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Abstract. In this paper we find recurrence relations for the asymptotic probability a
vertex is k protected in all Motzkin trees. We use a similar technique to calculate the
probabilities for balanced vertices of rank k. From this we calculate upper and lower
bounds for the probability a vertex is balanced and upper and lower bounds for the
expected rank of balanced vertices.

1. Introduction

There have been several papers written in the past looking at various different statis-
tics concerning vertices in various different trees. Specifically there was an explosion of
papers dealing with protected points in trees after Cheon and Shapiro introduced the
term [1]. These papers however were limited in that they only looked at vertices which
were protected meaning they broke vertices into two groups, a vertex was either pro-
tected or not protected. There were several such papers doing this such as [2, 3, 5, 6, 7].
Most of them went about this by trying to find an explicit function for the number of
trees whose root was protected and then using that to calculate the desired probability.
In this paper we instead intend to introduce more gradation in protection. Rather than
simply looking at a binary choice of protected or not we instead look at distinguishing
between how protected a vertex is. This change in focus obviously necessitates a slight
change in technique. Rather than calculating the specific generating functions we cal-
culate a recurrence relationship for the generating function we want and then use that
to calculate the probabilities we are interested in or get upper and lower bounds for the
probabilities we are interested in. This paper is concerned specifically with Motzkin
trees and k-protectedness which we will define later, but in future papers I will apply
the technique to other types of trees and perhaps other types of vertex statistics that
might be interesting to look at.
To begin we will first go over many of the needed definitions.

1.1. Motzkin Tree. A Motzkin tree, also referred to as a 0-1-2 tree, or unary-binary
tree, is a rooted plane tree where each vertex may have either 0, 1, or 2 children.

Theorem 1.1. The generating function, M(x) = ∑ mnxn, for the number of all Motzkin trees

with n vertices is given by M(x) =
1− x−

√
1− 2x− 3x2

2x
.

Key words and phrases. Enumerative Combinatorics, Motzkin trees.

1



2 ANTHONY VAN DUZER

Proof. This comes from the relationship M(x) = x+ xM(x)+ xM(x)2 which is based on
the fact the root can be a leaf, the parent of a single child, or the parent of two children
and each child of the root would be another Motzkin tree. Given that relationship you
can use the quadratic formula to arrive at the desired generating function. �

1.2. k-protected. A vertex is said to be of rank k if the shortest path, travelling strictly
from parent to child, from the vertex to a leaf is of length k. A vertex is k protected if
it is of rank j for some j ≥ k. So a leaf would be 0 protected and rank 0, the parent
of a leaf is rank 1 and both 0 and 1 protected, and the parent of children who are
all 1 protected is 2 protected, but not necessarily rank 2. One of the advantages of
working with k-protected over rank k is the recurrent nature of protection; a vertex is k
protected if and only if all it’s children are k− 1 protected the same statement does not
hold true for rank k since a vertex could be rank 6 and have a child of rank 7. A vertex
is balanced if the shortest path is the same length as the longest path so a balanced
k-protected vertex would be a vertex where all paths to a leaf are of length at least k
and all of these paths are the exact same length and a balanced vertex of rank k is a
vertex where all paths to a leaf are of length exactly k.

1.3. Purpose of paper. In this paper we will find a recurrence relation for the prob-
ability a vertex is k-protected, we will find a recurrence relation for the probability a
vertex is balanced and of rank k, and finally we will get upper and lower bounds for
the probability a vertex is balanced and the expected rank of a balanced vertex.

2. Leaves

The proportion of leaves in Motzkin trees had previously been calculated by Gi-Sang
Cheon and Louis W. Shapiro in [1]; however, for the sake of completeness and to give
a brief introduction to the technique used in this paper it is included.

Theorem 2.1. The generating function for the number of leaves in all Motzkin trees with n
vertices is given by L(x) =

x√
1− 2x− 3x2

.

Proof. We observe the relationship L(x) = x + xL(x) + 2xL(x)M(x). To prove this we
isolate the root. If the root is a leaf it contributes x to the generating function. If the
root is not a leaf it either has one child or two children. If it has a single child then the
number of leaves the tree possess is simply the number of leaves of the subtree giving
rise to the term xL(x). If it has 2 children than we can again cut off the root creating two
subtrees. On one subtree we count the total number of possible leaves which is given
by L(x); we multiply this by the total number of configurations. The total number of
configurations with that many leaves is the total number of trees we can make for the
right subtree which is simply the number of Motzkin trees hence the term M(x). The
power series xL(x)M(x) is the generating function for the total number of leaves only
counting the left subtree. Once we multiply this by 2 we get the total number of leaves
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in all trees where the root has two children. Plugging in the known M(x) and doing
some algebraic manipulation we arrive at the given generating function. �

Corollary 2.1.1. The probability that a random vertex of a random Motzkin-tree is a leaf con-
verges to 1

3 as the number of vertices goes to infinity.

Proof. We can extract the coefficent from the generating function and we get that l(n),
the total number of leaves in all Motzkin trees of size n, is asymptotically equal to(√

3
π

)
3n

2
√

n
whereas the number of vertices is asymptotically equal to

n3n+1
√

3
(

1 + 1
16n

)
(2n + 3)

√
(n + 2)π

.

Comparing the two and taking the limit as n goes to ∞ we get the ratio is 1
3 . �

This is also the probability a vertex is balanced and of rank 0 since every leaf is
balanced.

3. k-protected vertices

Lemma 3.1. The generating function for the number of vertices that are k protected in all trees
with n vertices is given by

Pk(x) =
Rk(x)√

1− 2x− 3x2
=

xRk−1(x) + xR2
k−1(x)

√
1− 2x− 3x2

where Pk(x) is the generating function for all k-protected vertices in all Motzkin tree with
n-vertices and Rk(x) is the number of trees where the root is k-protected.

Proof. This proof comes in two parts. The first part is that Pk(x) =
Rk(x)√

1− 2x− 3x2
and

the second is that Rk(x) = xRk−1(x) + xR2
k−1(x).

First we will prove that Pk(x) =
Rk(x)√

1− 2x− 3x2
. This follows from the same recurrence

relationship we used to find the generating function for the number of leaves. We have
Pk(x) = Rk(x) + xPk(x) + 2xPk(x)M(x) which gives us

Pk(x) =
Rk(x)√

1− 2x− 3x2
after a bit of manipulation.

Next we need to prove the relationship Rk(x) = xRk−1(x) + xR2
k−1(x). This comes from

the fact the root of a tree can only be k protected is if it has a single child who is k− 1
protected or it has two children who are both k− 1 protected. �
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Lemma 3.2. (Bender’s Lemma) [4]
Take generating functions A(x) = ∑ anxn and B(x) = ∑ bnxn with radius of convergence
α > β ≥ 0 where α goes with A(x) and β goes with B(x). If bn−1

bn
approaches a limit b as n

approaches infinity and A(b) 6= 0 then cn ∼ A(b)bn where ∑ cnxn=A(x)B(x).

Theorem 3.3. Let pk be the asymptotic proportion of all k-protected vertices in all Motzkin
trees compared to all vertices in all Motzkin trees then pk =

1
3 pk−1 +

1
3 p2

k−1.

Proof. Consider Rk. It is of the form Rk =
Ak + Bk(

√
1− 2x− 3x2)

2x
where Ak and Bk are

polynomials. This means that

Rk+1 = x
A2

k
(2x)2 + x

Ak
2x

+ x
B2

k(1− 2x− 3x2)

(2x)2 + x
(

Bk
2x

+
2AkBk
(2x)2

)√
1− 2x− 3x2.

Now we go back to look at Pk(x). We have
Pk+1(x) =

x
A2

k
(2x)2 + x

Ak
2x

+ x
B2

k(1− 2x− 3x2)

(2x)2 + x
(

Bk
2x

+
2AkBk
(2x)2

)√
1− 2x− 3x2

√
1− 2x− 3x2

.

We can now simplify this and we get
Pk+1(x) =

x
A2

k
(2x)2

√
1− 2x− 3x2

+
x

Ak
2x√

1− 2x− 3x2
+

B2
k(1− 2x− 3x2)

(2x)2
√

1− 2x− 3x2
+ x

(
Bk
2x

+
2AkBk
(2x)2

)
.

Now we look at what each of these contribute to the asymptotic behavior of Pk+1(x). We

know that x
(

Bk
2x

+
2AkBk
(2x)2

)
is just a polynomial so this summand doesn’t contribute

anything to the asymptotic behavior. This is because they are polynomials so there

exist some m such that for all r > m the coefficient of xr in x
(

Bk
2x

+
2AkBk
(2x)2

)
is equal to

zero. Because the terms are eventually zero this part cannot contribute anything to the
asymptotic behavior of the coefficients of the generating function we care about. That
leaves us with

x
A2

k
(2x)2

√
1− 2x− 3x2

+
x

Ak
2x√

1− 2x− 3x2
+

B2
k(1− 2x− 3x2)

(2x)2
√

1− 2x− 3x2
.
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We would now like to apply Bender’s Lemma with the growth rate of
1
3

. We get a

growth rate of
1
3

because that is the growth rate of the function

1√
1− 2x− 3x2

.

We need to check that plugging in the growth rate doesn’t give 0. This requirement

does pose a slight problem as if we plug in 1
3 into the term

B2
k(1− 2x− 3x2)

(2x)2 we would

get 0. We however can get around this relatively easily by instead breaking up

B2
k(1− 2x− 3x2)

(2x)2
√

1− 2x− 3x2
.

Specifically we will look at it as

B2
k(1)

(2x)2
√

1− 2x− 3x2
−

B2
k(2x)
(2x)2

√
1− 2x− 3x2

−

B2
k(3x2)

(2x)2
√

1− 2x− 3x2
.

Now we can handle each of these seperately. Since we just have Bk multiplied by some
non-zero polynomial it is sufficent for us to prove that bk(

1
3) is non-zero. Since Bk is

just based on B(k−1) we can see that it is nonzero by induction. Once we see that we
see that the contribution of

B2
k(1− 2x− 3x2)

(2x)2
√

1− 2x− 3x2

to l(n) is zero. So all that is left is

x
A2

k
(2x)2

√
1− 2x− 3x2

+
x

Ak
2x√

1− 2x− 3x2
.

We know that plugging in 1
3 into Ak does not return zero by induction so we can use

Bender’s lemma. This gives us the desired result that pk+1 =
1
3

p2
k +

1
3

pk. �

Corollary 3.3.1. The growth rate of the asymptotic probabilities that a vertex is k protected is
1
3 .

Proof. From the previous theorem we know that pk =
1
3 pk−1 +

1
3 p2

k−1. From this we can
deduce that the lower growth rate is 1

3 since the pk are probabilities and hence non-
negative. For the upper growth rate we observe that the pk are strictly decreasing and
non-negative. They are strictly decreasing because for every vertex that is k-protected
there is at least one vertex that is (k − 1)-protected, its child. This means that for
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any ε there exists an m such that for any l > m, pl ≤ ε. Thus for k ≥ m we have
pk+1 ≤ 1

3 pk +
1
3 εpk that gives an upper growth rate of 1

3 +
ε
3 and that goes towards 1

3 as
ε goes to zero. �

Protection level Probability k-protected ≈
1 .66666667
2 .37037037
3 .16918153
4 .06593464
5 .02342734
6 .007992060

4. Balanced Vertexes

We can use the same technique as in the preceeding to calculate the proportion of
balanced vertices of rank k.

Lemma 4.1. The generating function for the number of trees whose root is balanced and of rank
k, call it Bk(x), is a polynomial.

Proof. If the root is balanced and rank k then all paths to a leaf must be of length k.
Thus the largest tree we can have is a full binary tree with k + 1 levels. This means we
can have at most 2k+1 − 1 vertices in our tree. Thus the largest term that can appear in
Bk(x) is an x2k+1−1. �

Theorem 4.2. The generating function for the number of vertices who are k protected and

balanced is given by B∗k (x) =
Bk(x)√

1− 2x− 3x2
.

Proof. The proof is exactly the same as the proof for the number of vertices that are k
protected. �

The fact that we are only dealing with polynomials makes balanced trees and bal-
anced vertices much easier to deal with and allows us to calculate rank k rather than k
protected.

Theorem 4.3. The asymptotic proportion of balanced vertices of rank k is given by bk =
1
3 bk−1 +

1
3 b2

k−1.

Proof. The fact that Bk(x) is a polynomial means we can simply plug in the growth
rate of

x√
1− 2x− 3x2

directly into the polynomial and as we saw before that growth

rate is
1
3

. So we plug 1
3 into Bk and Bk = xBk−1(x) + xB2

k−1(x) which gives the desired
recurrence relationship. �

It is natural now to consider the proportion of vertices that are balanced.
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Lemma 4.4. Let B∗(x) equal the generating function for the number of vertices who are bal-
anced. Then

B∗(x) = ∑
k≥0

B∗k (x) =
∑
k≥0

Bk(x)

√
1− 2x− 3x2

.

Proof. This follows from the fact that a vertex is balanced if and only if it is balanced
of rank k for some k. We know that ∑

k≥0
B∗k (x) is well defined as a formal power series

since the coefficent of xn in B∗k (x) is 0 for n < k + 1. We also know that ∑
k≥0

Bk(x) is

well-defined. �

The form of the power series shows that we would like to use Bender’s lemma to
get a value for the probability a vertex is balanced so we need to show that ∑

k≥0
Bk(x) is

non-zero and has raidus of convergence strictly greater than 1
3 .

Lemma 4.5. Let b(n) be the number of Motzkin trees on n vertices where the root is balanced.

Then b(n) ≤ 2.9n

n2 .

Proof. This can be proved by induction and the fact that

b(n) <
n−log2(n)

∑
k=log2(n)

b(k)b(n− k− 1) + b(n− 1). To see why

b(n) <
n−log2(n)

∑
k=log2(n)

b(k)b(n− k− 1) + b(n− 1)

consider what it means for the root to be balanced. If a root is balanced than either
it has a single child which is balanced. That gives us the term b(n− 1) or both of its
children are balanced and of the same rank. The fact that they have t be balanced of
the same rank is what gives us our upper and lower bounds for the sum. A tree that is
balanced of rank m can have at most 2m vertices, this would be a full binary tree and
must have at least m + 1 vertices, this would be the stick tree. Because of that we know
that a tree of size n cannot have a balanced root if one of its children’s subtrees is of
size less than log2(n). We can use a strict inequality here because there will be trees of
size m with a balanced root and trees of size n−m with a balanced root such that the
rank of the roots are different. Once we know that fact we can apply induction to get
the required inequality. �

From this we know that the exponential growth rate is 2.9 and hence it has a radius
of convergence greater than 3. This fact tells us that the probability a vertex is balanced
converges as n goes to infinity.
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Corollary 4.5.1. The probability that a vertex is balanced is between
0.568362259762727779 and 0.5683622597627278

Proof. The probability a vertex is balanced is simply the sum of the probabilities that it
is k balanced taken over all k. This is because if a vertex is balanced it must be balanced

of some rank k. So we have P(balanced) =
∞

∑
k=0

bk. Now we need to estimate this sum.

We have that
(

1
3

)k
(bm) ≤ bk+m ≤

(
1
3
+ bm

)k
(bm). We can prove this inductively

since we know that bk+1 =
1
3

bk +
1
3

b2
k which means

1
3

bk ≤ bk+1 =

(
1
3
+ bk

)
bk. We can

then continue this getting that(
1
3

)2

bk ≤ bk+2 =

(
1
3
+ bk+1

)(
1
3
+ bk

)
bk ≤

(
1
3
+ bk

)2

bk.

This is because bk is a decreasing sequence. We can continue this to get the originally
stated inequality. This gives us

19

∑
k=0

bk +
∞

∑
k=20

(
1
3

)20−k
b20 ≤ P(balance) ≤

19

∑
k=0

bk +
∞

∑
k=20

(
1
3
+ b20

)20−k
b20.

The infinite sum on the far left and far right side of this inequality both are simply
geometric series so are easily summable. This gives us the stated lower and upper
bounds. �

4.1. Expected Value. We can use a similar technique to calculate the expected rank of
balanced vertices.

Theorem 4.6. The expected value of the rank of balanced vertices exists as n goes to infinity
exists.

Proof. Let EB(x) =
∞

∑
k=0

kB∗k (x). This is well defined as a formal power series for the

same reason that B∗k (x) was well defined. To apply Bender’s lemma to this we need
to find the exponential growth rate of the numerator. Let eb(n) be the coefficent of xn

in the numerator of EB(x). We have that eb(n) ≤ nb∗(n) since xn will not appear in

any B∗k (x) for k ≥ n and b∗(m) =
∞

∑
k=0

b∗k (m). From this we know that eb(n) ≤ 2.9n

n
, so

the numerator of the generating function has exponential growth rate of at most 2.9.
Because the exponential growth rate is less than 3 we know the function has radius of

convergence greater than
1
3

which means that Bender’s lemma applies. Let N(x) be the

numerator of the generating function for EB(x). Asymptotically EB(x) is of the form

N(1
3)kn where kn is the xn term in

1√
1− 2x− 3x2

and since we know the proportion of
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kn to all vertices in all Motzkin trees, this means that the stated proportion exists as n
goes to infinity.

Lemma 4.7. The ratio between the coefficent of xn in EB(x) and and the number of all vertices
in all Motzkin trees divided by the proportion of vertices that are balanced is equal to the expected
rank of a balanced vertex in a tree of size n.

Combining Lemma 4.7 with the proof that the asymptotic proportion of EB(x) com-
pared to the number of vertices in all Motzkin trees exists shows us that the expected
value exists as n goes to infinity. �

Theorem 4.8. The expected rank of a vertex that is balanced is between
.6464847301966947 and .64648473019669473

Proof. We use the standard expected value formula E(X) = ∑
j≥0

jP(X = j). Getting

upper and lower bounds for this is very similar to the technique we used to find the
probability a vertex is balanced. We calculate directly the sum of the first 19 terms and

then we use the fact that ∑
j≥20

jrj−20 =
20− 19r
(−1 + r)2 with r the common ratio so to get a

lower bound we use 1
3 and to get an upper bound we get 1

3 + b20. Solving this and
dividing by the probability a vertex is balanced gives us the stated expectation. �

5. Open questions

We were able to prove that the expected value existed for balanced vertices and
calculated fairly accurate bounds for it but the question remains can you show that the
expected value exist for general vertices and if so what is the expected value?

The sequence for the number of leaves in all Motzkin trees with n− 1 steps is a rather
interesting sequence in that it is the number of all paths from (0,0) to (n, n) that avoid
3 right steps in a row that starts with a right step and ends with an up step. This is
interesting because there is an easy bijection from the number of Motzkin trees to the
number of Dyck paths that avoid 3 right steps. Is there a similar bijection for leaves? If
so does it translate easily to rooted planar trees with more than 2 children?

Another question would be what proportion of vertices are leaves, or more generally
k-protected, for rooted planar trees where the out degree of every vertex is between 0
and n, and if we take these probabilities as sequences do the sequences converge to the
proportion of vertices that are k-protected in all rooted planar trees?
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