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Abstract. Let G be a graph, a subset S ⊆ E(G) is called an edge hub set of G if every
pair of edges e, f ∈ E(G)r S are connected by a path where all internal edges are from
S. The minimum cardinality of an edge hub set is called edge hub number of G, and
is denoted by he(G). If G is a disconnected graph then any edge hub set must contain
all of the edges in all but one of the components, as well as an edge hub set in the
remaining component. In this paper the edge hub number for several classes of graphs
is computed, bounds in terms of other graph parameters are also determined.

1. Introduction

By a graph G = (V, E) we mean a finite and undirected graph without loops and
multiple edges. A graph G with p vertices and q edges is called a (p, q) graph, the
number p is referred to as the order of a graph G and q is referred to as the size of
a graph G. In general, the degree of a vertex v in a graph G denoted by deg(v) is
the number of edges of G incident with v, where ∆(G) = max{deg(u), u ∈ V(G)} [4].
The degree of an edge uv is defined to be deg(u) + deg(v) − 2. Also ∆′(G) denotes
the maximum degree among the edges of G. Given any vertex v ∈ V(G), the graph
obtained from G by removing the vertex v and all of its incident edges is denoted by
G− v. In a tree, a leaf is a vertex of degree one, a leaf edge is an edge incident to a leaf.
We refer to [4] for terminology and notations not defined here.

Introduced by Walsh [15], a hub set in a graph G is a set H of vertices in G such
that any two vertices outside H are connected by a path whose internal vertices lie in
H. The hub number of G, denoted h(G), is the minimum size of a hub set in G. A
connected set in G is a vertex set F such that the subgraph of G induced by F (denoted
G[F]) is connected. The connected hub number of G, denoted hc(G), is the minimum
size of a connected hub set in G. For any set C ⊆ E, the edge-induced subgraph G[C] is
the maximal subgraph of G with edge set C, thus two edges of C are adjacent in G[C]
if and only if they are adjacent in G.

Let G be a graph, let e = (u, v) and f = (u1, v1) be edges in G. A path between e
and f is a path between one end vertex from e and another end vertex from f such that
d(e, f ) = min{d(u, u1), d(u, v1), d(v, u1), d(v, v1)}. Internal edges of a path between two
edges e and f are all the edges of the path except e and f [12]. A subset S ⊆ E(G) is
called an edge hub set of G if every pair of edges e, f ∈ Er S are connected by a path
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where all internal edges are from S. The minimum cardinality of an edge hub set is
called edge hub number of G, and is denoted by he(G) [12]. For more details on the
hub studies we refer to [8, 9, 11, 13, 14]

A set D of vertices in a graph G is called dominating set of G if every vertex in VrD
is adjacent to some vertex in D, the minimum cardinality of a dominating set in G is
called the domination number γ(G) of a graph G [5].

A set B of edges in a graph G is called an edge dominating set of G if every edge in
Er B is adjacent to some edge in B, the minimum cardinality of an edge dominating
set in G is called the edge domination number γ′(G) of a graph G [5]. The chromatic
number χ(G) of a graph G, is the minimum number of colors required to assign to the
vertices of G, in such a way that no two adjacent vertices of G receive the same color.
The edge chromatic number χ′(G), gives the minimum number of colors with which
graph’s edges can be colored, such that no two adjacent edges of G receive the same
color [4].

A double star Sn,m is the tree obtained from two disjoint stars K1,n−1 and K1,m−1, by
connecting their centers [3]. The line graph L(G) of G, has the edges of G as its vertices
which are adjacent in L(G) if and only if the corresponding edges are adjacent in G [4].
The following results will be useful in the proof of our results.

Theorem 1.1. [15] If G is a connected graph, then h(G) 6 p− ∆(G), and the inequality is
sharp.

Theorem 1.2. [2] For any graph G, χ(G) 6 ∆(G) + 1.

Theorem 1.3. [6] If G is a (p, q) graph without isolated vertices, then
q

∆′(G) + 1
6 γ′(G).

2. Edge hub number

It is clear that he(G) is well-defined for any graph G with at least one edge, since
E(G) is an edge hub set.

An edge hub set S ⊆ E(G) is called a connected edge hub set, if the subgraph G[S]
is connected. The minimum cardinality of a connected edge hub set of G, is called a
connected edge hub number and is denoted by hce(G).

Observation 2.1. We have,
(1) for any graph G, he(G) 6 hce(G).
(2) for any graph G, he(G) = h(L(G)).

Proposition 2.1.

(1) For any path Pp with p > 3, he(Pp) = p− 3.
(2) For any cycle Cp, p > 4, he(Cp) = p− 3.
(3) For the star K1,p−1, he(K1,p−1) = 0.
(4) For the double star Sn,m, he(Sn,m) = 1.
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(5) For the wheel graph W1,p−1 with p > 5,

he(W1,p−1) =

{ p
2 , if p is even;
p−1

2 , if p is odd.

It is clear from the Proposition 2.1, that the relation between hub number and edge
hub number is not the same for every graph. It is easy to see that edge hub number
is less than the hub number for paths, he(Pp) = p − 3 < h(Pp) = p − 2. But for
wheels edge hub number is greater than the hub number. On the other hand, the two
parameters are equal for cycles, for the cycle with p vertices, he(Cp) = h(Cp) = p− 3.

Let G1 and G2 be two graphs, now we think, is the edge hub number a suitable mea-
sure of accessibility? In other words, does the edge hub number discriminate between
G1 and G2? There are many examples of graphs which propose that he(G) is a suitable
measure of accessibility which is able to discriminate between graphs. For example,
consider the graphs G1, G2 and G3 in Figure 1.
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Figure 1: G1, G2, and G3.

We have h(G1) = h(G2) = h(G3) = 2, the hub number does not discriminate between
graphs G1, G2 and G3. But he(G1) = 2, he(G2) = 3 and he(G3) = 1, this means
he(G1) 6= he(G2) 6= he(G3), so the edge hub number discriminates between graphs G1,
G2 and G3.

Observation 2.2. For any graph G, let G′ be a subgraph of G. Then he(G′) need not be less
than or equal to he(G), for example, for the graphs G, G′ shown in Figure 2, we have he(G) = 1,
while he(G′) = 2.
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Figure 2: G, G′.

Theorem 2.1. For any connected graph G, he(G− v) 6 he(G).

Proof. Let He be a minimum edge hub set of a graph G. Based on the cardinality of a
minimum edge hub set, we discuss the following cases:
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Case 1: |He| = 0. This means that all edges in G are adjacent. So he(G) = 0, and if we
remove any vertex v from G, it follows that G− v is either a connected graph of order
p− 1 with all edges adjacent, or G − v is totally disconnected graph, and in all cases
he(G− v) = 0.
Case 2: |He| = 1. The following cases are considered. Suppose that e is any edge of G
such that e ∈ He.
Subcase 2.1: v is a vertex incident with e. Removal of v from G, results in a graph
G − v such that either all its edges are adjacent, or disconnected graph consisting of
two parts, G1 and G2 such that G1 is totaly disconnected and G2 is a graph with all
edges adjacent. Thus he(G− v) = 0.
Subcase 2.2: v is a vertex not incident with e. If we remove it from G, the resulting
graph G− v is either a graph in which all edges are adjacent, so he(G− v) = 0, or G− v
is a graph of order p− 1 with he(G− v) = 1. Then he(G− v) 6 he(G).
Case 3: |He| > 2. Let e ∈ He, if v is a vertex not incident with e, and we delete v from
G, then Hi is still an edge hub set of G. Thus, he(G− v) 6 he(G). If v is an end vertex
of e, removal of v from G, produces a graph G− v such that he(G− v) < he(G).
Then, from Case 1, Case 2 and Case 3, we get the result. �

Theorem 2.2. Let G be a connected graph and v ∈ V(G), such that he(G− v) < he(G). If S1
is a minimum edge hub set of G− v and e is an edge of G incident with v, then S1 ∪ {e} is a
minimum edge hub set of G.

Proof. Suppose that G is connected graph, let f , g be any two edges of G, we discuss
the following cases:
Case 1: f , g ∈ E(G− v). Since S1 is a minimum edge hub set of G− v, then there is a
path between f and g with all internal edges from S1. This implies that in G there is an
S1 ∪ {e} path between f and g. So, S1 ∪ {e} is a minimum edge hub set of G.
Case 2: v is an end vertex of f and g. Then in G the edge e incident with v is adjacent
to f and g. Note that, he(G− v) < he(G) so e must be in any minimum edge hub set of
G, hence (S1 ∪ {e})–path between f and g is there in G.
Case 3: f ∈ E(G− v), and v is an end vertex of g, where g 6= e. Clearly g is adjacent
to e. Since he(G − v) < he(G), the edge e incident with v must be in any minimum
edge hub set of G. Now S1 is a minimum edge hub set of G − v, and e is adjacent to
g and to one edge of S1. Therefore, there is an S1 ∪ {e} path between f and g, so that
S = S1 ∪ {e} is a minimum edge hub set of G. �

Proposition 2.2. For any connected graph G, he(G) = 0 if and only if G ∼= K1,p−1, or G ∼= C3.

Proof. Suppose that he(G) = 0, from definition of edge hub number, all edges in G are
adjacent, hence G ∼= K1,p−1 or C3. The converse is obvious. �

Theorem 2.3. For any graph G, he(G) 6 q− ∆′(G), and the inequality is sharp for any path
Pp, p > 4.

Proof. Let G be a graph of size q, clearly that ∆′(G) = ∆(L(G)), also he(G) = h(L(G)),
then by Theorem 1.1, h(L(G)) 6 |V(L(G))| − ∆(L(G)). Since |V(L(G))| = q, the result
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is true. For any path Pp, p > 4, by Proposition 2.1, he(Pp) = p− 3. Note that, ∆′(Pp) = 2
and q = p− 1. Hence the assertion follows. �

Proposition 2.3. For any connected graph G, he(G) = 1 if and only if G ∼= Sn,m, C4, K4,
K4− e where e ∈ E(K4), K1,p−1 + e where e is an edge, p > 3, and the graphs shown in Figure
3.
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Figure 3.

Theorem 2.4. Let G be any graph. Then χ′(G) + he(G) 6 q + 1.

Proof. Let G be any graph, by Theorem 1.2, it is clear that χ(L(G)) 6 ∆(L(G)) + 1, then
χ′(G) 6 ∆′(G) + 1. By Theorem 2.3, it follows that χ′(G) + he(G) 6 q + 1. �

Theorem 2.5. For any graph G, γ′(G) 6 he(G) + 1.

Proof. Let S be an edge hub set of G. Suppose that A is the set of edges which are not
adjacent to any edge in S (nor in S themselves). The only S–paths between edges in
A must therefore be trivial. Since we know that there are S–paths between all pairs of
edges in Er S, this implies that G[A] is a graph with all edges are adjacent. Therefore,
S ∪ A must be an edge dominating set for any edge {a} ∈ A. �

Theorem 2.6. For any (p, q) graph G, q
∆′(G)+1 − 1 6 he(G).

Proof. By Theorem 1.3 and Theorem 2.5, we get the result. �

Proposition 2.4. For any graph G with p > 3, he(G) 6 p− 3.

Proof. Suppose that T is a spanning tree of G, and if u is pendant vertex of T, then the
p− 3 edges of T other than those incident with u form an edge hub set of G, hence the
result. �

Corollary 2.1.

For any graph G with p > 3, we have,
(1) 0 6 he(G) + he(G) 6 2p− 6.
(2) 0 6 he(G) · he(G) 6 p2 − 6p + 9, and equality in upper bound holds if G is

isomorphic to C5, C6, C7 and lower bound for G ∼= K1,3.

Proposition 2.5. For any connected graph G, he(G) 6 3q− 2p, the equality is attained if G
is a path Pp, p > 3.

Proof. By Proposition 2.4, and since p− 1 6 q we have he(G) 6 p− 3 = 3(p− 1)− 2p 6
3q− 2p. �
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Theorem 2.7. For any nonempty edge hub set S of a connected graph G = (V, E), |Er S| 6
1 + ∑

s∈S
dege(s).

Proof. Suppose that S is an edge hub set of a connected graph G = (V, E). Since
γ′(G) 6 he(G) + 1 for any e ∈ E(G)r S is adjacent to at least one edge of S in G.
Therefore, each edge in (Er S)r {e} contributes at least one to the sum of the degrees
of the edges of S. Hence

|Er S| 6 1 + ∑
s∈S

dege(s).

�

Theorem 2.8. For any tree T with p > 3 vertices and l leaves,

he(T) = hce(T) = p− l − 1.

Proof. In a tree, if the edge e is incident with a leaf, we say that e is a leaf edge. Let
M be a set of all non-leaf edges in T, since the unique path between any two leaf
edges never pass through another leaf edge, then M forms an edge hub set of T and
|M| = p− (l + 1). Note that any proper subset of M cannot be an edge hub set, since
every edge is a bridge, and therefore separates a pair of leaf edges. Now, we must
show that we can find a minimum edge hub set which is not containing any leaf edge.

Suppose that F is a minimum edge hub set which contains a leaf edge g. Since the
set of non-leaf edges in T form an edge hub set, if F is minimum it must exclude at
least one edge of degree 2 or greater, choose such an edge f , so that the path between
g and f in T has all intermediate edges in F. Then the set F′ = (Fr {g}) + { f } is also
an edge hub set, since any path through F between f and any other edge can now be
extended to a path through F′ between g and that edge.

This means, we removed a leaf edge and added a non leaf edge. We can repeat this
process to find a minimum edge hub set containing only non leaf edges, and the set M
is the only such set. Since M is the set of all non-leaf edges in T, M must be minimum
and he(G) = p− l − 1. Also clearly T[M] is connected. Therefore, hce = p− l − 1. �

Theorem 2.9. Let G = (p, q) be a connected non star graph. Then he(G) > p− q, and the
inequality is sharp for C3 and double star.

Proof. Let G be a connected non star graph. The following cases are considered.
Case 1: p 6 q. Since he(G) > 0 the result is trivial.
Case 2: p > q. Clearly G is a tree because G is connected, and since G is not star then
there are at least two non adjacent edges. This means that he(G) > 1. Since for any tree
p− q = 1, then he(G) > p− q. �

Theorem 2.10. Let G be a graph, and u, v are non-adjacent vertices of G. Then he(G + uv) >
he(G), if and only if u, v /∈ V(G[S]) for every minimum edge hub set S of G.

Proof. Assume that he(G + uv) > he(G). Let S be any minimum edge hub set of G, then
S cannot be an edge hub set of (G + uv). Therefore, u cannot be an end vertex of any
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edge of S and similarly v cannot be an end vertex of any edge in S. Then u, v /∈ V(G[S]).
Conversely, let u, v /∈ V(G[S]). The following cases are considered.
Case 1: he(G + uv) = he(G). Let S be any minimum edge hub set of (G + uv) , since
u, v /∈ V(G[S]) then uv /∈ S. Therefore, any f ∈ S then f ∈ G. Thus S is a minimum
edge hub set of G but S is also minimum edge hub set of (G + uv), this means that
there is an edge e in S such that either u is an end vertex of e or v is an end vertex
of e. This implies that u ∈ V(G[S]) or v ∈ V(G[S]), which is a contradiction. Then
he(G + uv) 6= he(G).
Case 2: he(G + uv) < he(G). Assume that S is any minimum edge hub set of (G + uv),
then the edge uv ∈ S. Let a be any vertex adjacent to u and b be any vertex adjacent
to v. Now S′ = (S− uv) + (ua, vb). Then clearly S′ is a minimum edge hub set of G,
thus u ∈ V(G[S]) and v ∈ V(G[S]). This is a contradiction. Then he(G + uv) ≮ he(G).
Therefore, he(G + uv) > he(G). �
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