1,j2

and α2 =
ds,2

∑
j1=ds,1

es

∑
j2=1

b(s)j1,j2
β⊥s,j2tms−j1−1

s .

By (4.89), we have

(4.91) Res
Ps,ts

( f⊥α) = 0 for all f⊥ ∈ L(G⊥).

From (4.80), we get νPs(α) ≥ qs. Consider the local expansion

α =
∞

∑
r=qs

ϕrtr
s with ϕr ∈ FPs for r ≥ qs.

Suppose that ms > j0 := νPs(α). Therefore ϕj0 6= 0. From (4.82), we obtain that

k(s)j0,j2
∈ L(G⊥) for all j2 ∈ [1, es]. Applying (4.83) and (4.91), we derive

Res
Ps,ts

(k(s)j0,j2
α) = Res

Ps,ts

( ∞

∑
j=−j0

κ(s,j2)
j0,j tj−1

s

∞

∑
r=j0

ϕrtr
s

)
= TrFPs /Fb

(κ(s,j2)
j0,−j0

ϕj0) = 0

for all j2 ∈ [1, es]. By Lemma 13, {κ(s,1)
j0,−j0

, ...,κ(s,es)
j0,−j0
} is a basis of FPs . Hence

ϕj0 = 0. We have a contradiction. Thus νPs(α) ≥ ms.
We consider the compositum field F′ = FFPs . Let B1, ...,Bµ be all the places

of F′/FPs lying over Ps. From (2.11), we get

(4.92) νBi(α) ≥ ms for i = 1, ..., µ.
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According to (4.78) and (4.80), we obtain

α1 ∈ LF(A1) = L(A1), with A1 := G̃− qsPs +
s−1

∑
i=1

(di,2 + 1)Pi.

Applying Theorem D(d), we have

α1 ∈ LF′(ConF′/F(A1)).

By (4.90), we derive

α2 ∈ LF′(A2), with A2 = ((ts)
F′
∞)ms−ds,1−1.

Using (4.92), we get

α ∈ LF′(A1 + A2 −ms

µ

∑
i=1

Bi).

From (2.9), Theorem D(a) and Theorem E, we derive ConF′/F(Ps) = ∑
µ
i=1 Bi,

ConF′/F((ts)F
∞) = (ts)F′

∞ and

α ∈ LF′(A3), with A3 = ConF′/F
(

A1 + (ms − ds,1 − 1)(ts)
F
∞ −msPs

)
.

Applying Theorem D(c) and (4.78), we have

deg(A3) = deg
(

G̃ +
s−1

∑
i=1

(di,2 + 1)Pi + (ms − ds,1 − 1)(ts)
F
∞ −msPs

)
≤ g− 1 + r̃0 + (s− 1)d0eṁ + (ms − ds,1 − 1)deg((ts)∞)−mses

≤ g− 1 + e0 − es + (s− 1)d0eṁ + ([t/es] + (s− 1)d0ṁe/es − 2)(η−1 − 1)

−mses ≤ g− 1 + e0 + (t/es − 2)(η−1 − 1) + (s− 1)d0eṁ(1 + (η−1 − 1)/es)−m

≤ g− 1 + e0 + t(η−1 − 1)/es −m
(
(2es)

−1 + (1− η/2)(1− 1/es)
)
≤ β−m/(2es) < 0

for m > 2esβ, with β = g− 1 + e0 + t(η−1 − 1)/es and ε = η(2(s− 1)d0e)−1.
Hence α = 0.

Suppose that ∑s−1
i=1 ∑

di,2
j1=di,1

∑ei
j2=1 |b

(i)
j1,j2
| = 0. Then α2 = 0 and ∑es

j2=1 b(s)j1,j2
β⊥s,j2

= 0

for all j1 ∈ [ds,1, ds,2]. Bearing in mind that (β⊥s,j2
)1≤j2≤e2 is a basis of FPs /Fb, we

get ∑
ds,2
j1=ds,1

∑es
j2=1 |b

(s)
j1,j2
| = 0. By (4.88), we have a contradiction.

Therefore there exists h ∈ [1, s− 1] with

(4.93)
dh,2

∑
j1=dh,1

eh

∑
j2=1
|b(h)j1,j2

| > 0.
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Let Bh,1, ...,Bh,µh
be all the places of F′/FPs lying over Ph. Let

α1,i =
di,2

∑
j1=di,1

ei

∑
j2=1

b(i)j1,j2
k(i)j1,j2

, i = 1, ..., s− 1.

Let νPh(ts) ≥ 0 or α2 = 0. Therefore νBh,j(α2) ≥ 0 for 1 ≤ j ≤ µh. Taking into
account that α1 = −α2, we get νBh,j(α1) ≥ 0 for 1 ≤ j ≤ µh, and νPh(α1) ≥ 0.
Using (4.58), (4.78), (4.80) and (4.86), we obtain νPh(α1,i) ≥ 0 for 1 ≤ i ≤ s −
1, i 6= h. Bearing in mind (4.93) and that {u(h)

1 , ..., u(h)
zh , k(h)qh,1, ..., k(h)qh,eh , ..., k(h)n,1, ..., k(h)n,eh}

is a basis of L(Gh + (n− qh + 1)Ph), we get

α1,h ∈ L(Gh + (j− qh + 1)Ph) \ L(Gh + (j− qh)Ph) with some j ≥ qh.

By (4.78) and (4.80), we get νPh(α1,h) ≤ −1. We have a contradiction.

Now let νPh(ts) ≤ −1 and α2 6= 0. We have νPh(α1,h) ≥ −dh,2 − 1, νPh(α1) ≥
−dh,2 − 1 and νBh,j(α1) ≥ −dh,2 − 1, j = 1, ..., µh. On the other hand, using
(4.90) and (2.11), we have νBh,j(α2) ≤ −(ms − ds,2 − 1), j = 1, ..., µh. According
to (3.17) and (4.86), we obtain s ≥ 3, eh ≥ es and

ms − ds,2 − 1− dh,2 − 1 = [t/es] + 1 + (s− 2)d0eṁe/es − d0ṁe/eh ≥ 1.

We have a contradiction. Thus assertion (4.89) is not true. Hence (4.87) is true
and Lemma 15 follows. �

End of the proof of Theorem 3.
Using (2.15), (3.15), (4.67)-(4.69) and Lemma 12, we have

(4.94) P1 = {x̃( f⊥,ϕ) = (x̃1( f⊥,ϕ), ..., x̃s( f⊥,ϕ)) | f⊥ ∈ L(G⊥),ϕ ∈ Φ}
with

x̃i( f⊥,ϕ) =
m

∑
j=1

φ−1(θ⊥i,j( f⊥,ϕ))b−j =
ri

∑
j=1

φ−1(ϕi,j)b−j + b−ri
m−ri

∑
j=1

φ−1(θ̇⊥i,j( f⊥))b−j.

By (3.16), we have

(4.95) P2 = {ẋ( f⊥) = (ẋ1( f⊥), ..., ẋs( f⊥)) | f⊥ ∈ L(G⊥)}
with

(4.96) ẋi( f⊥) =
m−ri

∑
j=1

φ−1(θ̇⊥i,j( f⊥))b−j, 1 ≤ i ≤ s.

Lemma 16. With notation as above, P2 is a d−admissible (t, m− r0, s)-net in base
b with d = g + e0, and t = g + e0 − s.
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Proof. Let J = ∏s
i=1[Ai/bdi , (Ai + 1)/bdi) with di ≥ 0, and 0 ≤ Ai < bdi ,

1 ≤ i ≤ s, and let Jψ = ∏s
i=1[ψi/bri + Ai/bri+di , ψi/bri + (Ai + 1)/bri+di) with

ψi/bri = ψi,1/b + ... + ψi,ri /bri , ψi,j ∈ Zb, 1 ≤ i ≤ s, d1 + ... + ds = m− r0 − t .
It is easy to see, that

ẋ( f⊥) ∈ J ⇐⇒ x̃( f⊥,ϕ) ∈ Jψ with ψi,j = φ−1(ϕi,j), 1 ≤ j ≤ ri, 1 ≤ i ≤ s.

Bearing in mind that P1 is a (t, m, s) net with t = g + e0 − s, we have

∑
f⊥∈L(G⊥)

1(J, ẋ( f⊥)) = ∑
f⊥∈L(G⊥),ϕ∈Φ

1(Jψ, x( f⊥,ϕ)) = bt.

Therefore P2 is a (t, m− r0, s)-net in base b with t = g + e0 − s.
Using (4.69), Definition 5 and Definition 10, we can get d from the follow-

ing equation −δ⊥m (Ξ̇m) = −(m − r0) − d + 1. Applying Lemma 9, we obtain
−(m + g− 1 + e0 − r0) ≤ −(m− r0)− d + 1. Hence d ≤ g + e0. Thus Lemma
16 is proved. �

Let Vi ⊆ F
µi
b be a vector space over Fb, µi ≥ 1, i = 1, 2. Consider a linear map

h : V1 → V2. By the first isomorphism theorem, we have

(4.97) dimFb(V1) = dimFb(ker(h)) + dimFb(im(h)).

Let

Λ
′
1 =

{(
Res
Ps,ts

( f⊥k(i)j1,j2
)
)

0≤j1≤di,2,1≤j2≤ei,1≤i≤s−1,

(
Res
Ps,ts

(β⊥s,j2 f⊥tms−j1−1
s )

)
ds,1≤j1≤ds,2,1≤j2≤es

| f⊥ ∈ L(G⊥)
}

and

Λ2 =
{(

Res
Ps,ts

(β⊥s,j2 f⊥tms−j1−1
s )

)
ds,1≤j1≤ds,2,1≤j2≤es

| Res
Ps,ts

( f⊥k(i)j1,j2
) = 0

for 0 ≤ j1 ≤ di,2, 1 ≤ j2 ≤ ei, 1 ≤ i ≤ s− 1, f⊥ ∈ L(G⊥)
}

with ds,1 = ms + 1− [t/es]− (s− 1)d0ṁe/es,

(4.98) ds,2 = ms − 2− [t/es]− (s− 2)d0ṁe/es, di,1 = qi, di,2 = d0ṁe/ei − 1,

i ∈ [1, s − 1], d0 = d + t, e = e1e2 · · · es, ε = η(2(s − 1)d0e)−1, η = (1 +
deg((ts)∞))−1, ṁ = [m̃ε], m̃ = m − r0, m > 2(g − 1 + e0)es + 2t(η−1 − 1),
d = g + e0 and t = g + e0 − s.

By (4.97), (4.98) and Lemma 15, we have dimFb(Λ
′
1) ≥ dimFb(Λ1) and

dimFb(Λ2) = dimFb(Λ
′
1)− dimFb

({(
Res
Ps,ts

( f⊥k(i)j1,j2
)
)

0≤j1≤di,2,1≤j2≤ei
1≤i≤s−1

| f⊥ ∈ L(G⊥
})
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≥ dimFb(Λ1)−
s−1

∑
i=1

(di,2 + 1)ei ≥ (ds,2 − ds,1 + 1)es −
s−1

∑
i=1

qiei = d0eṁ− 2es −
s−1

∑
i=1

qiei.

Let

Λ3 =
{(

Res
Ps,ts

(β⊥s,j2 f⊥tms−j1−1
s )

)
ds,1≤j1≤ds,2,1≤j2≤es

| ϑ⊥i,j2( f⊥i,j1) = 0

for 0 ≤ j1 ≤ di,2, 1 ≤ j2 ≤ ei, 1 ≤ i ≤ s− 1 | f⊥ ∈ L(G⊥)
}

.

Using Lemma 14, we get Λ3 ⊇ Λ2 and dimFb(Λ3) ≥ dimFb(Λ2). Let

Λ4 =
{(

ϑ⊥i,j2( f⊥i,j1)
)

0≤j1≤di,2,1≤j2≤ei,1≤i≤s−1 | f⊥ ∈ L(G⊥)
}

.

Taking into account that P2 is a (t, m− r0, s)-net in base b, we get from (4.95)
that dimFb(Λ4) = (s− 1)d0eṁ. Let

Λ5 =
{(

ϑ⊥i,j2( f⊥i,j1)
)

0≤j1≤di,2,1≤j2≤ei
1≤i≤s−1

,
(

Res
Ps,ts

(β⊥s,j2 f⊥tms−j1−1
s )

)
ds,1≤j1≤ds,2

1≤j2≤es

∣∣∣ f⊥ ∈ L(G⊥)}.

By (4.78)and (4.97), we have

dimFb(Λ5) = dimFb(Λ3) + dimFb(Λ4) ≥ sd0eṁ− 2es − 2(s− 1)(g + e0).

Let ṁ1 = d0eṁ, ṁ = [m̃ε], m̈i = 0, i ∈ [1, s− 1] and m̈s = m− t− (s− 1)ṁ1.
Bearing in mind that θ̇⊥

i, ǰiei+ ĵi
( f⊥) = ϑ⊥

i, ĵi
( f⊥

i, ǰi
) for 1 ≤ ĵi ≤ ei, 0 ≤ ǰi ≤ mi − 1,

i ∈ [1, s− 1] (see (4.63)), we obtain

(4.99)
(

θ̇⊥i,m̈i+j( f⊥)
)

1≤j≤ṁ1,1≤i≤s−1
⊇
(

ϑ⊥i,j2( f⊥i,j1)
)

0≤j1≤di,2,1≤j2≤ei,1≤i≤s−1
.

From (4.98), we have m̈s < ds,1es and (ds,2 + 1)es < m̈s + ṁ1. Taking into account
that

θ̇⊥s,j1es+j2( f⊥s,−ms+j1) = ϑ⊥s,j2( f⊥) = ResPs,ts(β⊥s,j2 f⊥tms−j1−1
s )

(see (4.62) and (4.64)), we get

(4.100)
(

θ̇⊥s,m̈s+j( f⊥)
)

1≤j≤ṁ1
⊇
(

Res
Ps,ts

(β⊥s,j2 f⊥tms−j1−1
s )

)
ds,1≤j1≤ds,2,1≤j2≤es

.

Let
Λ6 =

{((
θ̇⊥i,m̈i+j( f⊥)

)
1≤j≤ṁ1,1≤i≤s

) ∣∣∣ f⊥ ∈ L(G⊥)
}

.

By (4.99) and (4.100), we derive

dimFb(Λ6) ≥ dimFb(Λ5) ≥ sd0eṁ− 2es − 2(s− 1)(g + e0).

Applying (2.15), (3.16), (4.95) and Lemma 2, we get that there exists
Bi ∈ {0, ..., ṁ− 1}, 1 ≤ i ≤ s such that

(4.101) Λ7 = F
sd0eṁ−d0eB
b for ṁ ≥ 1,
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where B = #B1 + ... + #Bs ≤ 4(s− 1)(g + e0) and

Λ7 =
{(

θ̇⊥i,m̈i+ j̇id0e+ j̈i
( f⊥) | j̇i ∈ B̄i, j̈i ∈ [1, d0e], i ∈ [1, s]

)
| f⊥ ∈ L(G⊥)

}
with B̄i = {0, ..., ṁ− 1} \ Bi.
From (4.96), we have{(

ẋi,m̈i+ j̇id0e+ j̈i
( f⊥)| j̇i ∈ B̄i, j̈i ∈ [1, d0e], i ∈ [1, s]

)
| f⊥ ∈ L(G⊥)

}
= Zsd0eṁ−d0eB

b .

We apply Corollary 2 with ṡ = s, r̃ = r0, m̃ = m− r0, ε = η(2(s− 1)d0e)−1 and
ê = e = e1e2 · · · es.

Let γ̇( f⊥, ẇ) = γ̇ = (γ̇(1), ..., γ̇(ṡ)) with γ̇(i) := [(ẋ( f⊥)⊕ ẇ)(i)]ṁi , i ∈ [1, s].
Using (4.96) and (4.101), we get that there exists f⊥ ∈ G⊥ such that γ̇( f⊥, ẇ)
satisfy (2.36). Bearing in mind Lemma 16, we get from Corollary 2 that

(4.102)
∣∣∣∆((ẋ( f⊥)⊕ ẇ) f⊥∈G⊥ , Jγ̇)

∣∣∣ ≥ 2−2b−dK−s+1
d,t,s ηs−1ms−1.

for m ≥ 22s+3bd+t+s(d + t)s(s− 1)2s−1(g + e0)eη−s+1.
Taking into account (1.2), and that ẇ ∈ Es

m−r0
is arbitrary, we get the second

assertion in Theorem 3.

Consider the first assertion in Theorem 3.
Let γ̃ = (γ̃(1), ..., γ̃(s)) with γ̃(i) = b−ri γ̇(i), i ∈ [1, s], and let w̃ = (w̃(1), ..., w̃(s)) ∈
Es

m with w̃(i)
j+ri

= ẇ(i)
j for j ∈ [1, m− r0], i ∈ [1, s]. By (4.94) and (4.95), we have

x̃i( f⊥,ϕ)⊕ w̃(i) ∈ [0, γ̃i)⇐⇒ ẋi( f⊥)⊕ ẇ(i) ∈ [0, γ̇i) and φ−1(ϕi,j)⊕ w̃i,j = 0

for j ∈ [1, ri], i ∈ [1, s]. Hence

∑
ϕ∈Φ

(1([0, γ̃), x̃( f⊥,ϕ)⊕ w̃)− γ̃0) = 1([0, γ̇), ẋ( f⊥)⊕ ẇ)− γ̇0,

where [0, γ̇) = ∏s
i=1[0, γ̇(i)), [0, γ̃) = ∏s

i=1[0, γ̃(i)), γ̃0 = γ̃(1)...γ̃(s) and
γ̇0 = γ̇(1)...γ̇(s). Therefore

∑
f⊥∈L(G⊥),ϕ∈Φ

(
1([0, γ̃), x̃( f⊥,ϕ)⊕ w̃)− γ̃0

)
= ∑

f⊥∈L(G⊥)

(
1([0, γ̇), ẋ( f⊥)⊕ ẇ)− γ̇0

)
.

Using (1.1), (1.2) and (4.102), we get the first assertion in Theorem 3.
Thus Theorem 3 is proved. �

4.4. Halton-type sequences. Proof of Theorem 4. Using (3.24) and (3.25), we
define the sequence (x(i)n,j)j≥1 by

(4.103)
ei

∑
j2=1

x(i)n,j1ei+j2
b−j2+ei := σPi( f (i)n,j1

), x(i)n :=
∞

∑
j=0

x(i)n,j

bj =
∞

∑
j1=0

ei

∑
j2=1

x(i)n,j1ei+j2

bj1ei+j2
,
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1 ≤ i ≤ s, with (x(1)n , ..., x(s)n ) = xn = ξ( fn), and n = 0, 1, ... .

Lemma 17. (xn)n≥0 is d−admissible with d = g + e0, where e0 = e1 + ... + es.

Proof. Suppose that the assertion of the lemma is not true. By (1.4), there
exists ṅ > k̇ such that

∥∥ṅ	 k̇
∥∥

b

∥∥xṅ 	 xk̇

∥∥
b < b−d.

Let di + 1 = ḋiei + d̈i with 1 ≤ d̈i ≤ ei, 1 ≤ i ≤ s, n = ṅ	 k̇, ‖n‖b = bm−1 and let∥∥∥x(i)ṅ 	 x(i)
k̇

∥∥∥
b
= b−di−1, 1 ≤ i ≤ s. Hence m− 1−∑s

i=1(di + 1) ≤ −d− 1, and

(4.104) m + g− 1−
s

∑
i=1

ḋiei ≤ m + g− 1−
s

∑
i=1

(di + 1) + e0 ≤ −d− 1 + g + e0 < 0.

We have

(4.105) am−1(n) 6= 0, ar(n) = 0, for r ≥ m, x(i)ṅ,di+1 6= x(i)
k̇,di+1

, x(i)ṅ,r = x(i)
k̇,r

for r ≤ di, 1 ≤ i ≤ s. From (4.103), we get

f (i)ṅ,j1
= f (i)

k̇,j1
and f (i)n,j1

= 0 for 0 ≤ j1 < ḋi, 1 ≤ i ≤ s.

Suppose that f (i)
n,ḋi

= 0, then f (i)
ṅ,ḋi

= f (i)
k̇,ḋi

and x(i)ṅ,j = x(i)
k̇,j

for 1 ≤ j ≤ (ḋi + 1)ei.

Taking into account that di + 1 ≤ (ḋi + 1)ei, we have a contradiction. Therefore
f (i)n,di
6= 0, for all 1 ≤ i ≤ s. Applying (3.23), we derive νPi( fn) = ḋi, 1 ≤ i ≤ s.

Using (3.18)-(3.20) and (4.105), we obtain fn ∈ L((m + g− 1)Ps+1 −∑s
i=1 ḋiPi) \

{0}.
By (4.104), we get

deg
(
(m + g− 1)Ps+1 −

s

∑
i=1

ḋiPi
)
= m + g− 1−

s

∑
i=1

ḋiei < 0.

Hence fn = 0. We have a contradiction. Thus Lemma 17 is proved. �

Consider the H−differential dts+1. By Proposition A, we have that there
exists τi with dts+1 = τidti, 1 ≤ i ≤ s. Let W = div(dts+1), and let

(4.106) Gi = W + qiPi − gPs+1, with qi = [(g + 1)/ei + 1], 1 ≤ i ≤ s.

It is easy to see that deg(Gi) ≥ 2g − 2 + g + 1− g = 2g − 1, 1 ≤ i ≤ s. Let
zi = dim(L(Gi)), and let u(i)

1 , ..., u(i)
zi be a basis of L(Gi) over Fb, 1 ≤ i ≤ s.

For each 1 ≤ i ≤ s− 1, we consider the chain

L(Gi) ⊂ L(Gi + Pi) ⊂ L(Gi + 2Pi) ⊂ ...

of vector spaces over Fb. By starting from the basis u(i)
1 , ..., u(i)

zi of L(Gi) and
successively adding basis vectors at each step of the chain, we obtain for each
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n ≥ qi a basis

{u(i)
1 , ..., u(i)

zi , k(i)qi,1
, ..., k(i)qi,ei , ..., k(i)n,1, ..., k(i)n,ei}

of L(Gi + (n− qi + 1)Pi). We note that we then have

(4.107) k(i)j1,j2
∈ L(Gi + (j1 − qi + 1)Pi) \ L(Gi + (j1 − qi)Pi)

for qi ≤ j1, 1 ≤ j2 ≤ ei and 1 ≤ i ≤ s. Hence

div(k(i)j1,j2
) + W − gPs+1 + (j1 + 1)Pi ≥ 0 and νPs+1(k

(i)
j1,j2

) + νPs+1(W) ≥ g.

From (2.4) and (2.6), we obtain

νPs+1(k
(i)
j1,j2

) = νPs+1(k
(i)
j1,j2

dts+1) = νPs+1(k
(i)
j1,j2

) + νPs+1(W).

Therefore

(4.108) νPs+1(W) = 0 and νPs+1(k
(i)
j1,j2

) ≥ g.

Now, let Ǧi = W + (ei + 1)Ps+1 − Pi. We see that deg(Ǧi) = 2g − 1. Let
u̇(i)

1 , ..., u̇(i)
żi

be a basis of L(Ǧi) over Fb. In a similar way, we construct a basis

{u̇(i)
1 , ..., u̇(i)

żi
, k(i)0,1, ..., k(i)0,ei

, ..., k(i)qi−1,1, ..., k(i)qi−1,ei
} of L(Ǧ + qiPi) with

(4.109) k(i)j1,j2
∈ L(Ǧ + (j1 + 1)Pi) \ L(Ǧ + j1Pi) for j1 ∈ [0, qi), j2 ∈ [1, ei], i ∈ [1, s].

Lemma 18. Let {β(i)
1 , ..., β

(i)
ei } be a basis of FPi /Fb, s ≥ 2, di ≥ 1 be integer

(i = 1, ..., s) and n ∈ [0, bm). Suppose that ResPs+1,ts+1( fnk(i)j1,j2
) = 0 for

j1 ∈ [0, di − 1], j2 ∈ [1, ei] and i ∈ [1, s]. Then

TrFPi /Fb
(β

(i)
j2

f (i)n,j1
) = 0 f or j1 ∈ [0, di − 1], j2 ∈ [1, ei] and i ∈ [1, s].

Proof. Using (4.107) and (4.109), we get

νPi(k
(i)
j1,j2

) = −j1 − 1− νPi(W) for j1 ≥ 0, j2 ∈ [1, ei] and i ∈ [1, s].

From (2.4) and (2.6), we obtain

(4.110) νPi(τi) = νPi(τidti) = νPi(dts+1) = νPi(div(dts+1)) = νPi(W).

Hence

(4.111) νPi(k
(i)
j1,j2

τi) = −j1 − 1 for j1 ≥ 0, j2 ∈ [1, ei] and i ∈ [1, s].

By (4.107) and (4.109), we have

(4.112) div(k(i)j1,j2
) + div(dts+1) + (j1 + 1)Pi + aj1 Ps+1 ≥ 0
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for j1 ≥ 0, j2 ∈ [1, ei], i ∈ [1, s] and some aj1 ∈ Z. According to (3.18) and (3.20),
we get fn ∈ L((m + g− 1)Ps+1). Therefore

νP( fnk(i)j1,j2
dts+1) ≥ 0 and Res

P
( fnk(i)j1,j2

dts+1) = 0 for all P ∈ P f \ {Pi, Ps+1}.

Applying the Residue Theorem, we derive

(4.113) Res
Pi

( fnk(i)j1,j2
dts+1) = −Res

Ps+1
( fnk(i)j1,j2

dts+1)

for j1 ≥ 0, j2 ∈ [1, ei] and i ∈ [1, s]. Using (4.111), we get the following local
expansion

τik
(i)
j1,j2

:=
∞

∑
r=−j1

κ(i,j2)
j1,r tr−1

i , where all κ(i,j2)
j1,r ∈ Fb and κ(i,j2)

j1,j1
6= 0

for j1 ≥ 0, j2 ∈ [1, ei] and i ∈ [1, s]. By (3.23) and (4.113), we obtain

− Res
Ps+1,ts+1

( fnk(i)j1,j2
) = Res

Pi,ti
( fnτik

(i)
j1,j2

) = Res
Pi,ti

( ∞

∑
j=0

f (i)n,j tj
i

∞

∑
r=−j1

κ(i,j2)
j1,r tr−1

i

)

(4.114) =
∞

∑
j=0

0

∑
r=−j1

TrFPi /Fb
( f (i)n,jκ

(i,j2)
j1,r )δj,−r =

j1

∑
j=0

TrFPi /Fb
( f (i)n,jκ

(i,j2)
j1,−j) = 0

for 0 ≤ j1 ≤ di − 1, 1 ≤ j2 ≤ ei and 1 ≤ i ≤ s. Similarly to the proof of Lemma
14, we get from (4.114) the assertion of Lemma 18. �

Lemma 19. Let s ≥ 2, d0 = d + t, ε = η1(2sd0e)−1, η1 = (1 + deg((ts+1)∞))−1,

Λ1 =
{((

Res
Ps+1,ts+1

( fnk(i)j1,j2
)
)

di,1≤j1≤di,2
1≤j2≤ei

,1≤i≤s
, āds+1,1(n), ..., āds+1,2(n)

)
|n ∈ [0, bm)

}
with e = e1e2 · · · es, es+1 = 1, ds+1,1 = t + (s− 1)d0[mε]e,

(4.115) ds+1,2 = t− 1 + sd0[mε]e, di,1 = qi, di,2 = d0[mε]e/ei − g− 1 for i ∈ [1, s],

and m ≥ |2g− 2 + 2(t + g− 2)(η−1
1 − 1)|+ 2t + 2/ε. Then

(4.116) Λ1 = F
χ
b with χ =

s+1

∑
i=1

(di,2 − di,1 + 1)ei.

Proof. Suppose that (4.116) is not true. We get that there exists b(i)j1,j2
∈ Fb

(i, j1, j2 ≥ 1) such that

(4.117)
s

∑
i=1

di,2

∑
j1=di,1

ei

∑
j2=1
|b(i)j1,j2

|+
ds+1,2

∑
j1=ds+1,1

|b(s+1)
j1
| > 0
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and

(4.118)
s

∑
i=1

di,2

∑
j1=di,1

ei

∑
j2=1

b(i)j1,j2
Res

Ps+1,ts+1
( fnk(i)j1,j2

) +
ds+1,2

∑
j1=ds+1,1

b(s+1)
j1

āj1(n) = 0

for all n ∈ [0, bm). From (3.18)-(3.20), we obtain the following local expansion

(4.119) fn = ḟn + f̈n = ∑
r≤m+g−1

f (s+1)
n,r t−r

s+1, with f̈n =
m−1

∑
i=g

āi(n)vi,

and ḟn = ∑
g−1
i=0 āi(n)vi, where n ∈ [0, bm). Let r ≥ g.

Using (3.18)-(3.20) and (3.28), we derive that νPs+1( ḟn) ≥ −2g+ 1, νPs+1( ḟntr+g−1
s+1 )

≥ 0 and

f (s+1)
n,r+g = Res

Ps+1,ts+1
( fntr+g−1

s+1 ) = Res
Ps+1,ts+1

( f̈ntr+g−1
s+1 ) = Res

Ps+1,ts+1

( m−1

∑
i=g

āi(n)

× ∑
j≤i+g

vi,jt
−j+r+g−1
s+1

)
=

m−1

∑
i=g

āi(n) ∑
j≤i+g

vi,jδj,r+g = ∑
m−1≥i≥r

āi(n)vi,r+g for r ≥ g.

Taking into account that vi,i+g = 1 and vi,r+g = 0 for i > r ≥ g (see (3.29)), we
get

(4.120) f (s+1)
n,r+g = ār(n) for r ≥ g and n ∈ [0, bm).

By (4.118), we have

s

∑
i=1

di,2

∑
j1=di,1

ei

∑
j2=1

b(i)j1,j2
Res

Ps+1,ts+1
( fnk(i)j1,j2

) +
ds+1,2

∑
j1=ds+1,1

b(s+1)
j1

Res
Ps+1,ts+1

( fntj1+g−1
s+1 ) = 0

for all n ∈ [0, bm). Hence

(4.121) Res
Ps+1,ts+1

( fnα) = 0 for all n ∈ [0, bm), where α = α1 + α2,

α1 =
s

∑
i=1

α1,i, α1,i =
di,2

∑
j1=di,1

ei

∑
j2=1

b(i)j1,j2
k(i)j1,j2

, and α2 =
ds+1,2

∑
j1=ds+1,1

b(s+1)
j1

tj1+g−1
s+1 .

According to (4.108), we get the following local expansion

k(i)j1,j2
:=

∞

∑
r=g+1

κ(i,j2)
j1,r tr−1

s+1, where all κ(i,j2)
j1,r ∈ Fb,

and

(4.122) α =
∞

∑
r=g+1

ϕrtr−1
s+1 with ϕr ∈ Fb, r ≥ g + 1.
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Using (2.12) and (4.119)-(4.121), we have

Res
Ps+1,ts+1

( fnα) = Res
Ps+1,ts+1

(
∑

j≤m+g−1
f (s+1)
n,j t−j

s+1

∞

∑
r=g+1

ϕrtr−1
s+1

)

= ∑
j≤m+g−1

f (s+1)
n,j

∞

∑
r=g+1

ϕrδj,r =
m+g−1

∑
j=g+1

f (s+1)
n,j ϕj =

m+g−1

∑
r=g+1

ār(n)ϕr = 0.

for n ∈ [0, bm)). Hence

ϕr = 0 for g + 1 ≤ r ≤ m + g− 1.

By (4.122), we obtain
νPs+1(α) ≥ m + g− 1.

Applying (4.106), (4.107) and (4.121), we derive

α ∈ L(G1), with G1 = W +
s

∑
i=1

di,2Pi + (ds+1,2 + g− 1)(ts+1)∞ − (m + g− 1)Ps+1.

From (4.115), we have

deg(G1) = 2g− 2 +
s

∑
i=1

di,2ei + (ds+1,2 + g− 1)deg((ts+1)∞)− (m + g− 1)

≤ 2g− 2 + sd0e[mε] + (t− 1 + sd0e[mε] + g− 1)(η−1
1 − 1)− (m + g− 1)

≤ g− 1+(t+ g− 2)(η−1
1 − 1)+ sd0emεη−1

1 −m = g− 1+(t+ g− 2)(η−1
1 − 1)−m/2 < 0

for m > 2g− 2 + 2(t + g− 2)(η−1
1 − 1). Hence α = 0.

Suppose that ∑s
i=1 ∑

di,2
j1=di,1

∑ei
j2=1 |b

(i)
j1,j2
| = 0. Then α2 = 0. From (4.121), we

derive b(s+1)
j1

= 0 for all j1 ∈ [ds+1,1, ds+1,2]. According to (4.117), we have a
contradiction. Hence there exists h ∈ [1, s] with

(4.123)
dh,2

∑
j1=dh,1

eh

∑
j2=1
|b(h)j1,j2

| > 0.

Let h > 1. By (3.27) and (4.121), we get νPh(ts+1) ≥ 0 and νPh(α2) ≥ 0. Applying
(2.3) and (2.4), we derive νPh(W) = νPh(dts+1) = νPh(dts+1/dth) ≥ 0.

By (4.112), we have νPh(α1,j) ≥ −νPh(W) for 1 ≤ j ≤ s, j 6= h. Taking into
account that α1,h = −∑1≤j≤s,j 6=h α1,j − α2, we get νPh(α1,h) ≥ −νPh(W) .

Using (4.110) and (4.111), we obtain νPh(k
(h)
j1,j2

) = −j1 − 1− νPh(W). Bearing

in mind (4.123) and that {u(i)
1 , ..., u(i)

zi , k(i)qi,1
, ..., k(i)qi,e1 , ..., k(i)n,1, ..., k(i)n,e1} is a basis of

L(Gi + (n− qi + 1)Pi), we get

α1,h ∈ L(Gi + (di,2 − qi + 1)Pi) \ L(Gi + (di,1 − qi)Pi).
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From (4.115) and (4.121), we derive νPh(α1,h) ≤ −νPh(W)− 1. We have a contra-
diction.

Now let h = 1 and (4.123) is not true for h ∈ [2, s]. Hence α1,1 = −α2 and
νPs+1(α1,1) ≥ ds+1,1 + g− 1. By (4.106), (4.107) and (4.121), we have

α1,1 ∈ L
(
Ġ
)

with Ġ = W + (d1,2 + 1)P1 − (ds+1,1 + g− 1)Ps+1.

From (4.115), we get

deg(Ġ) = 2g− 2 + d0e[mε]− ge1 − (s− 1)d0e[mε]− g + 1 ≤ 2g− 2− 2g + 1 < 0.

Hence α1,1 = 0. Therefore (4.123) is not true for h = 1. We have a contradiction.
Thus assertion (4.117) is not true, and Lemma 19 follows. �

End of the proof of Theorem 4.
Let d̃i,2 = di,2 + g = d0[mε]e/ei − 1 (1 ≤ i ≤ s),

Λ
′
1 =

{((
Res

Ps+1,ts+1
( fnk(i)j1,j2

)
)

0≤j1≤d̃i,2,1≤j2≤ei,1≤i≤s, āds+1,1(n), ..., āds+1,2(n)
)∣∣∣n ∈ [0, bm)

}
and

Λ2 =
{
(āds+1,1(n), ..., āds+1,2(n))

∣∣∣ Res
Ps+1,ts+1

( fnk(i)j1,j2
) = 0

for 0 ≤ j1 ≤ d̃i,2, 1 ≤ j2 ≤ ei, 1 ≤ i ≤ s, n ∈ [0, bm)
}

.

By (4.97) and Lemma 19, we have dimFb(Λ
′
1) ≥ dimFb(Λ1) and

dimFb(Λ2) = dimFb(Λ
′
1)− dimFb

({(
Res

Ps+1,ts+1
( fnk(i)j1,j2

)
)

0≤j1≤d̃i,2,1≤j2≤ei
1≤i≤s

∣∣∣n ∈ [0, bm)
})

(4.124) ≥ dimFb(Λ1)−
s

∑
i=1

(d̃i,2 + 1)ei ≥ ds+1,2 − ds+1,1 + 1−
s

∑
i=1

(qi + g)ei.

Using Lemma 18, we get Λ3 ⊇ Λ2 and dimFb(Λ3) ≥ dimFb(Λ2), where

Λ3 =
{
(āds+1,1(n), ..., āds+1,2(n))

∣∣∣ TrFPi /Fb
(β

(i)
j2

f (i)n,j1
) = 0

for 0 ≤ j1 ≤ d̃i,2, 1 ≤ j2 ≤ ei, 1 ≤ i ≤ s, n ∈ [0, bm)
}

.

Taking into account that (xn)0≤n<bm is a (t, m, s) net in base b, we get from
(3.24) and (3.25) that{(

f (i)n,j1
)
)

0≤j1≤d̃i,2,1≤i≤s

∣∣∣ n ∈ [0, bm)
}
=

s

∏
i=1

Fd̃i,2+1
Pi

.
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Bearing in mind that {β(i)
1 , ..., β

(i)
ei } is a basis of FPi /Fb (see Lemma 18), we

obtain

Λ4 =
{(

TrFPi /Fb
(β

(i)
j2

f (i)n,j1
)
)

0≤j1≤d̃i,2,1≤j2≤ei,1≤i≤s

∣∣∣ n ∈ [0, bm)
}
= F

sd0e[mε]
b .

Let

Λ5 =
{(

TrFPi /Fb
(β

(i)
j2

f (i)n,j1
)
)

0≤j1≤d̃i,2,1≤j2≤ei,1≤i≤s
,
(
āj(n)

)
ds+1,1≤j≤ds+1,2

∣∣∣ n ∈ [0, bm)
}

.

By (4.124), (4.97) and (4.106), we have

dimFb(Λ5) = dimFb(Λ3) + dimFb(Λ4) ≥ ds+1,2 − ds+1,1 + 1 + sd0eṁ− r

with r = (g + 1)(e0 + s), e = e1e2...es and ṁ = [mε].
Let ṁ1 = d0eṁ, ε = η1(2sd0e)−1,

...mi = 0, 1 ≤ i ≤ s, and
...ms+1 = ds+1,1 + g,

ds+1,1 = t + (s − 1)d0[mε]e, ds+1,2 = t − 1 + sd0[mε]e = ds+1,1 + ṁ1 − 1 (see
(4.115)), d̃i,2 = d0[mε]e/ei − 1= di,2 + g = ṁ1/ei − 1 (i ∈ [1, s]),

θ̇
(i)
n,j1es+j2

:= TrFPi /Fb
(β

(i)
j2

f (i)n,j1
) and θ̇

(s+1)
n,j+1 := f (s+1)

n,j = āj−g(n) (see (4.120))

for 0 ≤ j1 ≤ d̃i,2, 1 ≤ j2 ≤ ei, 1 ≤ i ≤ s, 2g ≤ j, and let

Λ6 =
{((

θ̇
(i)...m i+d0ej̇i+ j̈i

)
0≤ j̇i<ṁ,1≤ j̈i≤d0e,1≤i≤s+1

∣∣∣ n ∈ [0, bm)
}

.

It is easy to verify that Λ6 = Λ5 and dimFb(Λ6) = (s + 1)ṁ1 − ṙ with 0 ≤ ṙ ≤
r = (g + 1)(e0 + s).

Let m ≥ |2g− 2+ 2(t+ g− 2)(η−1
1 − 1)|+ 2t+ 2/ε. Applying Lemma 2, with

ṡ = s + 1, we get that there exists Bi ⊂ {0, ..., ṁ− 1}, 1 ≤ i ≤ s + 1 such that

Λ7 = F
(s+1)ṁ1−d0eB
b , where B = #B1 + ... + #Bs+1 ≤ (g + 1)(e0 + s),

and
Λ7 =

{(
θ̇
(i)...m i+d0ej̇i+ j̈i

∣∣∣ j̇i ∈ B̄i, j̈i ∈ [1, d0e], i ∈ [1, s + 1]
) ∣∣∣ n ∈ [0, bm)

}
with B̄i = {0, ..., ṁ− 1} \ Bi. Hence{(

f (i)
n,

...m i+ j̇id0e/ei+ j̈i−1

∣∣∣ j̇i ∈ B̄i, j̈i ∈ [1,
d0e
ei

], i ∈ [1, s + 1]
)∣∣∣n ∈ [0, bm)

}
=

s

∏
i=1

Fχi
Pi

F
χs+1
b

with es+1 = 1, χi = d0e(ṁ− #Bi)/ei, 1 ≤ i ≤ s + 1.
Taking into account that σPi : FPi → Zbei is a bijection (see (3.21)), we obtain{(

σPi( f (i)
n,

...m i+ j̇id0e/ei+ j̈i−1
)
∣∣∣ j̇i ∈ B̄i, j̈i ∈ [1,

d0e
ei

], i ∈ [1, s]
)

,

(
a...m s+1+ j̇s+1d0e+ j̈s+1−1−g(n)

∣∣ j̇s+1 ∈ B̄s+1, j̈s+1 ∈ [1, d0e]
)∣∣∣n ∈ [0, bm)

}
= Z(s+1)ṁ1−d0eB

b .
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Let B̃i = B̄i, 1 ≤ i ≤ s, and let B̃s+1 = {ṁ− j− 1|j ∈ B̄s+1}. From (4.103), we
derive{(

x(i)
n,m̈i+ j̇id0e+ j̈i−1

∣∣∣ j̇i ∈ B̃i, j̈i ∈ [1, d0e], i ∈ [1, s + 1]
)∣∣∣n ∈ [0, bm)

}
= Z(s+1)ṁ1−d0eB

b ,

where x(s+1)
n = ∑m

j=1 x(s+1)
n,j b−j := n/bm, and x(s+1)

n,j = am−j−1(n) (1 ≤ j ≤ m),
m̈i =

...mi = 0 for 1 ≤ i ≤ s and m̈s+1 = m− t− sṁ1 = m− 1− (
...ms+1 + ṁ1− 1−

g).
By Lemma 17 and Theorem L, we obtain that (xn)n≥0 is a d−admissible (t, s)-

sequence with xn = (x(1)n , ..., x(s)n ), d = g + e0 and t = g + e0 − s.
Now applying Corollary 1 with ṡ = s + 1, r̃ = 0, m̃ = m and ê = e = e1...es+1,
we derive

min
0≤Q<bm

min
w∈Es

m
bmD∗((xn ⊕w, n⊕Q/bm)0≤n<bm) ≥ 2−2b−dK−s

d,t,s+1ηs
1ms,

with m ≥ 22s+3bd+t+s+1(d+ t)s+1s2se(g+ 1)(e0 + s)η−s
1 , and η1 = (1+deg((ts+1)∞))−1.

Using Lemma B, we get the first assertion in Theorem 4.

Consider the second assertion in Theorem 4.
By (3.23)-(3.25), we get that the net (xn)0≤n<bm is constructed similarly to the
construction of the Niederreiter-Özbudak net (see (4.61)-(4.69) and (3.15)). The
difference is that in the construction of Section 3.3 the map σi : FPi → F

ei
b is

linear, while in the construction of Section 3.4 this map may be nonlinear.
It is easy to verify that this does not affect the proof of bound (3.31) and

Theorem 4 follows . �

4.5. Niederreiter-Xing sequence. Sketch of the proof of Theorem 5. First we
will prove that

(4.125) Ċm =M⊥
m(P1, ..., Ps; Gm) for m ≥ g + 1.

By (2.26) and (3.34), we get

Ċm =
{( m−1

∑
r=0

ċ(i)j,r ār(n)
)

0≤j≤m−1,1≤i≤s

∣∣∣ 0 ≤ n < bm
}

.

Using (4.58) with G̃ = (g− 1)Ps+1, we derive G⊥m = Lm, where Lm = L((m−
g + 1)Ps+1 + W). From (3.33), we have

{ f⊥ | f⊥ ∈ Lm} = { ḟn :=
m−1

∑
r=0

ar(n)v̇r | n ∈ [0, bm)}.

Applying (3.34), we obtain

ḟnτi =
∞

∑
j=0

ḟ (i)n,j tj
i , where ḟ (i)n,j =

m−1

∑
r=0

ċ(i)j,r ār(n) ∈ Fb, i ∈ [1, s], j ≥ 0.
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Therefore

(4.126) Ċm = {( ḟ (i)n,j )0≤j≤m−1,1≤i≤s | 0 ≤ n < bm}.

We use notations (4.59)-(4.69) with the following modifications. In (4.61) we
take the field Fb instead of FPi , and in (4.62) we consider the map ϑ⊥i as the

identical map (1 ≤ i ≤ s). By (4.63), we have θ̇⊥i,j( fn) = ḟ (i)n,j−1 for 1 ≤ j ≤ m,

and θ̇⊥i ( ḟn) = ( ḟ (i)n,0, ..., ḟ (i)n,m−1), 1 ≤ i ≤ s. According to (4.69) and (4.126) we get

Ξm = Ξ̇m = {θ̇⊥( f⊥)| f⊥ ∈ L(G⊥m )} = {θ̇⊥( ḟn)|n ∈ [0, bm)}

= {(θ̇⊥1 ( ḟn), ..., θ̇⊥s ( ḟn))|n ∈ [0, bm)} = {( ḟ (i)n,j )0≤j≤m−1,1≤i≤s | 0 ≤ n < bm} = Ċm.

Now applying (3.13), (3.32) and Lemma 12, we obtain (4.125). By [DiPi, ref.
8.9], we have

δm(Mm) = δm(Mm(P1, ..., Ps; Gm)) ≥ m− g + 1 for m ≥ g + 1.

Taking into account Proposition C, we get that xn(Ċ)n≥0 is a digital (T, s) se-
quence with T(m) = g for m ≥ g + 1.

Now the d−admissible property follow from Lemma 16. In order to com-
plete the proof of Theorem 5, we use Theorem 3 and Theorem 4. �

4.6. General d−admissible (t, s)-sequences. Proof of Theorem 6. First we will
prove Lemma 20. We need the following notations:

Let C̃(1), ..., C̃(ṡ) are m×m generating matrices of a digital (t, m, ṡ)-net (x̃n)
bm−1
n=0

in base b, x̃(ṡ)n 6= x̃(ṡ)k for n 6= k, C̃(i) = (c̃(i)r,j )1≤r,j≤m, c̃(i)j = (c̃(i)1,j , ..., c̃(i)m,j) ∈ Fm
b ,

i ∈ [1, ṡ], c̃j = (c̃
(1)
j , ..., c̃(ṡ)j ) ∈ Fmṡ

b (1 ≤ j ≤ m). Let φ : Zb 7→ Fb be a bijec-

tion with φ(0) = 0̄, and let n = ∑m
j=1 aj(n)bj−1, n = (ā1(n), ..., ām(n)) ∈ Fm

b ,

āj(n) = φ(aj(n)), ỹn = (ỹ(1)
n , ..., ỹ(ṡ)

n ) ∈ Fmṡ
b , ỹ(i)

n = (ỹ(i)n,1, ..., ỹ(i)n,m) ∈ Fm
b ,

(4.127) x̃n = (x̃(1)n , ..., x̃(ṡ)n ), x̃(i)n =
m

∑
j=1

φ−1(ỹ(i)n,j)/bj for 1 ≤ i ≤ ṡ,

(4.128) ỹ(i)
n = n(c̃(i)1 , ..., c̃(i)m )> :=

m

∑
j=1

āj(n)c̃
(i)
j = nC̃(i)> for 1 ≤ i ≤ ṡ.

Hence

ỹn =
m

∑
j=1

āj(n)c̃j, for 0 ≤ n < bm.

We put

Φ̃m = {x̃n|n ∈ [0, bm)}, Ψ̃m = {ỹn|n ∈ [0, bm)}, Ỹm = {ỹ(ṡ)
n |n ∈ [0, bm)}.
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We see that Ψ̃m is a vector space over Fb, with dim(Ψ̃m) ≤ m. Taking into
account that x̃(ṡ)n 6= x̃(ṡ)k for n 6= k, we obtain dim(Ψ̃m) = m, c̃1, ..., c̃m is the basis
of Ψ̃m and Ỹm = Fm

b .
Let d ≥ 1, d0 = d + t, m ≥ 4d0(s + 1), ṁ = [(m− t)/(2d0(ṡ− 1))],

(4.129) d(ṡ)1 = m− t + 1− (ṡ− 1)d0ṁ and d(ṡ)2 = m− t− (ṡ− 2)d0ṁ.

Bearing in mind that Φ̃m is a (t, m, ṡ) net, we get that for each j ∈ [1, (ṡ− 1)d0ṁ]
with j = (j1 − 1)(ṡ− 1) + j2, j1 ∈ [1, d0ṁ] and j2 ∈ [1, ṡ− 1] there exists n(j) ∈
[0, bm) such that

(4.130) x̃(ṡ)n(j),r1
= δ(j1−1)(ṡ−1)+j2,r1

and x̃(i)n(j),r2
= δi,j2δj1,r2

for all r1 ∈ [1, (ṡ− 1)d0ṁ], r2 ∈ [1, d0ṁ], i ∈ [1, ṡ− 1].
Taking into account that Ym = Fm

b , we derive that there exists n(j) ∈ [0, bm)
with

(4.131) ỹ(ṡ)n(j),r = δj,r for (ṡ− 1)d0ṁ + 1 ≤ j ≤ m, 1 ≤ r ≤ m.

We take a basis ḟ1, ..., ḟm of Ψ̃m in the following way:

Let ḟj = (ḟ
(1)
j , ..., ḟ(ṡ)j ) ∈ Fmṡ

b with ḟ
(i)
j = (ḟ

(i)
1,j , ..., ḟ(i)m,j) ∈ Fm

b , i ∈ [1, ṡ], j ∈ [1, m].
For j ∈ [1, m], we put ḟj := ỹn(j). We have from (4.130) and (4.131) that

ḟ
(ṡ)
(j1−1)(ṡ−1)+j2,r1

= δ(j1−1)(ṡ−1)+j2,r1
and ḟ

(i)
(j1−1)(ṡ−1)+j2,r2

= δi,j2δj1,r2

for r1 ∈ [1, (ṡ− 1)d0ṁ], r2 ∈ [1, d0ṁ], i ∈ [1, ṡ− 1], j1 ∈ [1, d0ṁ], j2 ∈ [1, ṡ− 1]
and

(4.132) ḟ
(ṡ)
j,r = δj,r for (ṡ− 1)d0ṁ + 1 ≤ j ≤ m, 1 ≤ r ≤ m.

It is easy to see that the vectors ḟ1, ..., ḟm ∈ Ψ̃m are linearly independent over
Fb. Thus ḟ1, ..., ḟm is a basis of Ψ̃m.
Let

(4.133) ẏ(i)
n = (ẏ(i)n,1, ..., ẏ(i)n,m) := n(ḟ(i)1 , ..., ḟ(i)m ) =

m

∑
j=1

āj(n)ḟ
(i)
j = nḞ (i) >,

where Ḟ (i) = (ḟ
(i)
r,j )1≤r,j≤m for 1 ≤ i ≤ ṡ. Hence

ẏn := (ẏ(1)
n , ..., ẏ(ṡ)

n ) =
m

∑
j=1

āj(n)ḟj for 0 ≤ n < bm.

We put
Ψ̇m = {ẏn | 0 ≤ n < bm}.

It is easy to see that Ψ̇m = Ψ̃m.
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For f̈j = (f̈
(1)
j , ..., f̈(ṡ)j ) with f̈

(i)
j = (f̈

(i)
1,j , ..., f̈(i)m,j), we define

f̈j = ḟj for j ∈ [(ṡ− 1)d0ṁ + 1, m] and f̈
(i)
j = ḟ

(i)
j for i ∈ [1, ṡ− 1], j ∈ [1, m],

(4.134) f̈
(ṡ)
j,r = 0̄ for j ∈ [1, (ṡ− 1)d0ṁ], r ∈ [d(ṡ)1 , d(ṡ)2 ], and f̈

(ṡ)
j,r = ḟ

(ṡ)
j,r

for j ∈ [1, (ṡ− 1)d0ṁ] and r ∈ [1, m] \ [d(ṡ)1 , d(ṡ)2 ]. Let

(4.135) ÿ(i)
n = (ÿ(i)n,1, ..., ÿ(i)n,m) := n(f̈(i)1 , ..., f̈(i)m ) =

m

∑
j=1

āj(n)f̈
(i)
j = nF̈ (i) >,

where F̈ (i) = (f̈
(i)
r,j )1≤r,j≤m for 1 ≤ i ≤ ṡ. Hence

(4.136) ÿn := (ÿ(1)
n , ..., ÿ(ṡ)

n ) =
m

∑
j=1

āj(n)f̈j for 0 ≤ n < bm.

We put

(4.137) Ψ̈m = {ÿn | 0 ≤ n < bm} and Ÿm = {ÿ(ṡ)
n |n ∈ [0, bm)}.

Now let ẋn = (ẋ(1)n , ..., ẋ(ṡ)n ) and ẍn = (ẍ(1)n , ..., ẍ(ṡ)n ), where

ẋ(i)n =
m

∑
j=1

φ−1(ẏ(i)n,j)/bj, and ẍ(i)n =
m

∑
j=1

φ−1(ÿ(i)n,j)/bj

for 1 ≤ i ≤ ṡ. We have

(4.138) Φ̃m = {x̃n | 0 ≤ n < bm} = {ẋn | 0 ≤ n < bm} and Ÿm = Fm
b .

Bearing in mind that ḟ1, ..., ḟm and c̃1, ..., c̃m are two basis of the vector space
Ψ̃m, we get that there exists a nonsingular matrix B = (bj,r)1≤j,r≤m with bj,r ∈ Fb

such that (ḟ1, ..., ḟm)> = B(c̃1, ..., c̃m)>. Hence

ḟk =
m

∑
r=1

bk,r c̃r, and ḟ
(i)
k,j =

m

∑
r=1

bk,r c̃(i)r,j ,

for 1 ≤ k, j ≤ m, 1 ≤ i ≤ ṡ. Therefore

(4.139) (ḟ
(i)
1 , ..., ḟ(i)m )> = B(c̃(i)1 , ..., c̃(i)m )> and C̃(i) = Ḟ (i)B−1 > for i ∈ [1, ṡ].

Let n′ ∈ [0, bm), n′ = (ā1(n′), ..., ām(n′)), and let n′ = nB−1.
Using (4.128) and (4.133), we get

ẏ(i)
n′ = n′Ḟ (i)> = n′(ḟ(i)1 , ..., ḟ(i)m )> = nB−1B(c̃(i)1 , ..., c̃(i)m )>

= n(c̃(i)1 , ..., c̃(i)m )> = nC̃(i)> = ỹ(i)
n , for 1 ≤ i ≤ ṡ and 0 ≤ n < bm.
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Let C̆(i) = (c̆(i)r,j )1≤r,j≤m := F̈ (i)B−1 >, 1 ≤ i ≤ ṡ, c̆(i)j = (c̆(i)1,j , ..., c̆(i)m,j), 1 ≤ i ≤
ṡ, 1 ≤ j ≤ m and let y̆n := ÿn′ , x̆n := ẍn′ for n′ = nB−1. We have

(4.140) y̆(i)
n = ÿ(i)

n′ = n′F̈ (i)> = nB−1F̈ (i)> = nC̆(i)> for 1 ≤ i ≤ ṡ, 0 ≤ n < bm.

Hence, C̆(1), ..., C̆(ṡ) are generating matrices of the net (x̆n)0≤n<bm . According to
(4.134) and (4.139), we obtain F̈ (i) = Ḟ (i),

(4.141) C̆(i) = C̃(i) for 1 ≤ i ≤ ṡ− 1, and C̆(ṡ) − C̃(ṡ) = (F̈ (ṡ) − Ḟ (ṡ))B−1 >.

Let (B−1)> = (b̂r,j)1≤r,j≤m, ∆cr,j = c̆(ṡ)r,j − c̃(ṡ)r,j and ∆fr,j = f̈
(ṡ)
r,j − ḟ

(ṡ)
r,j for 1 ≤

r, j ≤ m. Applying (4.133), (4.135) and (4.141), we derive

(4.142) ∆cr,j =
m

∑
l=1

∆fr,l b̂l,j for 1 ≤ r, j ≤ m.

From (4.134) and (4.139), we get

(4.143) ∆cr,j = c̆(ṡ)r,j − c̃(ṡ)r,j = 0 for r ∈ [(ṡ− 1)d0ṁ + 1, m], 1 ≤ j ≤ m.

By (4.139) and (4.132), we have

(4.144) c̃(ṡ)r,j =
m

∑
l=1

ḟ
(ṡ)
r,l b̂l,j = b̂r,j for r ∈ [(ṡ− 1)d0ṁ] + 1, m] and 1 ≤ j ≤ m.

Using (4.129), we obtain d(ṡ)1 > (ṡ− 1)d0ṁ. By (4.134), (4.142) and (4.144), we
get

(4.145) ∆cr,j =
d(ṡ)2

∑
l=d(ṡ)1

∆fr,l c̃l,j for r ∈ [1, (ṡ− 1)d0ṁ] and 1 ≤ j ≤ m.

Lemma 20. With notations as above. Let ṡ ≥ 3, (x̃n)0≤n<bm be a digital (t, m, ṡ)-
net in base b, x̃ṡ

n 6= x̃ṡ
k for n 6= k. Then (x̆n)0≤n<bm is a digital (t, m, ṡ)-net in base b

with x̆ṡ
n 6= x̆ṡ

k for n 6= k,

(4.146)
∥∥∥x̆(ṡ)n

∥∥∥
b
=
∥∥∥x̃(ṡ)n

∥∥∥
b

for 0 < n < bm

and

(4.147) Λ = F
ṡd0ṁ
b , for m ≥ 2d0ṡ, ṁ = [(m− t)/(2d0(ṡ− 1))],

where
Λ = {(y̆(1)

n,d(1)1

, ..., y̆(1)
n,d(1)2

, ..., y̆(ṡ)
n,d(ṡ)1

, ..., y̆(ṡ)
n,d(ṡ)2

) | n ∈ [0, bm)}
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with d(i)1 = 1, d(i)2 = d0ṁ for 1 ≤ i < ṡ, d(ṡ)1 = m − t + 1 − (ṡ − 1)d0ṁ and
d(ṡ)2 = m− t− (ṡ− 2)d0ṁ.

Proof. By (4.140), we have y̆n = ÿn′ , x̆n = ẍn′ and ỹn = ẏn′ , x̃n = ẋn′ for
n′ = nB−1. Hence, in order to prove the lemma, it is sufficient to take ẍn
instead of and x̆n and ẋn instead of x̃n. Applying (4.137) and (4.138), we derive
that ẍṡ

n 6= ẍṡ
k for n 6= k.

Suppose that aj(n) = 0 for 1 ≤ j ≤ (ṡ− 1)d0ṁ. By (4.134) and (4.136), we get∥∥ẍṡ
n
∥∥

b =
∥∥ẋṡ

n
∥∥

b.
Let aj(n) = 0 for 1 ≤ j < j0 ≤ (ṡ− 1)d0ṁ and let aj0(n) 6= 0. From (4.134)

and (4.136), we have
∥∥∥ẍ(ṡ)n

∥∥∥
b
=
∥∥∥ẋ(ṡ)n

∥∥∥
b
= b−j0 . Hence

∥∥∥ẍ(ṡ)n

∥∥∥
b
=
∥∥∥ẋ(ṡ)n

∥∥∥
b

for all

n ∈ [1, bm) and (4.146) follows.

Let d = (d1, ..., dṡ), di ≥ 0 (i = 1, ..., ṡ), v̈d = (v̈(1)1 , ..., v̈(1)d1
, ..., v̈(ṡ)1 , ..., v̈(ṡ)dṡ

) ∈ Fḋ
b ,

with ḋ = d1 + ... + dṡ, and let

(4.148) Üv̈d = {0 ≤ n < bm | ÿ(i)n,j = v(i)j , 1 ≤ j ≤ di, 1 ≤ i ≤ ṡ}.

In order to prove that (ẍn)0≤n<bm is a (t, m, ṡ) net, it is sufficient to verify that
#Üv̈d = bm−ḋ for all v̈d ∈ Fḋ

b and all d with ḋ ≤ m− t. By (4.133), (4.134) and
(4.135), we get

(4.149) ẏ(i)
n =

m

∑
j=1

āj(n)ḟ
(i)
j and ÿ(i)

n =
m

∑
j=1

āj(n)f̈
(i)
j , with f̈

(i)
j = ḟ

(i)
j

for 1 ≤ i ≤ ṡ− 1, 1 ≤ j ≤ m and i = ṡ, (ṡ− 1)d0ṁ + 1 ≤ j ≤ m, 0 ≤ n < bm.
Hence

(4.150) ẏ(i)
n − ÿ(i)

n = 0 for 1 ≤ i ≤ ṡ− 1, ẏ(ṡ)
n − ÿ(ṡ)

n =
(ṡ−1)d0ṁ

∑
r=1

ār(n)(ḟ
(ṡ)
r − f̈

(ṡ)
r )

and ẏ(ṡ)
n,j − ÿ(ṡ)

n,j = 0 for j ∈ [1, (ṡ− 1)d0ṁ], 0 ≤ n < bm. Let

v̇(i)j := v̈(i)j for j ∈ [1, di], i ∈ [1, ṡ− 1] and v̇(ṡ)j := v̈(ṡ)j for j ∈ [1, min(dṡ, (ṡ− 1)d0ṁ)].

For dṡ > (ṡ− 1)d0ṁ and j ∈ [(ṡ− 1)d0ṁ + 1, dṡ], we define

v̇(ṡ)j = v̈(ṡ)j +
(ṡ−1)d0ṁ

∑
r=1

v̈(ṡ)r (ḟ
(ṡ)
r,j − f̈

(ṡ)
r,j ).

By (4.132) and (4.149), we get

ẏ(ṡ)n,j = v̇(ṡ)j ⇐⇒ āj(n) = v̇(ṡ)j = v̈(ṡ)j , for j ∈ [1, min(dṡ, (ṡ− 1)d0ṁ)], n ∈ [0, bm).
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Using (4.150), we obtain for n ∈ [0, bm) that

(4.151) ÿ(i)
n,j = v̈(i)j ⇐⇒ ẏ(i)

n,j = v̇(i)j for 1 ≤ j ≤ di, 1 ≤ i ≤ ṡ.

Let
U̇v̇d = {0 ≤ n < bm | ẏ(i)n,j = v̇(i)j , 1 ≤ j ≤ di, 1 ≤ i ≤ ṡ}

with v̇d = (v̇(1)1 , ..., v̇(1)d1
, ..., v̇(ṡ)1 , ..., v̇(ṡ)dṡ

).

Taking into account that (ẋn)0≤n<bm is a (t, m, ṡ)-net in base b, we get from
(4.148) and (4.151) that #Üv̈d = #U̇v̇d = bm−ḋ.

Now consider the statement (4.147). Let v̈ = (v̈(1)
d(1)1

, ..., v̈(1)
d(2)2

, ..., v̈(ṡ)
d(ṡ)1

, ..., v̈(ṡ)
d(ṡ)2

) ∈

Fḋ
b , with ḋ = d(1)2 + ... + d(ṡ−1)

2 + d(ṡ)2 − d(ṡ)1 + 1. It is easy to see that to obtain
(4.147), it is sufficient to verify that Ü

′
v̈ 6= ∅ for all v̈ ∈ Fḋ

b . where

Ü
′
v̈ = {0 ≤ n < bm | ÿ(i)j = v̈(i)j , d(i)1 ≤ j ≤ d(i)2 , 1 ≤ i ≤ ṡ}.

According to (4.135) and (4.136), Ü
′
v̈ 6= ∅ if there exists n ∈ [0, bm) such that

(4.152)
m

∑
r=1

ār(n)f̈
(i)
j,r = v̈(i)j for all d(i)1 ≤ j ≤ d(i)2 and 1 ≤ i ≤ ṡ.

By (4.132) and (4.134), we have that (4.152) is true only if āj(n) = v̈(ṡ)j

for d(ṡ)1 ≤ j ≤ d(ṡ)2 . Let n0 = ∑
d(ṡ)2

j=d(ṡ)1

φ−1(v̈(ṡ)j )bj−1 and let

n = n0 +
ṡ−1

∑
i=1

d(i)2

∑
j=d(i)1

φ(v̈(i)j − ÿ(i)n0,j)b
(i−1)d0ṁ+j−1.

Therefore āj(n) = v̈(ṡ)j for j ∈ [d(ṡ)1 , d(ṡ)2 ] and ā(i−1)d0ṁ+j(n) = v̈(i)j for j ∈
[d(i)1 , d(i)2 ], i ∈ [1, ṡ − 1]. Using (4.132) and (4.134), we get that (4.152) is true
and Ü

′
v̈ 6= ∅ for all v̈ ∈ Fḋ

b . Hence (4.147) is proved, and Lemma 20 follows. �

End of the proof of Theorem 6. Let C(1), ..., C(s) ∈ F∞×∞
b be the generating

matrices of a digital (t, s)-sequence (xn)n≥0. For any m ∈ N we denote the
m×m left-upper sub-matrix of C(i) by [C(i)]m.

Let mk = s2d0(22k+2 − 1), k = 0, 1, ... ,

(4.153) x(i,k)n =
mk

∑
j=1

φ−1(y(i,k)n,j )/bj, y(i,k)
n = n[C(i) >]mk

and y(i,k)
n = (y(i,k)n,1 , ..., y(i,k)n,mk) for n ∈ [0, bmk), i ∈ [1, s].
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For x = ∑j≥1 xj p
−j
i , where xi ∈ Zb = {0, ..., b− 1}, we define the truncation

[x]m = ∑
1≤j≤m

xjb−j with m ≥ 1.

If x = (x(1), ..., x(s)) ∈ [0, 1)s, then the truncation [x]m is defined coordinatewise,
that is, [x]m = ([x(1)]m, ..., [x(s)]m).

By (2.14) - (2.16), we have

(4.154) [xn]mk = x(k)n := (x(1,k)
n , ..., x(s,k)

n ) for n ∈ [0, bmk).

Let Ĉ(s+1,0) = (ĉ(s+1,0)
i,j )1≤i,j≤m0 with ĉ(s+1,0)

i,j = δi,m0−j+1, i, j = 1, ..., m0. We

will use (4.127) - (4.141) to construct a sequence of matrices Ĉ(s+1,k) ∈ F
mk×mk
b

(k = 1, 2, ...), satisfying the following induction assumption:

For given sequence of matrices Ĉ(s+1,0), ..., Ĉ(s+1,k−1) there exists a matrix
Ĉ(s+1,k) = (ĉ(s+1,k)

i,j )1≤i,j≤mk such that

(4.155) ĉ(s+1,k)
mk−i+1,j = ĉ(s+1,k−1)

mk−1−i+1,j for i, j ∈ [1, mk−1] and ĉ(s+1,k)
mk−i+1,j = 0

for i ∈ [mk−1 + 1, mk], j ∈ [1, mk−1], (x(1,k)
n , ..., x(s,k)

n , x̂(s+1,k)
n )0≤n<bmk is a (t, mk,

s + 1)-net in base b with

(4.156) x̂(s+1,k)
n 6= x̂(s+1,k)

l for n 6= l and
∥∥∥x̂(s+1,k)

n

∥∥∥
b
= ‖n‖b b−mk for 0 ≤ n < bmk ,

where

(4.157) x̂(s+1,k)
n =

mk

∑
j=1

φ−1(y(s+1,k)
n,j )/bj, y(s+1,k)

n = nĈ(s+1,mk) >

and y(s+1,k)
n = (y(s+1,k)

n,1 , ..., y(s+1,k)
n,mk ) for n ∈ [0, bmk).

Let k = 1. We take ĉ(s+1,1)
i,j = δi,m1−j+1 for i, j = 1, ..., m1.

Now assume we known Ĉ(s+1,k) and we want to construct Ĉ(s+1,k+1). We first
construct C̃(s+1,k+1) = (c̃(s+1,k+1)

i,j )1≤i,j≤mk+1 as following

(4.158) c̃(s+1,k+1)
mk+1−i+1,j = ĉ(s+1,k)

mk−i+1,j for i, j ∈ [1, mk], c̃(s+1,k+1)
i,j = δi,mk+1−j+1

for i ∈ [1, mk+1 −mk], j ∈ [1, mk+1] and c̃(s+1,k+1)
i,j = 0̄

for (i, j) ∈ [1, mk+1 − mk] × [1, mk] and (i, j) ∈ [mk+1 − mk + 1, mk+1] × [mk +
1, mk+1].
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Lemma 21. With notations as above, (x(1,k+1)
n , ..., x(s,k+1)

n , x̃(s+1,k+1)
n )0≤n<bmk+1 is

a (t, mk+1, s + 1)-net in base b with x̃(s+1,k+1)
n 6= x̃(s+1,k+1)

l for n 6= l, and

(4.159)
∥∥∥x̃(s+1,k+1)

n

∥∥∥
b
= ‖n‖b b−mk+1 for 0 < n < bmk+1 .

Proof. Let d = (d1, ..., ds+1), vd = (v(1)1 , ..., v(1)d1
, ..., v(s+1)

1 , ..., v(s+1)
ds+1

) ∈ Fḋ
b with

ḋ = d1 + ... + ds+1,

Ũvd = {0 ≤ n < bmk+1 | y(i,k)n,j = v(i)j , 1 ≤ j ≤ di, 1 ≤ i ≤ s

and ỹ(s+1,k+1)
n,j = v(s+1)

j , 1 ≤ j ≤ ds+1}.(4.160)

In order to prove that (x(1,k+1)
n , ..., x(s,k+1)

n , x̃(s+1,k+1)
n )0≤n<bmk+1 is a (t, mk+1, s +

1)-net, it is sufficient to verify that #Ũvd = bmk+1−ḋ for all vd ∈ Fḋ
b and all d

with ḋ ≤ mk+1 − t.

Suppose that ds+1 ≤ mk+1 −mk.
Let n ∈ [0, bmk+1), n0 ≡ n (mod bmk+1−ds+1), n0 ∈ [0, bmk+1−ds+1) and let n1 =
n− n0. It is easy to see that

ỹ(s+1,k+1)
n,j = ỹ(s+1,k+1)

n0,j + ỹ(s+1,k+1)
n1,j .

Let j ∈ [1, mk+1 −mk]. By (4.158), we get

(4.161) ỹ(s+1,k+1)
n,j =

mk+1

∑
r=1

ār(n)c̃
(s+1,k+1)
j,r =

mk+1−mk

∑
r=1

ār(n)δj,mk+1+1−r = āmk+1+1−j(n).

Let n̈ = ∑
ds+1
j=1 φ(v(s+1)

j )bmk+1−j. By (4.160), we get n ∈ Ũvd ⇔ n1 = n̈ and

n0 ∈ Ũ
′
vd

, where

Ũ
′
vd

= {0 ≤ ṅ < bmk+1−ds+1 | y(i,k+1)
ṅ,j = v(i)j − y(i,k+1)

n̈,j , 1 ≤ j ∈ [1, di], i ∈ [1, s]}.

Bearing in mind (4.157), (4.158), (4.160) and that (x(n))0≤n<bmk+1−ds+1 is a (t, mk+1−
ds+1, s)-net in base b , we obtain #Ũvd = #Ũ

′
vd

= bmk+1−ḋ.

Now let ds+1 > mk+1−mk. Let n ∈ [0, bmk+1), n0 ≡ n (mod bmk), n0 ∈ [0, bmk)
and let n1 = n− n0. We have

ỹ(s+1,k+1)
n,j = ỹ(s+1,k+1)

n0,j + ỹ(s+1,k+1)
n1,j .
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Let n̈ = ∑
mk+1−mk
j=1 φ(v(s+1)

j )bmk+1−j. By (4.160) and (4.161), we get

n ∈ Ũvd ⇔ n1 = n̈ and n0 ∈ {0 ≤ ṅ < bmk | y(i,k+1)
ṅ,j = v(i)j − y(i,k+1)

n̈,j , 1 ≤ j ≤ di,

1 ≤ i ≤ s and y(s+1,k+1)
ṅ,j = v(s+1)

j − y(s+1,k+1)
n̈,j , mk+1 −mk + 1 ≤ j ≤ ds+1}.

Let j ∈ [mk+1 −mk + 1, mk+1] and let j0 = mk+1 + 1− j ∈ [1, mk].
By (4.158), we derive

ỹ(s+1,k+1)
ṅ,j = ỹ(s+1,k+1)

ṅ,mk+1+1−j0
=

mk+1

∑
r=1

ār(ṅ)c̃
(s+1,k+1)
mk+1+1−j0,r =

mk

∑
r=1

ār(ṅ)c̃
(s+1,k+1)
mk+1+1−j0,r

(4.162) =
mk

∑
r=1

ār(ṅ)c̃
(s+1,k)
mk+1−j0,r = ỹ(s+1,k)

ṅ,mk+1−j0
for all ṅ ∈ [0, bmk).

We have that y(i,k+1)
ṅ,j = y(i,k)ṅ,j (i = 1, ...., s) and y(s+1,k+1)

ṅ,j = y(s+1,k)
ṅ,mk+1−j0

for ṅ ∈
[0, bmk). Hence

n ∈ Ũvd ⇔ n1 = n̈ and n0 ∈ Ũ
′
vd

=
{

0 ≤ ṅ < bmk | y(i,k)ṅ,j = v(i)j − y(i,k+1)
n̈,j , j ∈ [1, di],

i ∈ [1, s], and y(s+1,k)
ṅ,j−mk+1+mk

= v(s+1)
j−mk+1+mk

− y(s+1,k+1)
n̈,j , j ∈ (mk+1 −mk, ds+1]

}
.

Taking into account that (x(1,k)
n , ..., x(s,k)

n , x̃(s+1,k)
n ))0≤n<bmk is a (t, mk, s + 1)-net

in base b, we obtain #Ũvd = #Ũ
′
vd

= bmk−(ḋ−mk+1+mk) = bmk+1−ḋ. Therefore

(x(1,k+1)
n , ..., x(s,k+1)

n , x̃(s+1,k+1)
n )0≤n<bmk+1 is a (t, mk+1, s + 1)-net in base b.

From (4.158), (4.161), (4.162) and the induction assumption, we get that
x̃(s+1,k+1)

n 6= x̃(s+1,k+1)
l for n 6= l.

Consider the assertion (4.159). Let n ∈ [0, bmk+1) and let

(4.163)
∥∥∥x̃(s+1,k+1)

n

∥∥∥
b
= b−j1 .

Hence ỹ(s+1,k+1)
n,j = 0 for 1 ≤ j ≤ j1 − 1 and ỹ(s+1,k+1)

n,j1
6= 0 (see (1.4)).

Let j1 ∈ [1, mk+1 −mk]. By (4.161), we get āmk+1+1−j(n) = 0 for 1 ≤ j ≤ j1 − 1

and āmk+1+1−j1(n) 6= 0. Therefore ‖n‖b =
∥∥∥∑

mk+1
i=1 ai(n)bi−1

∥∥∥
b
= bmk+1−j1 .

Now let j1 ∈ [mk+1−mk + 1, mk+1]. From (4.161), we obtain āmk+1+1−j(n) = 0
for 1 ≤ j ≤ mk+1 − mk. Hence n ∈ [0, bmk). Using (4.158) and (4.161), we
have ỹ(s+1,k)

n,j = ỹ(s+1,k)
n,j−mk+1+mk

for mk+1 −mk + 1 ≤ j ≤ j1. Therefore ỹ(s+1,k)
n,j = 0

for 1 ≤ j ≤ j1 − mk+1 + mk − 1 and ỹ(s+1,k)
n,j1−mk+1+mk

6= 0. Using the induction

assumption (4.156), we get b−j1+mk+1−mk =
∥∥∥x̃(s+1,k)

n

∥∥∥
b
= ‖n‖b b−mk .
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By (4.163), we obtain
∥∥∥x̃(s+1,k+1)

n

∥∥∥
b
= ‖n‖b b−mk+1 . Thus assertion (4.159) is

proved and Lemma 21 follows. �

Now we apply (4.127) - (4.141) with ṡ = s + 1, m = mk+1, C̃(i) := [C(i)]mk+1

(i = 1, ..., s) and C̃(s+1) := C̃(s+1,k+1) to construct matrices C̆(i) (i = 1, ..., s + 1).
From (4.141), we have

(4.164) C̆(i) = C̃(i) = [C(i)]mk+1 for i = 1, ..., s.

Let Ĉ(s+1,k+1) := C̆(s+1). According to (4.143) and (4.158), we get

(4.165) ĉ(s+1,k+1)
r,j − c̃(s+1,k+1)

r,j = 0 for r ∈ [sd0ṁk+1 + 1, mk+1] and 1 ≤ j ≤ mk+1.

By (4.129) and (4.145), we obtain for r ∈ [1, sd0ṁk+1] and 1 ≤ j ≤ mk+1

(4.166) ĉ(s+1,k+1)
r,j − c̃(s+1,k+1)

r,j =
d(s+1,k+1)

2

∑
l=d(s+1,k+1)

1

∆f
(s+1,k+1)
r,l c̃(s+1,k+1)

l,j ,

where d(s+1,k+1)
1 = mk+1− t+ 1− sd0ṁk+1, d(s+1,k+1)

2 = mk+1− t− (s− 1)d0ṁk+1,
mk+1 = s2d0(22k+4 − 1), d0 = d + t and ṁk+1 = [(mk+1 − t)/(2sd0)].
We have d(s+1,k+1)

1 > (s− 1)d0ṁk+1, ṁk+1 = 22k+3 − 1 for k = 0, 1, ... and

mk+1 − d(s+1,k+1)
2 ≥ (s− 1)d0ṁk+1 ≥ 2−1s2d0(22k+3 − 1) > mk.

By (4.158), we obtain c̃(s+1,k+1)
r,j = 0 for r ≤ d(s+1,k+1)

2 < mk+1 −mk and 1 ≤ j ≤
mk.
From (4.166), we derive

(4.167) ĉ(s+1,k+1)
r,j − c̃(s+1,k+1)

r,j = 0 for r ∈ [1, sd0ṁk+1] and 1 ≤ j ≤ mk.

Bearing in mind that

mk+1 − sd0ṁk+1 = s2d0(22k+4 − 1)− s2d0(22k+3 − 1) = s2d022k+3 > mk,

we get from (4.165) and (4.158)

(4.168) ĉ(s+1,k+1)
mk+1−i+1,j = c̃(s+1,k+1)

mk+1−i+1,j = ĉ(s+1,k)
mk−i+1,j for 1 ≤ i, j ≤ mk.

Applying (4.158), (4.165) and (4.167), we have

ĉ(s+1,k+1)
i,j = c̃(s+1,k+1)

i,j = 0, for 1 ≤ i ≤ mk+1 −mk, 1 ≤ j ≤ mk

Now using (4.168), we obtain (4.155).
We see that (4.156) follows from (4.159) and (4.146). Consider the net (x̂(k+1)

n )bmk+1−1
n=0

with x̂(k+1)
n = (x(1,k+1)

n , ..., x(s,k+1)
n , x̂(s+1,k+1)

n ) := x̆n = (x̆(1)n , ..., x̆(s+1)
n ). Let

Λk+1 =
{((

y(i,k+1)
n,1 , ..., y(i,k+1)

n,d(i,k+1)

)
1≤i≤s, ŷ(s+1,k+1)

n,d(s+1,k+1)
1

, ..., ŷ(s+1,k+1)

n,d(s+1,k+1)
2

) ∣∣∣ n ∈ [0, bmk+1)
}
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with d(i,k+1) = d0ṁk+1 for 1 ≤ i ≤ s. Using (4.129), (4.164) and Lemma 20, we
obtain

(4.169) Λk+1 = F
(s+1)d0ṁk+1
b , for ṁk+1 = [(mk+1 − t)/(2sd0)] = s(2k+1 − 1),

and (x̂(k+1)
n )0≤n<bmk+1 is a (t, mk+1, s + 1)-net in base b. Thus we have that

Ĉ(s+1,k+1) satisfy the induction assumption.

Let C(s+1,k+1) = (c(s+1,k+1)
i,j )1≤i,j≤mk+1 where c(s+1,k+1)

i,j := ĉ(s+1,k+1)
mk+1−i+1,j for

1 ≤ i, j ≤ mk+1. By (4.155), we get

(4.170) [C(s+1,k+1)]mk = C(s+1,k) and c(s+1,k+1)
i,j = 0, i ∈ (mk, mk+1], j ∈ [1, mk].

Now let C(s+1) = (c(s+1)
i,j )i,j≥1 = limk→∞ C(s+1,k) i.e. [C(s+1)]mk := C(s+1,k),

k = 1, 2, ... . We define

(4.171) hk(n) := hk,1(n) + ... + hk,mk
(n)bmk−1 := x̂(s+1,k)

n bmk for 0 ≤ n < bmk .

From (4.157), we have

φ(hk,i(n)) = φ(x̂(s+1,k)
n,mk−i+1) = ŷ(s+1,k)

n,mk−i+1 = ∑mk
j=1 āj(n)ĉ

(s+1,k)
mk−i+1,j

= ∑mk
j=1 āj(n)c

(s+1,k)
mk−i+1,j for 0 ≤ n < bmk .(4.172)

Applying (4.170), we obtain for n ∈ [0, bmk) that

(4.173) hk,i(n) = 0 for i > mk and hk(n) = hk−1(n) ∈ [0, bmk−1) for n ∈ [0, bmk−1).

For n ∈ [1, bmk), we get from (4.172) and (4.156) that

(4.174) ‖hk(n)‖b = ‖n‖b .

Let l 6= n ∈ [0, bmk). Using (4.156), we have (ŷ(s+1,k)
l,1 , ..., ŷ(s+1,k)

l,mk
) 6=

(ŷ(s+1,k)
n,1 , ..., ŷ(s+1,k)

n,mk ). Hence (hk,1(l), ..., hk,mk
(l)) 6= (hk,1(n), ..., hk,mk

(n)) and hk(l) 6=
hk(n).

Therefore hk is a bijection from [0, bmk) to [0, bmk). We define h−1
k (n) such that

hk(h−1
k (n)) = n for all n ∈ [0, bmk).

Let n ∈ [0, bmk) and l = h−1
k (n), then l ∈ [0, bmk) and hk+1(l) = hk(l) = n. Thus

(4.175) h−1
k+1(n) = h−1

k (n) = l for n ∈ [0, bmk).

Let h(n) = limk→∞ hk(n), and h−1(n) = limk→∞ h−1
k (n).

Let n ∈ [0, bmk) and let l = h−1
k (n). By (4.173) and (4.175), we get

h(n) = hk(n) = l, h−1(l) = h−1
k (l) = n, and h−1(h(n)) = n.

Consider the d−admissible property of the sequence (xh−1(n))n≥0. It is suffi-
cient to take k = 0 in (1.4).
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Let n ∈ [0, bmk). By (4.174), we have ‖h(n)‖b = ‖hk(n)‖b = ‖n‖b. Taking into
account Definition 5 and that (xn)n≥0 is a d−admissible sequence, we obtain

(4.176) ‖n‖b

∥∥∥xh−1(n)

∥∥∥
b
= ‖h(l)‖b ‖xl‖b = ‖l‖b ‖xl‖b ≥ b−d, with l = h−1(n).

Hence (xh−1(n))n≥0 is a d−admissible sequence.

By the induction assumption, ([xn]mk , hk(n)/bmk)0≤n<bmk is a (t, mk, s + 1)-net
in base b for k ≥ 1. Hence (xn, h(n)/bmk)0≤n<bmk and (xh−1(n), n/bmk)0≤n<bmk

are also (t, mk, s + 1)-nets in base b for k ≥ 1. By Lemma 1, (xh−1(n))n≥0 is a
(t, s)-sequence in base b.

Let N ∈ [bmk , bmk+1). Applying Lemma B, we get

σ := 1 + min
0≤Q<bmk ,w∈Es

mk

max
1≤M≤N

MD∗((xh−1(n	Q) ⊕w)0≤n<M)

≥ 1 + min
0≤Q<bmk ,w∈Es

mk

max
1≤M≤bmk

MD∗((xh−1(n	Q) ⊕w)0≤n<M)

≥ min
0≤Q<bmk ,w∈Es

mk

bmkD∗((xh−1(n	Q) ⊕w, n/bmk)0≤n<bmk )

≥ min
0≤Q<bmk ,w∈Es

mk

bmkD∗((xl ⊕w, h(l)⊕Q/bmk)0≤l<bmk )

where l = h−1(n	Q) and n = h(l)⊕Q. Bearing in mind that h(n) = hk(n) for
0 ≤ n < bmk , and that x̂(s+1,k)

n = hk(n)/bmk for 0 ≤ n < bmk , we get

(4.177) σ ≥ min
0≤Q<bmk ,w∈Es

mk

bmkD∗((xn ⊕w, x̂(s+1,k)
n ⊕ (Q/bmk))0≤n<bmk ).

By (4.176) and (1.4), we obtain that (xn, h(n)/bmk)0≤n<bmk is a d-admissible
net.

Applying (4.154) and the induction assumption, we get that (xn, h(n)/bmk)0≤n<bmk

is a (t, mk, s + 1) net in base b. Let

Λ
′
k =

{((
y(i)n,1, ..., y(i)

n,d(i,k)
)

1≤i≤s, ŷ(s+1,k)

n,d(s+1,k)
1

, ..., ŷ(s+1,k)

n,d(s+1,k)
2

) ∣∣∣ n ∈ [0, bmk)
}

.

Using (4.153), (4.154) and (4.171) , we obtain y(i)n,j = y(i,k)n,j for 1 ≤ j ≤ mk,

1 ≤ i ≤ s, and h(n)/bmk = x̂(s+1,k)
n . By (4.169), we have

Λ
′
k = Λk = F

(s+1)d0ṁ
b , for ṁ = [(mk − t)/(2sd0)] = d(s+1,k)

2 − d(s+1,k)
1 + 1.

Now we apply Corollary 2 with ṡ = s + 1, ε = (2sd0)
−1 , η = ê = 1, r̃ = t,

m = mk, m̃ = m− t, m̈s+1 = d(s+1,k)
1 − 1, Bi = ∅ for i ∈ [1, s + 1], and B = 0.

Taking into account (4.177), we get the assertion in Theorem 6. �
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