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Abstract. This paper gives some new results on mutually orthogonal graph squares
(MOGS). These generalize mutually orthogonal Latin squares in an interesting way. As
such, the topic is quite nice and should have broad appeal. MOGS have strong con-
nections to core fields of finite algebra, cryptography, finite geometry, and design of
experiments. We are concerned with the Kronecker product of mutually orthogonal
graph squares to get new results of the mutually orthogonal certain graphs squares.
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1. Introduction

1.1. Nomenclature.
Ck Cycle of length k
Pk Path on k-vertices
mG m disjoint copies of G
G ∪ H Disjoint union of G and H
Km Complete graph on m vertices
Pk(G) G-path obtained by replacing each edge in Pk by the graph G
Km,n Complete bipartite graph with independent sets of sizes m and n
E(G) The edge set of the graph G
L(x, y) Entry in row x and column y of the square matrix L.

1.2. Latin squares. A Latin square of order n is an n × n array over a set of n
symbols such that every symbol appears exactly once in each row and exactly once in
each column. Latin squares encode features of algebraic structures. When an algebraic
structure passes certain “Latin square tests”, it is a candidate for use in the construction
of cryptographic systems. Latin squares have been studied by mathematicians since
ancient times. The origin of the Latin square is not known for certain. The name “Latin
square” was inspired by some work conducted by Euler in the late 18th century, who
used Latin characters as the symbols [1, 2, 3].

In this paper, the elements of Zp ×Z2 are used for labeling the vertices of Kp,p.
The product (v, j) ∈ Zp × Z2 will be written as vj, which refers to the corresponding
vertex and the edge {cγ, dδ} ∈ E(Kp,p) if and only if γ 6= δ for all c, d ∈ Zp and
γ, δ ∈ Z2. Let us introduce the basic definitions for the graph squares (see also [4]).
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Definition 1. Suppose G is a subgraph of Kp,p. A square matrix L of order p is called a G-
square if every element in Zp occurs exactly p times and the graphs Gi where i ∈ Zp with
E(Gi ) = {(x, y) : L(x, y) = i} are isomorphic to G. The index set for the rows and columns
of L is Zp.

Two graph squares of order p are orthogonal if their superimposition yields all p2

possible ordered pairs (i, j), 0 ≤ i, j ≤ p− 1. This definition is naturally extended to
sets of k > 2 graph squares, which are called mutually orthogonal if they are pairwise
orthogonal.

Now, we show the relation between the edge decomposition of complete bipartite
graphs and the graph squares. Call the collection G ={G0, G1, . . . , Gp−1} an edge de-
composition of Kp,p by G if Gi

∼= G, where every edge of Kp,p is contained in exactly
one element (called page) of G. For the collection G, we have

∣∣E(Gi) ∩ E(Gj)
∣∣ = 0; 0 ≤

i < j ≤ p− 1 and
p−1
∪

i=0
E(Gi) = E(Kp,p). It is clear that the G-square represents the edge

decomposition G.
The two edge decompositions L = {L0, L1, . . . , Lp−1} and D = {D0, D1, . . . , Dp−1} of

Kp,p are orthogonal when |E(Li)| =
∣∣E(Dj)

∣∣ = p and
∣∣E(Li) ∩ E(Dj)

∣∣ = 1 for i, j ∈
Zp. If Di and Dj; 0 ≤ i < j ≤ p − 1 are orthogonal edge decompositions of Kp,p by
G, then we get a set of l mutually orthogonal G-squares (MOGS). Let us denote by
N(p, G) the maximal number of mutually orthogonal G-squares in the largest possible
set of mutually orthogonal G-squares of order p. Although Latin squares have many
useful properties, for some statistical applications these structures are too restrictive.
The more general concepts of graph squares and MOGS offer more flexibility. For
several applications on MOLS, see [5].

Example 1. Three mutually orthogonal P4 ∪ 2P2-squares are defined as follows,

L0 =


0 0 2 4 1
2 1 1 3 0
1 3 2 2 4
0 2 4 3 3
4 1 3 0 4

 , L1 =


0 2 1 0 4
0 1 3 2 1
2 1 2 4 3
4 3 2 3 0
1 0 4 3 4

 , L2 =


0 1 4 2 0
1 1 2 0 3
4 2 2 3 1
2 0 3 3 4
0 3 1 4 4

 .

If the λ-decompositions of Kp,p by G are mutually orthogonal, then the union of these
decompositions is called λ mutually orthogonal covers of Kp,p by G. If λ = 2, then we
have two orthogonal decompositions of Kp,p by G called orthogonal double cover of
Kp,p by G, see [4].

A decomposition of Kp,p by pK2 is represented by a Latin square of order p. We can
say that the two decompositions L and D of Kp,p by pK2 are orthogonal if and only if
the corresponding Latin squares of order p are orthogonal; and thus N(p, pK2) is the
maximum number of mutually orthogonal Latin squares (MOLS) of order p. One of
the most difficult problems in combinatorial designs is the computation of N(p, pK2).
Several papers have been devoted to MOLS problem, see [6, 7, 8]. MOGS have strong
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connections to core fields of finite algebra, cryptography, finite geometry, and design
of experiments. Since N(p, G) is considered a natural extension of N(p, pK2), the
computation of N(p, G) for general graphs is interesting. For p ≥ 2, the relation
N(p, G) ≤ p has been proved in [4] by El-Shanawany. Also, he proved the following,
(i) N(p, K1,p) = 2, (ii) N(2, P3) = 2, N(3, P4) = 3, N(5, P6) = 5 and N(6, P7) =

6, (iii) Suppose p is a prime number, then N(p, K1,1 ∪ p−1
2 P3) = p, (iv) Suppose p is

a prime number, then N(p, (p− 2)K1,1 ∪ P3) ≥ p− 1, (v) N(9, K1,3 ∪ 3K1,2) ≥ 3, (vi)
N(7, 3K1,1 ∪ 2K1,2) ≥ 4. Also, he conjectured the following. If p is a prime number,
then N(p, Pp+1) = p. This conjecture has been proved by two methods, see [9, 10]. The
above results on MOGS of graphs having lower degrees motivate us to consider MOGS
of graphs having higher degrees.

2. Main Results

MacNeish [11] has proved that if N(m, mK2) = k1 and N(n, nK2) = k2 and
min{k1, k2} = k, then there are k MOLS of order mn. El-Shanawany [12] has proved
that if N(m, mK2) = k and N(n, G) = k, then N(mn, mG) ≥ k. Hereafter, if we have
N(m, G) = k1 and N(n, H) = k2 and min{k1, k2} = k, then we obtain N(mn, T) = k
by Proposition 1, where T ∼=G × H. Hence, Proposition 1 is a generalization to the
theorems of MacNeish and El-Shanawany.

Proposition 1. ([13]) If there are k MOGS of order m of the graph G and k MOGS of order n
of the graph H, then there are k MOGS of order mn of the graph T ∼=G× H.

All the following results based on (i) The Kronecker product in Proposition 1 and (ii)
The existence of MOGS for some classes of graphs that can be used as ingredients for
Kronecker product to obtain new MOGS. These are as follows. Consider addition
modulo n for the squares of order n and see [4] for the ingredients (I I), (I I I), (V), and
(VI).
(I) The n mutually orthogonal Pn+1-squares are

Ms = (as
ij), as

ij = α, i = α + sβ − β2, j = α + (s + 1)β − β2, α, β, s ∈ Zn where n is a
prime > 2, see [10].
(I I) The n mutually orthogonal (K1,1 ∪ n−1

2 K1,2)-squares are
Ms = (as

ij), as
ij = α, i = β, j = α + sβ + β2, n is a prime > 2 and s, α, β ∈ Zn.

(I I I) The (n− 1) mutually orthogonal ((n− 2)K1,1 ∪ K1,2)-squares are

Ms = (as
ij), as

ij = (s + 1)i + j− ci, s ∈ Zn−1, ci =

{
1 if i = 1,
0 otherwise.

(IV) The 3 mutually orthogonal C4-squares are Ms = (as
ij), s ∈ Z3, a0

ij = 0, i, j ∈
Z2, a0

ij = 1, i ∈ Z2, j ∈ {2, 3}, a0
ij = 2, i ∈ {2, 3}, j ∈ Z2, a0

ij = 3, i, j ∈ {2, 3}, a1
ij = 0, i, j ∈

{0, 2}, a1
ij = 1, i ∈ {0, 2}, j ∈ {1, 3}, a1

ij = 2, i ∈ {1, 3}, j ∈ {0, 2}, a1
ij = 3, i, j ∈ {1, 3}, a2

ij =

0, i, j ∈ {0, 3}, a2
ij = 1, i ∈ {1, 2}, a2

ij = 2, i ∈ {0, 3}, j ∈ {1, 2}, a2
ij = 3, i ∈ {1, 2}, j ∈ {0, 3},

see [12].
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(V) The 3 mutually orthogonal K1,3 ∪ 3K1,2-squares are
Ms = (as

ij), s ∈ Z3, as
ij = β, i = α, j = α2 + sα + β, α, β ∈ Z9.

(VI) The 4 mutually orthogonal 3K1,1 ∪ 2K1,2-squares are
Ms = (as

ij), s ∈ Z4, i, j ∈ Z7, suppose β ∈ Z7, then, as
ij = j, i = 0, j ∈ Z7, as

ij = β, i =
4, j = 1 + β + 4s,
as

ij = β, i = 1, j = 2 + β + s, as
ij = β, i = 2, j = 4 + β + 2s, as

ij = β, i = 5, j = 4 + β +

5s, as
ij = β, i = 3, j = 6 + β + 3s, as

ij = β, i = 6, j = 6 + β + 6s.
Now, we retrieve the proof of the ingredient (I I I) by another technique in the following
theorem.

Theorem 2. Suppose n is a prime > 2, then N(n, ((n− 2)K1,1 ∪ K1,2)) ≥ n− 1.

Proof. Suppose Lk(i, j) = (k + 1)i + j, k ∈ Zn−1 are (n− 1) mutually orthogonal Latin
squares of order n. Now, we shall construct (n− 1) mutually orthogonal ((n− 2)K1,1 ∪
K1,2)-squares of order n as follows.
Mk(i, j) = Lk(i, j)− ci for k ∈ Zn−1 and

ci =

{
1 if i = 1,
0 otherwise.

It is easy to check that the squares (Mp, Mq) are orthogonal under the condition
(Mp(i, j), Mq(i, j)) = ((p + 1)i + j− ci, (q + 1)i + j− ci), i, j ∈ Zn; 0 ≤ p < q ≤ n− 1.
Hence, the squares Mk, k ∈ Zn−1 are mutually orthogonal. Now, we prove that the
page obtained from the entries in M0 equal to 0 is isomorphic to (n− 2)K1,1 ∪ K1,2. For
the other pages in the squares Mk, k ∈ Zn−1, a similar argument can be applied. In
M0, every row contains exactly one 0-entry (n vertices x0 have degree one). Further-
more, there is exactly one column with two 0-entry (one vertex x1 has degree two),
(n − 2) columns contain one 0-entry ((n − 2) vertices x1 have degree one), and one
column contains no 0-entry (one vertex x1 has degree zero).

In what follows, we present some results as direct applications to Proposition 1. For
all the following results if we construct k mutually orthogonal T-squares, then we
prove that the page obtained from the entries in L0 equal to 0 is isomorphic to T. Also,
we can easily apply a similar argument to the other pages in Ls, s ∈ Zk.

Theorem 3. Suppose m, n are primes > 2, then N(mn, T
m,n
1 ) ≥ min{m, n}.

Proof. We have m mutually orthogonal Pm+1-squares (ingredient (I)) and n mutually
orthogonal (K1,1 ∪ n−1

2 K1,2)-squares (ingredient (I I)). If min{m, n} = k, then we con-
struct k mutually orthogonal T

m,n
1 -squares Ls = (cs

ij), s ∈ Zk, and i, j ∈ Zmn (Proposi-
tion 1). We prove that the page obtained from the entries in L0 equal to 0 is isomorphic
to T

m,n
1 . Exactly m−1

2 rows (columns) contain two 0-entry ( m−1
2 vertices x0 (x1) have

degree two), one row (column) contains one 0-entry (one vertex x0 (x1) has degree
one), (n−1)(m−1)

4 columns contain four 0-entry ( (n−1)(m−1)
4 vertices x1 have degree four),
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(n−1)(m−1)
2 rows contain two 0-entry ( (n−1)(m−1)

2 vertices x0 have degree two), n−1
2 columns

contain two 0-entry (n−1
2 vertices x1 have degree two), (n− 1) rows contain one 0-entry

((n− 1) vertices x0 have degree one), (m−1)n
2 rows contain no 0-entry ( (m−1)n

2 vertices
x0 have degree zero), and 3mn−(m+n+1)

4 columns contain no 0-entry (3mn−(m+n+1)
4 vertices

x1 have degree zero).

Example 2. To illustrate Theorem 3, we have 3 mutually orthogonal P4-squares Ms, s ∈ Z3
and 3 mutually orthogonal (K2 ∪ K1,2)-squares Ns, s ∈ Z3. Hence, we get 3 mutually orthog-
onal T

3,3
1 -squares Ls, s ∈ Z3 which are represented by the graphs in Figures 2.1, 2.2, and 2.3

respectively, where Gs
i
∼= T

3,3
1 , i ∈ Z9 is the graph corresponding to the entry i in the square

Ls, s ∈ Z3.

M0 =

0 0 1
2 1 1
2 0 2

 , M1 =

0 2 2
0 1 0
1 1 2

 , M2 =

0 1 0
1 1 2
0 2 2

 ,

N0 =

0 1 2
2 0 1
2 0 1

 , N1 =

0 1 2
1 2 0
0 1 2

 , N2 =

0 1 2
0 1 2
1 2 0

 ,

L0 =



0 1 2 0 1 2 3 4 5
2 0 1 2 0 1 5 3 4
2 0 1 2 0 1 5 3 4
6 7 8 3 4 5 3 4 5
8 6 7 5 3 4 5 3 4
8 6 7 5 3 4 5 3 4
6 7 8 0 1 2 6 7 8
8 6 7 2 0 1 8 6 7
8 6 7 2 0 1 8 6 7


, L1 =



0 1 2 6 7 8 6 7 8
1 2 0 7 8 6 7 8 6
0 1 2 6 7 8 6 7 8
0 1 2 3 4 5 0 1 2
1 2 0 4 5 3 1 2 0
0 1 2 3 4 5 0 1 2
3 4 5 3 4 5 6 7 8
4 5 3 4 5 3 7 8 6
3 4 5 3 4 5 6 7 8


,

L2 =



0 1 2 3 4 5 0 1 2
0 1 2 3 4 5 0 1 2
1 2 0 4 5 3 1 2 0
3 4 5 3 4 5 6 7 8
3 4 5 3 4 5 6 7 8
4 5 3 4 5 3 7 8 6
0 1 2 6 7 8 6 7 8
0 1 2 6 7 8 6 7 8
1 2 0 7 8 6 7 8 6


.
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Figure 2.1. First edge decomposition of K9,9 by T
3,3
1 .

Theorem 4. Suppose m, n are primes > 2, then N(mn, T
m,n
2 ) ≥ min{m, n− 1}.

Proof. We have m mutually orthogonal Pm+1-squares (ingredient (I)) and (n− 1) mu-
tually orthogonal ((n− 2)K1,1 ∪ K1,2)-squares (ingredient (I I I)). If min{m, n− 1} = k,
then we construct k mutually orthogonal T

m,n
2 -squares Ls = (cs

ij), s ∈ Zk, and i, j ∈
Zmn (Proposition 1). We prove that the page obtained from the entries in L0 equal
to 0 is isomorphic to T

m,n
2 . Exactly (n−2)(m−1)

2 rows (columns) contain two 0-entry
( (n−2)(m−1)

2 vertices x0 (x1) have degree two), (n − 2) rows (columns) contain one 0-
entry ((n− 2) vertices x0 (x1) have degree one), m−1

2 columns contain four 0-entry ( m−1
2

vertices x1 have degree four), (m− 1) rows contain two 0-entry ((m− 1) vertices x0 have
degree two), one column contain two 0-entry (one vertex x1 have degree two), two rows
contain one 0-entry (two vertices x0 have degree one), (m−1)n

2 rows contain no 0-entry
( (m−1)n

2 vertices x0 have degree zero), and also there are n(m−1)+m+1
2 columns contain

no 0-entry (n(m−1)+m+1
2 vertices x1 have degree zero).
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Figure 2.2. Second edge decomposition of K9,9 by T
3,3
1 .

Example 3. To illustrate Theorem 4, consider 3 mutually orthogonal P4-squares Ms, s ∈ Z3
and 3 mutually orthogonal (3K1,1 ∪ K1,2)-squares Ns, s ∈ Z3. Hence, we get 3 mutually or-
thogonal T

3,5
2 -squares Ls, s ∈ Z3.

M0 =

0 0 1
2 1 1
2 0 2

 , M1 =

0 2 2
0 1 0
1 1 2

 , M2 =

0 1 0
1 1 2
0 2 2

 ,

N0 =


0 1 2 3 4
0 1 2 3 4
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

 , N1 =


0 1 2 3 4
1 2 3 4 0
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2

 , N2 =


0 1 2 3 4
2 3 4 0 1
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

 ,
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L0 =



0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
2 3 4 0 1 2 3 4 0 1 7 8 9 5 6
3 4 0 1 2 3 4 0 1 2 8 9 5 6 7
4 0 1 2 3 4 0 1 2 3 9 5 6 7 8
10 11 12 13 14 5 6 7 8 9 5 6 7 8 9
10 11 12 13 14 5 6 7 8 9 5 6 7 8 9
12 13 14 10 11 7 8 9 5 6 7 8 9 5 6
13 14 10 11 12 8 9 5 6 7 8 9 5 6 7
14 10 11 12 13 9 5 6 7 8 9 5 6 7 8
10 11 12 13 14 0 1 2 3 4 10 11 12 13 14
10 11 12 13 14 0 1 2 3 4 10 11 12 13 14
12 13 14 10 11 2 3 4 0 1 12 13 14 10 11
13 14 10 11 12 3 4 0 1 2 13 14 10 11 12
14 10 11 12 13 4 0 1 2 3 14 10 11 12 13



,

L1 =



0 1 2 3 4 10 11 12 13 14 10 11 12 13 14
1 2 3 4 0 11 12 13 14 10 11 12 13 14 10
4 0 1 2 3 14 10 11 12 13 14 10 11 12 13
1 2 3 4 0 11 12 13 14 10 11 12 13 14 10
3 4 0 1 2 13 14 10 11 12 13 14 10 11 12
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
1 2 3 4 0 6 7 8 9 5 1 2 3 4 0
4 0 1 2 3 9 5 6 7 8 4 0 1 2 3
1 2 3 4 0 6 7 8 9 5 1 2 3 4 0
3 4 0 1 2 8 9 5 6 7 3 4 0 1 2
5 6 7 8 9 5 6 7 8 9 10 11 12 13 14
6 7 8 9 5 6 7 8 9 5 11 12 13 14 10
9 5 6 7 8 9 5 6 7 8 14 10 11 12 13
6 7 8 9 5 6 7 8 9 5 11 12 13 14 10
8 9 5 6 7 8 9 5 6 7 13 14 10 11 12



,
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L2 =



0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
2 3 4 0 1 7 8 9 5 6 2 3 4 0 1
1 2 3 4 0 6 7 8 9 5 1 2 3 4 0
4 0 1 2 3 9 5 6 7 8 4 0 1 2 3
2 3 4 0 1 7 8 9 5 6 2 3 4 0 1
5 6 7 8 9 5 6 7 8 9 10 11 12 13 14
7 8 9 5 6 7 8 9 5 6 12 13 14 10 11
6 7 8 9 5 6 7 8 9 5 11 12 13 14 10
9 5 6 7 8 9 5 6 7 8 14 10 11 12 13
7 8 9 5 6 7 8 9 5 6 12 13 14 10 11
0 1 2 3 4 10 11 12 13 14 10 11 12 13 14
2 3 4 0 1 12 13 14 10 11 12 13 14 10 11
1 2 3 4 0 11 12 13 14 10 11 12 13 14 10
4 0 1 2 3 14 10 11 12 13 14 10 11 12 13
2 3 4 0 1 12 13 14 10 11 12 13 14 10 11



.

Theorem 5. Suppose m is a prime > 2, then N(4m, Tm
3 ) ≥ 3.

Proof. We have m mutually orthogonal Pm+1-squares (ingredient (I)) and 3 mutually
orthogonal C4-squares (ingredient (IV)). Then we construct 3 mutually orthogonal Tm

3 -
squares Ls = (cs

ij), s ∈ Z3, and i, j ∈ Z4m (Proposition 1). We prove that the page
obtained from the entries in L0 equal to 0 is isomorphic to Tm

3 . Exactly (m− 1) rows
(columns) contain four 0-entry ((m − 1) vertices x0 (x1) have degree four), two rows
(columns) contain two 0-entry (two vertices x0 (x1) have degree two), and (3m− 1) rows
(columns) contain no 0-entry ((3m− 1) vertices x0 (x1) have degree zero).

Theorem 6. Suppose n is a prime > 3, then N(4n, Tn
4) ≥ 3.

Proof. We have (n − 1) mutually orthogonal ((n − 2)K1,1 ∪ K1,2)-squares (ingredient
(I I I)) and 3 mutually orthogonal C4-squares (ingredient (IV)). Then we construct 3
mutually orthogonal Tn

4 -squares Ls = (cs
ij), s ∈ Z3, and i, j ∈ Z4n (Proposition 1). We

prove that the page obtained from the entries in the square L0 equal to 0 is isomor-
phic to Tn

4 . Exactly (2n − 4) rows (columns) contain two 0-entry ((2n − 4) vertices
x0 (x1) have degree two), four rows contain two 0-entry (four vertices x0 have degree
two), two columns contain four 0-entry (two vertices x1 have degree four), 2n rows
contain no 0-entry (2n vertices x0 have degree zero), and (2n + 2) columns contain no
0-entry ((2n + 2) vertices x1 have degree zero).

Theorem 7. Suppose n is a prime > 2, then N(4n, K2,2 ∪ n−1
2 K2,4) ≥ 3.

Proof. We have n mutually orthogonal (K1,1 ∪ n−1
2 K1,2)-squares (ingredient (I I)) and

3 mutually orthogonal C4-squares (ingredient (IV)). Then we construct 3 mutually
orthogonal K2,2 ∪ n−1

2 K2,4-squares Ls = (cs
ij), s ∈ Z3, and i, j ∈ Z4n (Proposition 1).
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We prove that the page obtained from the entries in L0 equal to 0 is isomorphic to
K2,2∪ n−1

2 K2,4. Exactly 2n rows contain two 0-entry (2n vertices x0 have degree two), two
columns contain two 0-entry (two vertices x1 have degree two), (n− 1) columns contain
four 0-entry ((n − 1) vertices x1 have degree four), 2n rows contain no 0-entry (2n
vertices x0 have degree zero), and (3n− 1) columns contain no 0-entry ((3n− 1) vertices
x1 have degree zero).

Theorem 8. Suppose m is a prime > 2, then N(9m, Tm
5 ) ≥ 3.

Proof. We have m mutually orthogonal Pm+1-squares (ingredient (I)) and 3 mutually
orthogonal (K1,3 ∪ 3K1,2)-squares (ingredient (V)). Then we construct 3 mutually or-
thogonal Tm

5 -squares Ls = (cs
ij), s ∈ Z3, and i, j ∈ Z9m (Proposition 1). We prove

that the page obtained from the entries in L0 equal to 0 is isomorphic to Tm
5 . Exactly

3(m−1)
2 rows contain two 0-entry (3(m−1)

2 vertices x0 have degree two), three rows con-
tain one 0-entry (three vertices x0 have degree one), m−1

2 columns contain six 0-entry
( m−1

2 vertices x1 have degree six), one column contains three 0-entry (one vertex x1 has
degree three), 3(m− 1) rows contain two 0-entry (3(m− 1) vertices x0 have degree two),
six rows contain one 0-entry (six vertices x0 have degree one), 3(m−1)

2 columns contain
four 0-entry (3(m−1)

2 vertices x1 have degree four), three columns contain two 0-entry
(three vertices x1 have degree two), 9(m−1)

2 rows contain no 0-entry (9(m−1)
2 vertices

x0 have degree zero), and (7m − 2) columns contain no 0-entry ((7m − 2) vertices
x1 have degree zero).

Theorem 9. Suppose m is a prime > 3, then N(7m, Tm
6 ) ≥ 4.

Proof. We have m mutually orthogonal Pm+1-squares (ingredient (I)) and 4 mutually
orthogonal (3K1,1 ∪ 2K1,2)-squares (ingredient (VI)). Then we construct 4 mutually or-
thogonal Tm

6 -squares Ls = (cs
ij), s ∈ Z4, and i, j ∈ Z7m (Proposition 1). We prove

that the page obtained from the entries in L0 equal to 0 is isomorphic to Tm
6 . Ex-

actly 7(m−1)
2 rows contain two 0-entry (7(m−1)

2 vertices x0 have degree two), seven
rows contain one 0-entry (seven vertices x0 have degree one), (m− 1) columns contain
four 0-entry ((m− 1) vertices x1 have degree four), 3m+1

2 columns contain two 0-entry
( 3m+1

2 vertices x1 have degree two), three columns contain one 0-entry (three vertices
x1 have degree one), 7(m−1)

2 rows contain no 0-entry (7(m−1)
2 vertices x0 have degree

zero), and 9m−5
2 columns contain no 0-entry (9m−5

2 vertices x1 have degree zero).

Example 4. To illustrate Theorem 5, we have 3 mutually orthogonal P4-squares Ms, s ∈
Z3 and 3 mutually orthogonal C4-squares Ns, s ∈ Z3. Hence, we get 3 mutually orthogo-
nal T3

3-squares Ls, s ∈ Z3 which are represented by the graphs in Figures 2.4, 2.5, and 2.6,
respectively, where Gs

i
∼= T3

3, i ∈ Z12 is the graph corresponding to the entry i in the square
Ls, s ∈ Z3.
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M0 =

0 0 1
2 1 1
2 0 2

 , M1 =

0 2 2
0 1 0
1 1 2

 , M2 =

0 1 0
1 1 2
0 2 2

 ,

N0 =


0 0 1 1
0 0 1 1
2 2 3 3
2 2 3 3

 , N1 =


0 1 0 1
2 3 2 3
0 1 0 1
2 3 2 3

 , N2 =


0 2 2 0
3 1 1 3
3 1 1 3
0 2 2 0

 ,

L0 =



0 0 1 1 0 0 1 1 4 4 5 5
0 0 1 1 0 0 1 1 4 4 5 5
2 2 3 3 2 2 3 3 6 6 7 7
2 2 3 3 2 2 3 3 6 6 7 7
8 8 9 9 4 4 5 5 4 4 5 5
8 8 9 9 4 4 5 5 4 4 5 5

10 10 11 11 6 6 7 7 6 6 7 7
10 10 11 11 6 6 7 7 6 6 7 7
8 8 9 9 0 0 1 1 8 8 9 9
8 8 9 9 0 0 1 1 8 8 9 9

10 10 11 11 2 2 3 3 10 10 11 11
10 10 11 11 2 2 3 3 10 10 11 11



,

L1 =



0 1 0 1 8 9 8 9 8 9 8 9
2 3 2 3 10 11 10 11 10 11 10 11
0 1 0 1 8 9 8 9 8 9 8 9
2 3 2 3 10 11 10 11 10 11 10 11
0 1 0 1 4 5 4 5 0 1 0 1
2 3 2 3 6 7 6 7 2 3 2 3
0 1 0 1 4 5 4 5 0 1 0 1
2 3 2 3 6 7 6 7 2 3 2 3
4 5 4 5 4 5 4 5 8 9 8 9
6 7 6 7 6 7 6 7 10 11 10 11
4 5 4 5 4 5 4 5 8 9 8 9
6 7 6 7 6 7 6 7 10 11 10 11



,
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11 30 51 110

01 20 41 100

31 10 71 90

21 00 61 80

11 10 51 90

01 00 41 80

71 50 111 11

61 40 101 00

51 50 91 10

41 40 81 00

50 11 90 91

40 01 80 81

111 70 71

101 60 61

51 70 91 30

41 60 81 20

30 71

20 6121

31

100

110

70 31 110 111

60 21 100 101

70 11 110 91

60 01 100 81

50 31 90 111

40 21 80 101

20

30

G 1 G 2
0 0

G 0
0

G 3 G 4 G 5
0 0 0

G 6 G 7 G 8
0 0 0

G 9 G 10 G 11
0 0 0

Figure 2.4. First edge decomposition of K12,12 by T3
3.

L2 =



0 2 2 0 4 6 6 4 0 2 2 0
3 1 1 3 7 5 5 7 3 1 1 3
3 1 1 3 7 5 5 7 3 1 1 3
0 2 2 0 4 6 6 4 0 2 2 0
4 6 6 4 4 6 6 4 8 10 10 8
7 5 5 7 7 5 5 7 11 9 9 11
7 5 5 7 7 5 5 7 11 9 9 11
4 6 6 4 4 6 6 4 8 10 10 8
0 2 2 0 8 10 10 8 8 10 10 8
3 1 1 3 11 9 9 11 11 9 9 11
3 1 1 3 11 9 9 11 11 9 9 11
0 2 2 0 8 10 10 8 8 10 10 8



.
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30 21 70 101

10 01 50 81

20 31 60 111

00 11 40 91

20 21 60 101

00 01 40 81

31 100 71 60

11 80 51 40

21 100 41 60

01 80 61 40

100 101 20 41

80 81 00 61

71 110 31

51 90 11

70 61 110 21

50 41 90 01

31 70

11 5010

30

91

111

110 111 30 71

90 91 10 51

110 101 30 61

90 81 10 41

100 111 20 71

80 91 00 51

50

70

G 1 G 2
1 1

G 0
1

G 3 G 4 G 5
1 1 1

G 6 G 7
G 81 1 1

G 9 G 10 G 11
1 1 1

Figure 2.5. Second edge decomposition of K12,12 by T3
3.

Example 5. To illustrate Theorem 7, we have 3 mutually orthogonal K2 ∪ K1,2-squares
and 3 mutually orthogonal C4-squares. Hence, we get 3 mutually orthogonal
K2,2 ∪ K2,4-squares Ls, s ∈ Z3 which are represented by the graphs in
Figures 2.7, 2.8, and 2.9, respectively, where Gs

i
∼= K2,2 ∪ K2,4, i ∈ Z12 is the graph

corresponding to the entry i in the square Ls, s ∈ Z3.
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110 21 30 101

80 11 00 91

100 21 20 101

90 11 10 91

110 31 30 111

80 01 00 81

21 60 61 20

11 50 51 10

31 70 41 30

01 40 71 00

70 111 110 71

40 81 80 41

71 60 31

41 50 01

30 61 70 21

00 51 40 11

31 20

01 1090

100

81

111

60 111 100 71

50 81 90 41

70 101 110 61

40 91 80 51

60 101 100 61

50 91 90 51

10

20

G 1 G 2
2 2

G 0
2

G 3 G 4 G 5
2 2 2

G 6 G 7 G 8
2 2 2

G 9 G 10 G 11
2 2 2

Figure 2.6. Third edge decomposition of K12,12 by T3
3.

M0 =

0 1 2
2 0 1
2 0 1

 , M1 =

0 1 2
1 2 0
0 1 2

 , M2 =

0 1 2
0 1 2
1 2 0

 ,

N0 =


0 0 1 1
0 0 1 1
2 2 3 3
2 2 3 3

 , N1 =


0 1 0 1
2 3 2 3
0 1 0 1
2 3 2 3

 , N2 =


0 2 2 0
3 1 1 3
3 1 1 3
0 2 2 0

 ,
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L0 =



0 0 1 1 4 4 5 5 8 8 9 9
0 0 1 1 4 4 5 5 8 8 9 9
2 2 3 3 6 6 7 7 10 10 11 11
2 2 3 3 6 6 7 7 10 10 11 11
8 8 9 9 0 0 1 1 4 4 5 5
8 8 9 9 0 0 1 1 4 4 5 5

10 10 11 11 2 2 3 3 6 6 7 7
10 10 11 11 2 2 3 3 6 6 7 7
8 8 9 9 0 0 1 1 4 4 5 5
8 8 9 9 0 0 1 1 4 4 5 5

10 10 11 11 2 2 3 3 6 6 7 7
10 10 11 11 2 2 3 3 6 6 7 7



,

L1 =



0 1 0 1 4 5 4 5 8 9 8 9
2 3 2 3 6 7 6 7 10 11 10 11
0 1 0 1 4 5 4 5 8 9 8 9
2 3 2 3 6 7 6 7 10 11 10 11
4 5 4 5 8 9 8 9 0 1 0 1
6 7 6 7 10 11 10 11 2 3 2 3
4 5 4 5 8 9 8 9 0 1 0 1
6 7 6 7 10 11 10 11 2 3 2 3
0 1 0 1 4 5 4 5 8 9 8 9
2 3 2 3 6 7 6 7 10 11 10 11
0 1 0 1 4 5 4 5 8 9 8 9
2 3 2 3 6 7 6 7 10 11 10 11



,
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00

01

10

11

41

40 50 90

51

80

00

21

10

31

61

40 50 90

71

80

20

01

30

11

41

60 70 110

51

100

20

21

30

31

61

60 70 110

71

100

00

41

10

51

81

40 50 90

91

80

00

61

10

71

101

40 50 90

111

80

20

41

30

51

81

60 70 110

91

100

20

61

30

71

101

60 70 110

111

100

00

81

10

91

01

40 50 90

11

80

00

101

10

111

21

40 50 90

31

80

20

81

30

81

01

60 70 110

11

100

20

101

30

111

21

60 70 110

31

100

G 0
0

G 1
0

G 2
0

G 3 G 4 G 5
0 0 0

G 6 G 7 G 8
0 0 0

G 9 G 10 G 11
0 0 0

Figure 2.7. First edge decomposition of K12,12 by K2,2 ∪ K2,4.

L2 =



0 2 2 0 4 6 6 4 8 10 10 8
3 1 1 3 7 5 5 7 11 9 9 11
3 1 1 3 7 5 5 7 11 9 9 11
0 2 2 0 4 6 6 4 8 10 10 8
0 2 2 0 4 6 6 4 8 10 10 8
3 1 1 3 7 5 5 7 11 9 9 11
3 1 1 3 7 5 5 7 11 9 9 11
0 2 2 0 4 6 6 4 8 10 10 8
4 6 6 4 8 10 10 8 0 2 2 0
7 5 5 7 11 9 9 11 3 1 1 3
7 5 5 7 11 9 9 11 3 1 1 3
4 6 6 4 8 10 10 8 0 2 2 0



.
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40

81

60

101

01

00 20 100

21

80

40

91

60

111

11

o0 20 100

31

80

50

81

70

101

01

10 30 110

21

90

50

91

70

111

11

10 30 110

31

90

40

01

60

21

41

00 20 100

61

80

40

11

60

31

51

00 20 100

71

80

50

01

70

21

41

10 30 110

61

90

50

11

70

31

51

10 30 110

71

90

40

41

60

61

81

00 20 100

101

80

40

51

60

71

91

00 20 100

111

80

50

41

70

61

81

10 30 110

101

90

50

51

70

71

91

10 30 110

111

90

G 1 G 2
1 1

G 0
1

G 3 G 4 G 5
1 1 1

G 6 G 7 G 8
1 1 1

G 9 G 10 G 11
1 1 1

Figure 2.8. Second edge decomposition of K12,12 by K2,2 ∪ K2,4.

3. Conclusion

In this paper, we obtained new results for the MOGS which are summarized
in Table 1.

1-N(mn, T
m,n
1 ) ≥ min{m, n}

2-N(mn, T
m,n
2 ) ≥ min{m, n− 1}

3-N(4m, Tm
3 ) ≥ 3

4-N(4n, Tn
4) ≥ 3

5-N(4n, K2,2 ∪ n−1
2 K2,4) ≥ 3

6-N(9m, Tm
5 ) ≥ 3

7-N(7m, Tm
6 ) ≥ 4.
Table 1: Summary of the results.
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