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Abstract. Let A and B be additive sets of Z2k, where A has cardinality k and B = v.{A
with v ∈ Z×2k. In this note some bounds for the cardinality of A + B are obtained, using
four different approaches. We also prove that in a special case the bound is not sharp
and we can recover the whole group as a sumset.

1. Introduction

In music, a canon is typically understood as a musical composition where a melody
is imitated by various voices, with a duration offset between them (well known exam-
ples are “Row, Row, Row Your Boat” or “Frère Jacques”). A canon like those can be
more aptly described as a “pitch canon”, in contraposition to the “rhythmic canons”
introduced by Oliver Messiaen, where the rhythm is imitated instead of the melody. In
this direction, a remarkable and pioneering use of sumsets in music was done by Dan
Tudor Vuza, introducing what he called “Regular Complementary Canons of Maximal
Category”, which are aperiodic sumsets S, T ⊆ Zn such that Zn = S + T, where S
(or T) represents the set of duration offsets between rhythmic imitations. For a nice
introduction to the fascinating interplay of music and mathematics in this regard, see
[3].

In this note, we make further connections between sumsets and the musical realm of
counterpoint, where canon is but one of its techniques. Thus let U and V be additive
subsets of Z2k with cardinality k, and

U + V = {u + v : u ∈ U, v ∈ V},
x.U = {xa : a ∈ U}.

I stumbled upon the problem of proving that, if k is large enough and under certain
hypothesis regarding the structure of U, we have

U + V = Z2k

where U is a set closely related to V. Hence U and V are akin to Vuza canons, except
for aperiodicity is not required beforehand but some other conditions are to be fulfilled.
To be more specific, a very interesting case from the mathematical counterpoint theory
perspective is when

V = v.{U, v ∈ Z×2k \ {−1}
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and, additionally, {U = U + k (here { stands for the set complement with respect to
Z2k). In order to explain why, let

−→
GL(Z2k) be the set of bijective functions

eu.v : Z2k → Z2k,
x 7→ vx + u,

where v ∈ Z×2k and u ∈ Z2k. If A ⊆ Z2k is such that g(A) 6= A for every g ∈ −→GL(Z2k)

except the identity, and A ∪ p(A) = Z2k for a unique p ∈ −→GL(Z2k), then it is called a
counterpoint dichotomy and p is its polarity.

Example 1.1. One interesting example is A = {0, 2, 3} ⊆ Z6, whose polarity is e1.− 1, since
it is essentially the only one available. Another important specimen is

K = {0, 3, 4, 7, 8, 9} ⊆ Z12,

with polarity e2.5, for K is the set of consonances in Renaissance counterpoint modulo octave,
when the intervals in 12-tone equally tempered scale are interpreted as Z12. The interested
reader may consult [9, Part VII] or [1] and references therein for further details.

Throughout this paper, we will attack (with varying degrees of generality) the fol-
lowing question.

Question 1.2. Given a subset A ⊆ Z2k of cardinality k, is it true that

(1) A + v.{A =

{
Z2k, v ∈ Z×2k \ {−1},
Z2k \ {0}, v = −1?

When this question can be answered in the affirmative then, for any eu.(−v) except
the identity, there exists x ∈ A and y ∈ {A such that

x + (−v)y = u or vy + u = x or eu.(−v)(y) ∈ A

which means that no element of
−→
GL(Z2k) but the identity leaves the set A invariant.

If there exists also a p ∈ −→GL(Z2k) such that p(A) = {A, then A is a counterpoint
dichotomy.

A set that I have been trying to prove is a counterpoint dichotomy for a long time
(some reasons for this are stated in [2]) via answering Question 1.2 is

(2) A = {0, 1} ∪ {3, 4, . . . , k− 1} ∪ {k + 2}.
It is not difficult to verify that ek.1(A) = {A and to see that

A + A = Z2k and A− A ⊇ Z2k \ {k},
since 2 = 1 + 1, 2k− 1 = (k + 2) + (k− 3) and k + 1 = (k− 2) + 3 for the first equality.
The other one is consequence of 3− 1 = 2 and 1− 3 = −2.

Although the following three sections do not prove A satisfies the rest of (1), they
provide some evidence and results that may be interesting on their own. Moreover, an
elementary proof of this fact found by Merlijn Staps is presented in the fifth section. In
the last section, some final remarks are made.
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2. Using the Ruzsa distance

Let U and V be subsets of an additive group G. A couple of weak bounds for |U +V|
can be obtained using Ruzsa’s useful notion of “distance” in additive combinatorics

d(U, V) = log
|U −V|√
|U||V|

,

which is a seminorm. In particular, it satisfies a triangle inequality

d(U, V) ≤ d(U, W) + d(W, V).

Note now that, regarding the set (2), we have

d(A,−A) = log
|A + A|
|A| = log

2k
k

= log 2;

the number δ(U) = exp(d(U,−U)) is the doubling constant of the set U, and thus
δ(A) = 2.

From the Ruzsa triangle inequality we can deduce [12, p. 61]

|U||V −V| ≤ |U + V|2

which, for the case of V = A and U = B, specializes to

|A + B| ≥
√
|B||A− A| ≥

√
k(2k− 1) =

√
2− 1

k
k.

On the other hand, again by the triangle inequality

log 2 = d(A,−A) ≤ d(A, B) + d(B,−A)

and a pigeon-hole argument, either

d(A, B) ≥ 1
2

log 2

or

d(−A, B) = d(A,−B) ≥ 1
2

log 2.

Equivalently, either
|A− B| ≥

√
2k

or
|A + B| ≥

√
2k.

We conclude that, for any subsets A and B of the cardinality k such that δ(A) = 2,
we have

max{|A + B|, |A− B|} ≥
√

2k.

We do not know if there exist pairs of subsets of Z2k such that A has doubling
constant 2 and |A + B| or |A− B| get arbitrarily close to this bound.
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3. Using additive energy and a theorem by Olson

Let

[P] =

{
1, P is true,
0, otherwise,

be the Iverson bracket [?, p. 24], and define the additive energy of the subsets U and V
of the additive group G by

E(U, V) = ∑
u1,u2∈U,v3,v4∈V

[u1 + u2 = v3 + v4].

Another well-known inequality [12, p. 63] for the cardinality of U + V is

|U ±V| ≥ (|U||V|)2

E(U, V)
.

From this we infer another strategy to improve the previous estimates for |A + B|,
namely finding upper bounds for E(A, B). A good start might be the Cauchy-Schwarz
inequality

E(A, B) ≤
√

E(A, A)E(B, B).

This seems promising when B = v.{A and {A = A + {k}, since the invertibility of v
implies

E(v.{A, v.{A) = ∑
a1,a2,a3,a4∈A+{k}

[va1 + va2 = va3 + va4]

= ∑
a1,a2,a3,a4∈A

[v(a1 + a2) = v(a3 + a4)]

= ∑
a1,a2,a3,a4∈A

[a1 + a2 = v−1v(a3 + a4)]

= ∑
a1,a2,a3,a4∈A

[a1 + a2 = a3 + a4] = E(A, A).

Thus E(A, v.{A) ≤ E(A, A). Nevertheless, this straightforward approach loses some
of its charm as soon as we calculate a few values of the energy and the corresponding
bounds.

As it is readily seen in Table 1, the quality of the bound is expected to decrease as
k increases, although it would remain as a mild improvement with respect the one
obtained in the previous section. In fact, assuming E(A, A) is a polynomial in k, from
a simple interpolation from the data in Table 1 we find that

E(A, A) = 2
3 k3 − 47

3 k + 80.

This means that, for k ≥ 6, we have E(A, A) ≤ 2
3 k3, and then

|A± v.{A| ≥ 3
2 k.
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k E(A, A) (|A||v.{A|)2

E(A,A)
= k4

E(A,A)
k3

2E(A,A)

8 296 13.84 0.86
9 425 15.44 0.86
10 590 16.95 0.85
11 795 18.42 0.84
12 1044 19.86 0.83

100 665180 150.34 0.751
1000 666651080 1500.04 0.750

Table 1. Additive energy E(A, A) for small k = |A|, where A is defined
by (2), the corresponding bound for |A + B| and the fraction of Z2k that
is thus guaranteed to be covered by A + B.

This bound can be obtained from a theorem due to Olson, and actually it holds for
any set B of cardinality k, not only those of the form v.{A. Before stating Olson’s
theorem, observe that an additive subset U of G is contained in a coset of a unique
smallest subgroup H of G. Denote with [U] such a coset.

Theorem 3.1 (Olson, 1984, [10], [8],[4]). Let U and V be additive subsets of G. If U +V 6= G
and [U] = G, then |U + V| ≥ 1

2 |U|+ |V|.

Suppose G = Z2k and U = A. Any coset containing A has cardinality at least k. But
it cannot have exactly k elements, for the cosets would be forced to be either the set
of even elements of Z2k or its complement, but clearly A is contained in neither. Thus
[A] = Z2k, so if A + B is not the whole group, it must consist of at least 1

2 k + k = 3
2 k

elements.

4. Using trigonometric sums

Let rU+V(t) the number of representations of t as a sum t = u + v for u ∈ U and
v ∈ V, where U and V are additive subsets of a group G. The following is a standard
technique using the so-called trigonometric sums in number theory (a readable and
short introduction can be found in [5]). Note first that

1
m

m−1

∑
ξ=0

e2πiξx/m = [x ≡ 0 (mod m)],

so we can write

1
2k

2k−1

∑
ξ=0

e2πiξ(u+v−λ)/(2k) = [u + v ≡ λ (mod 2k)].
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If we sum over U and V and exchange the order of summation,

rU+V(λ) = ∑
u∈U

∑
v∈V

[u + v ≡ λ (mod 2k)].

=
1
2k ∑

u∈U
∑

v∈V

2k−1

∑
ξ=0

e2πiξ(u+v−λ)/(2k)

=
1
2k

2k−1

∑
ξ=0

(
∑

u∈U
e2πiξu/(2k) ∑

v∈V
e2πiξv/(2k)

)
e−2πiξλ/(2k),

and then we extract the ξ = 0 term, we conclude

rU+V(λ) =
k
2
+ E

where, by the triangle inequality,

(3) |E| ≤ 1
2k

2k−1

∑
ξ=1

∣∣∣∣∣∑u∈U
eπiξu/k

∣∣∣∣∣
∣∣∣∣∣∑v∈V

eπiξv/k

∣∣∣∣∣ = 2k
2k−1

∑
ξ=1
|1̂U(ξ)||1̂V(ξ)|

and

f̂ (ξ) :=
1
|G| ∑

x∈G
f (x)e2πiξx/|G|

is the Fourier transform. Observe now that |1̂v.{A(ξ)| = |1̂{A(ξ)| ≤ |1̂A(ξ)|, so for
U = A and V = v.{A, we have

|E| ≤ 2k
2k−1

∑
ξ=1
|1̂A(ξ)|2 ≤ k,

which is not useful. On the other hand, since (see [13, Lemma 6, Chapter 1])

|1̂A(ξ)| ≤
1

2k sin(πξ/(2k))
+

1
k

then
2k−1

∑
ξ=1
|1̂A(ξ)|2 ≤

2k−1

∑
ξ=1

(
1

2k sin(πξ/(2k))
+

1
k

)2

= 2
k

∑
ξ=1

(
1

2k sin(πξ/(2k))
+

1
k

)2

− 9
4k2 .

Now the sequence

ak,ξ =


(

1
2k sin(πξ/(2k)) +

1
k

)2
, 1 ≤ ξ ≤ k,

0, otherwise,
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is such that ak,ξ ≥ ak+1,ξ and ∑∞
ξ=1 a1,ξ = 9

4 . By the monotone convergence theorem, we
obtain

lim
k→∞

2k−1

∑
ξ=1
|1̂A(ξ)|2 = 2 lim

k→∞

k−1

∑
ξ=1

1
π2ξ2 =

1
3

,

which amounts to estimate |E| ≤ 2
3 k for large k, but that is not enough to ensure that

rA+v.{A(λ) ≥ 0 for any λ and v 6= −1. Furthermore, it suggests that the most we can
get this way is |A + v.{A| ≥ 5

6 k (see [12, p. 210]).

5. Using a result by Mann

For a penultimate attempt we use the following generalization of the celebrated
Cauchy-Davenport theorem.

Theorem 5.1 (Mann, 1965, see [11]). Let S be a subset of an arbitrary abelian group G. Then
one of the following holds:

(1) For every subset T such that S + T 6= G, we have |S + T| ≥ |S|+ |T| − 1.
(2) There exists a proper subgroup H of G such that |S + H| < |S|+ |H| − 1.

Thus one of these two alternatives holds:
(1) It is true that |A + v.{A| ≥ |A|+ |v.{A| − 1 = 2k− 1.
(2) There is proper subgroup H, such that

|A + H| < k + |H| − 1.

We claim that, for the set A, we have

|A + v.{A| ≥ 2k− 1

by discarding the second alternative. In order to do so, suppose H = 〈d〉 where 0 ≤
d ≤ k and

|H + A| < k + |H| − 1.
Being that H is proper, we have |H| ≤ k. Let us suppose that d ≥ 1 (since the trivial

case is evidently false), which implies that |H| = 2k
d . Thus A + H is the placement of

copies of A with spaces of d elements, so it covers all the elements of Z2k with at most
2k
d exceptions, thus

k +
2k
d
− 1 > |A + H| ≥ 2k− 2k

d
.

This is possible if, and only if,
2k
d

+ k− 1 > 2k− 2k
d

or, equivalently,

4 >
4k

k + 1
> d,

thereof d = 2 or d = 3. If d = 2, we are done, for A has {0, 1} as a subset, thus
A + H = Z2k, a contradiction.
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In the later case (which arises only when 3 divides k), it would be possible that each
“slot” of 3 elements {3j, 3j + 1, 3j + 2} determined by H and to be covered by A to have
3j+ 2 uncovered. Nevertheless, the “antipodal” slot {3j+ k, 3j+ k+ 1, 3j+ k+ 2}would
not allow this to happen, since the potentially uncovered element must be covered with
the translate (3j+ k+ 2)+ k of 3j+ k+ 2 ∈ A+ 3j. Moreover: we are certain that a copy
of A is placed in k because 3 is one of its factors. So, A + H would leave no element
uncovered, for there are an even number of slots, each one paired with its antipode.
Hence H = 〈3〉 is also an impossibility.

From the above proof we also obtain that A is aperiodic, i. e., A + H 6= A except
for H = {0}. Invoking Kemperman structure theorem (as stated, for example, in [7, p.
71-72])1, we conclude that

A− {A = Z2k \ {0}
and, furthermore, if A + v.{A 6= Z2k, then there exists u such that

v.{A = u− {A.

This equivalent to the following: except for for v = −1, and u = 0 it is true that

−v.A + u 6= A,

which means exactly that A is a counterpoint dichotomy. Thus, Kemperman’s theorem
cannot lead us further in relation to the cardinality of A + v.{A.

6. A proof for a special case

Question 1.2 can be answered affirmatively for the set (2), when k ≥ 10, as we now
show. Let us first identify v with an element in

{−k + 1,−k + 2, . . . ,−1, 0, 1, . . . , k− 1}.
Observe that for v = −1 we have A + (−1).B = Z2k \ {k}, and for v = 1 we have

A + 1.B = A + B = A + k + A = Z2k + k = Z2k. Now suppose k− 3 ≥ |v| > 1, that is,
k− 3 ≥ |v| ≥ 3. Choose

X = {3, 4, . . . , k− 1}
and Y = X− 3. We claim that Y + v.Y = Z2k, for this would imply that

A + v.A ⊃ X + v.X

= Y + 3 + v.(Y + 3)
= Y + v.Y + 3 + 3v
= Z2k + 3 + 3v = Z2k,

and hence A + v.B = A + v.(A + k) = A + v.A + vk = Z2k, as we want.
To prove the claim, we note that the set Y+ v.Y contains the multiples 0, v, 2v, . . . , (k−

4)v. We have
|(k− 4)v| > |3(k− 4)| ≥ 2k

1More specifically, the pair (A,−v.{A) is of type IV in the classification stated in [7, p. 71].
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and, since |v| ≤ k − 3, the elements between multiples of v are also in Y + v.Y, as Y
contains {0, 1, . . . , v− 1}. This means that Y + v.Y = Z2k. The remaining cases we need
to deal with are

v ∈ {±(k− 1),±(k− 2)};
note that ±(k− 2) only occurs when k is odd.

For v = k− 1, we note that A + (k− 1).A contains A and A + (k− 1) = A + k− 1 =
B− 1, so A + (k− 1).A contains all the elements of Z2k with the possible exceptions of
those in B \ (B− 1). However

−1 = (k + 2) + (k− 1)3,

k + 1 = 4 + (k− 1)3,

2 = 6 + (k− 1)4,

proving that all of them belong to A + (k− 1).A. We must have 4, 6 ∈ A since k ≥ 10.
For v = −(k − 1) = k + 1 we have B \ (B + 1) = {2, k, k + 2}, and the analogous

certificates are

2 = (k− 1) + (k + 1)3,

k = (k− 4) + (k + 1)4,

k + 2 = (k− 3) + (k + 1)4;

for v = k− 2 we have B \ (B− 2) = {−1,−2, k, 2} and

−1 = 1 + (k− 2)1,

−2 = 0 + (k− 2)1,

k = 6 + (k− 2)3,

2 = 10 + (k− 2)4;

finally, for v = k + 2 we have B \ (B + 2) = {2, k, k + 1, k + 4} and

2 = k + (k + 2)1,

k = k + (k + 2)0,

k + 1 = (k− 7) + (k + 2)4,

k + 4 = (k− 4) + (k + 2)4.

7. Some final remarks

The results distilled from Mann’s and Kemperman’s theorems take us rather close to
the goal of proving that (1) holds for the set A defined by (2), but ultimately fail. We
can manage to provide an elementary proof of the fact, but we do not know how much
this approach can be generalized, or what this means for the classificatory nature of
Kemperman’s theorem.
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Nevertheless, these facts make evident that there is a significant gap between E(A, v.{A)
and E(A, A). They also point out that, in order to succeed with the use of exponential
sums, a very sharp estimate of (3) is required.
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