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Abstract. We prove that a sumset of a TE subset of N (these sets can be

viewed as “aperiodic” sets) with a set of positive upper density intersects any
polynomial sequence. For WM sets (subclass of TE sets) we prove that the

intersection has lower Banach density one. In addition we obtain a generaliza-

tion of the latter result to the case of several polynomials.

1. Introduction

We call a set A ⊂ N p-good if for every B ⊂ N of positive upper density and
every p(n) ∈ Z[n] with a positive leading coefficient we have

(A+B) ∩ {p(n)|n ∈ N} 6= ∅.
Let us choose the following model for a random set. Any natural number is

in a set with probability q > 0 independently of other numbers. It follows from
Borel-Cantelli lemma that with probability one such a set is p-good. The paper
provides explicit constructions for p-good sets.

A proper p-good set cannot be periodic. We propose a dynamical approach for
constructing (aperiodic) p-good sets.

In ergodic theory there are many different notions for aperiodicity (randomness)
of a measure preserving system, i.e. a quadruple (X,BX , µ, T ), where X is a com-
pact metric space, BX is Borel σ-algebra on X, T : X → X is a continuous map
and µ is a Borel probability measure on X which is preserved under the action of
T .

We will always assume that a system (X,BX , µ, T ) is totally ergodic1, i.e. the
systems ((X,BX , µ, Tn))n∈N are ergodic. There are many equivalent definitions
for ergodicity of a system. For our purposes the most convenient definition is that
the conclusion of the pointwise ergodic theorem is true:
For any f ∈ L1

µ(X) for almost every x ∈ X with respect to µ we have

1
N

N∑
n=1

f(Tnx)→
∫
fdµ.

Let f ∈ L∞µ (X). Denote by Af the algebra of functions generated by f and all
of its translates by T .2 By the ergodic theorem there exists a set of full measure

1991 Mathematics Subject Classification. Primary: 11B13, 37A30.
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1Measure preserving systems on cyclic groups which obviously exhibit a periodicity are not

totally ergodic.
2We choose a function f from L∞µ (X) because we want to ensure that Af ⊂ L∞µ (X).
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Xf ⊂ X such that for every x0 ∈ Xf , any k ∈ N and any function g ∈ Af we have

(1.1)
1
N

N∑
n=1

g(T knx0)→
∫
gdµ.

We will call the set Xf the set of f-generic points.

The space of continuous functions on X is separable, therefore by the ergodic the-
orem there exists a set of full measure X ′ ⊂ X, such that for every x ∈ X ′, every
f ∈ C(X) and every k ∈ N we have

1
N

N∑
n=1

f(T knx)→
∫
fdµ.

The set X ′ is called the set of generic points in X.

For convenience we introduce the set N0 = {0, 1, 2 . . .}.

A bounded sequence (ξ(n))n∈N0 will be called totally ergodic if there exists a
totally ergodic system (X,BX , µ, T ), a function f ∈ L∞(X) and an f -generic point
x0 ∈ X such that

ξ(n) = f(Tnx0), ∀n ∈ N0.

It is conjectured that the set of all natural numbers which have an odd number of
prime divisors is totally ergodic (and even a somewhat stronger – a normal set, see
[2]). Another good candidate to be a totally ergodic set is the set of square-free
numbers. It is unknown whether or not the set of square-free numbers is totally
ergodic.

We associate {0, 1}-valued sequences with subsets of N0 in a natural way. A set
S ⊂ N0 corresponds to the sequence 1S ∈ {0, 1}N0 . We say that S ⊂ N0 is a TE
set3 if 1S is a totally ergodic sequence and the density of S:

d(S) = lim
N→∞

1
N

N∑
n=1

1S(n)

is positive. Notice that the density of a totally ergodic set always exists by the
genericity assumption.

It was shown in [4] that any rotation by α 6∈ Q on the torus T = R/Z and any
interval [a, b] ∈ T generate the TE set

Rα,[a,b] = {n ∈ N0 |nα mod 1 ∈ [a, b]}.

In other words, Rα,[a,b] is the set of return times for a uniquely ergodic rotation
on the compact abelian group T into the interval [a, b]. Similarly, for any ho-
momorphism τ from Z to a compact abelian metrizable connected group K with
τ(Z) = K and any Jordan measurable set J ⊂ K of positive Haar measure (Jordan
measurability means that the boundary of J has zero Haar measure) the set

RJ = τ−1(J) ∩ N0

is a TE set.

3If S ⊂ N then we regard 1S as a sequence in {0, 1}N0 .
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In the paper we use different notions of density for subsets of N. For S ⊂ N, the
upper density d(S) of S is defined by

d(S) = lim sup
N→∞

1
N

N∑
n=1

1S(n).

The lower density d(S) of S is defined by

d(S) = lim inf
N→∞

1
N

N∑
n=1

1S(n).

We say S ⊂ N has density and denote it by d(S) if d(S) = d(S).
The upper Banach density d∗(S) of S is defined by

d∗(S) = lim sup
M−N→∞

1
M −N

M−1∑
n=N

1S(n).

The lower Banach density d∗(S) of S is defined by

d∗(S) = lim inf
M−N→∞

1
M −N

M−1∑
n=N

1S(n).

Note that the positivity of the lower Banach density of a set is equivalent to having
bounded gaps.

The main result of the paper is that any TE set is p-good.

Theorem 1. Let A ⊂ N be a TE set. Then for any B ⊂ N of positive upper density
and any non-constant polynomial p(n) ∈ Z[n] with a positive leading coefficient we
have (A+B) ∩ {p(n) |n ∈ N} 6= ∅. Moreover, if the lower density of B is positive
then the set Rp = {n ∈ N | p(n) ∈ A+B} has bounded gaps.

In particular, Theorem 1 implies that a TE set A satisfies that A+A intersects
any polynomial sequence. It is important to have in mind that the analogous result
for A − A where a polynomial vanishes at zero of Sárközy and Furstenberg only
requires from a set A to be of positive upper Banach density without any further
assumptions on an aperiodicity. The difference in the assumptions of the theorems
is caused by the fact that the sumset of two sets in N is usually much smaller than
the difference set. The latter is due to the fact that the equation x + y = n (n
is fixed) has only finitely many solutions in N2, while the equation x − y = n has
infinitely many solutions in N2.

If the system (X,BX , µ, T ) which was involved in the definition of a TE set is
weak-mixing, i.e. the system (X×X,BX ×BX , µ×µ, T ×T ) is ergodic, then one
can prove stronger results.

We introduce the notion of a WM set. A sequence (ξ(n))n∈N0 is weakly mixing
if there exists a weak-mixing system (X,BX , µ, T ), a function f ∈ L∞µ (X) and an
f -generic point x0 ∈ X such that

ξ(n) = f(Tnx0), ∀n ∈ N0.

Similarly to the definition of a TE set, a set S ⊂ N is a WM set if 1S is a weakly
mixing sequence and the density of S is positive.
A weak-mixing system is totally ergodic, thus any WM set is a TE set.

We mention here a simple dynamical construction of WM sets. Take the shift
space (Ω, σ), where Ω = {0, 1}N0 is endowed with Tychonoff topology and σ is
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the shift to left. Take any Borel probability measure µ on Ω which is preserved
under the shift σ and which generates a weak-mixing system (Ω,BΩ, µ, T ).Take any
cylinder set A ⊂ Ω with µ(A) > 0. Notice that any cylinder is a clopen set, i.e.
the indicator function of A, χA ∈ C(Ω). Then any generic point ω ∈ Ω generates a
WM set

Sω,A = {n ∈ N |σnω ∈ A}
with dSω,A

= µ(A).
If A in Theorem 1 is a WM set, then we can prove that the set Rp is of lower

Banach density 1.

Theorem 2. Let A ⊂ N be a WM set, let B ⊂ N of positive upper density and let
p(n) ∈ Z[n] with a positive leading coefficient. Then the set Rp = {n ∈ N | p(n) ∈
A+B} is of lower Banach density 1.

Notice that it is easy to construct a normal set A, i.e. the {0, 1}-valued sequence
1A is a normal binary sequence (thus A is a WM set), such that |N\(A+A)| =∞.4

So Rp in the statement of the theorem need not to be a cofinite set in N.
We use the notion of essentially distinct polynomials introduced by Bergelson in

[1].
The polynomials {p1, . . . , pk} are called essentially distinct if for every 1 ≤

i < j ≤ k we have pi − pj is a non-constant polynomial.
All polynomials p(n) that we consider are with integer coefficients and satisfy

p(n)→∞ as n→∞. The following theorem is a generalization of Theorem 2.

Theorem 3. Let A ⊂ N be a WM set, let p1(n), . . . , pk(n) ∈ Z[n] be essentially
distinct polynomials of the same degree having positive leading coefficients, let B ⊂
N of positive upper density. Then the set

Rp1,...,pk
= {n ∈ N | ∃b ∈ B : p1(n), p2(n), . . . , pk(n) ∈ A+ b}

has lower Banach density 1.

Notice that any element n ∈ Rp1,...,pk
corresponds to a solution of the equation:

(1.2)


x+ y1 = p1(n)
x+ y2 = p2(n)
. . .
x+ yk = pk(n)

where x ∈ B, y1, . . . , yk ∈ A.
If among p1(n), . . . , pk(n) there are two polynomials with degrees which differ

by at least two, then there exists a WM set A such that the set

Rp1,...,pk
= {n ∈ N | p1(n), p2(n), . . . , pk(n) ∈ A+A}

4Take a normal set S ⊂ N. We define the set AS inductively on intervals {4n−1, 4n−1}, n ≥ 1.

Let’s assume that 1AS
(k) = 0, k = 1, 2, 3. If 1AS

is defined on the interval {1, 4n− 1} we set 1AS

on {4n, 4n+1 − 1} to be:

1AS
(k) = 1S(k − 4n + 1), 4n ≤ k < 4n+1 −

1

2
4n+1 = 2 · 4n

1AS
(2 · 4n) = 0,

1AS
(k) = 1− 1AS

(4n+1 − k), 2 · 4n < k < 4n+1.

Then a simple calculation shows the normality of 1AS
. From the definition of AS it follows that

4n 6∈ AS +AS for all n ≥ 1.
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is empty. To prove the last claim we take an arbitrary WM set A. Notice that by
the definition of a WM set5 for any set of density zero N ⊂ N the set A\N is again
a WM set. In particular, we can exclude from A all solutions of the system (1.2)
by removing a set of density zero. If deg p1 ≤ deg p2 − 2 then replace A by

A′ = A \

(⋃
n∈N

[p2(n)− p1(n), p2(n)]

)
which is again a WM set. Within A′ the system (1.2) is unsolvable.

For the remaining case which is left open, namely when the polynomials have
degrees which differ by exactly one, we conjecture that the conclusion of Theorem
3 is not true.

Acknowledgment: I would like to thank Hillel Furstenberg who proposed me the
problem. Without his encouragement this work would never be done. Also I would
like to thank Vitaly Bergelson for fruitful discussions and the referee for numerous
very useful remarks and suggestions.

2. Orthogonality of polynomial shifts along totally ergodic
sequences

Throughout the paper we use the notation L2(N) to denote the space of real-
valued functions on the finite set {1, 2. . . . , N} endowed with the scalar product:

〈u, v〉N =
1
N

N∑
n=1

u(n)v(n).

The main tool for the proof of Theorem 1 is the almost orthogonality of polynomial
shifts along a totally ergodic sequence.

Proposition 1. Let (ξ(n))n∈N0 be a totally ergodic sequence of zero mean. Let
p(n) ∈ Z[n] be a non-constant polynomial with a positive leading coefficient. For
every ε > 0 there exists J(ε) such that for every J ≥ J(ε) there exists N(J) such
that for every N ≥ N(J) we have6∥∥∥∥∥∥ 1

J

J∑
j=1

ξ(p(N + j)− n)

∥∥∥∥∥∥
p(N)

< ε.

In other words, we have

lim
J→∞

lim sup
N→∞

∥∥∥∥∥∥ 1
J

J∑
j=1

ξ(p(N + j)− n)

∥∥∥∥∥∥
p(N)

= 0.

Notice that the statement of Proposition 1 says that if we take instead of the
original vector ξ(·), the average along a small piece of a polynomial orbit, then the
new vector has a small L2-norm.

First we will establish an auxiliary statement which is also an almost orthogo-
nality of other polynomial shifts. For a non-constant polynomial q[n] ∈ Z[n] with

5The same is true for a TE set.
6In the case when a sequence depends on many parameters, like in this case j,N, n the L2-norm

is taken with respect to n.
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a positive leading coefficient which has a smaller degree than p(n) and any j ∈ N
we define the vector vqj ∈ L2(p(N)) by

vqj (n) = ξ(n+ q(N + j)), 1 ≤ n ≤ p(N).

Lemma 1. Let ε > 0. With the assumptions as in Proposition 1 and vqj (n) defined
as above there exists J(ε) such that for every J ≥ J(ε) there exists N(J) such that
for every N ≥ N(J) we have ∥∥∥∥∥∥ 1

J

J∑
j=1

vqj

∥∥∥∥∥∥
p(N)

< ε.

Proof. The proof is by induction on deg q(n).

Case deg q(n) = 1: Assume q(x) = ax+ b with a > 0. Then∥∥∥∥∥∥ 1
J

J∑
j=1

vqj

∥∥∥∥∥∥
2

p(N)

=
1

p(N)

p(N)∑
n=1

 1
J

J∑
j=1

ξ(n+ aj)

2

+ δN,J ,

where δN,J → 0 as N →∞ and J is fixed. The latter follows from the assumption
that deg p > deg q. By total ergodicity of the sequence (ξ(n))n∈N there exists a
totally ergodic system (X,BX , µ, T ), a function f ∈ L∞(X) and an f -generic point
x0 ∈ X such that

ξ(n) = f(Tnx0), for all n ∈ N0.

Therefore

(2.1)
1

p(N)

p(N)∑
n=1

 1
J

J∑
j=1

ξ(n+ aj)

2

=
1

p(N)

p(N)∑
n=1

Tn

 1
J

J∑
j=1

T ajf

2

(x0)

The function gJ(x) =
(

1
J

∑J
j=1 T

ajf(x)
)2

is in Af , therefore by f -genericity of the
point x0 we get

1
p(N)

p(N)∑
n=1

TngJ(x0)→
∫
gJdµ, as N →∞.

We claim that gJ converges in L1(X) to zero as J →∞. By f -genericity of x0, i.e.
by identity (1.1), we have

1
J

J∑
j=1

T ajf(x0)→
∫
fdµ, as J →∞.

By f -genericity of x0 the function f has zero integral∫
fdµ = lim

J→∞

1
J

J∑
j=1

f(T jx0) = lim
J→∞

1
J

J∑
j=1

ξ(j) = 0.

By L2-ergodic theorem we have

gJ(x) =
1
J

J∑
j=1

T ajf(x)→
∫
fdµ, as J →∞
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where the convergence is in L2(X). The latter implies that∫
gJdµ→ 0, as J →∞.

By equation (2.1) the latter implies the statement of the lemma. 7

Case deg q(x) > 1:
Let ε > 0. The vectors vqj are uniformly bounded by ‖ξ‖∞. Without loss of
generality assume that ‖ξ‖∞ ≤ 1. Let I = I(ε) be as in the finitary version of van
der Corput lemma (Lemma 5 in the appendix). It is enough to show that there
exists J(I) such that for every J ≥ J(I) there exists N(J) such that for every
N ≥ N(J) and every i : 1 ≤ i ≤ I we have

(2.2)

∣∣∣∣∣∣ 1J
J∑
j=1

〈vqj , v
q
j+i〉p(N)

∣∣∣∣∣∣ < ε

2
.

An easy calculation shows that

1
J

J∑
j=1

〈vqj , v
q
j+i〉p(N) =

1
J

J∑
j=1

1
p(N)

p(N)∑
n=1

ξ(n+ q(N + j))ξ(n+ q(N + j + i))

=
1

p(N)

p(N)∑
n=1

ξ(n)
1
J

J∑
j=1

ξ(n+ q(N + j + i)− q(N + j)) + δN,J,i.

In the last transition we made the change of variables n→ n+ q(N + j) for every
j = 1, . . . , J . For every fixed j the difference between

1
p(N)

p(N)∑
n=1

ξ(n+ q(N + j))ξ(n+ q(N + j + i))

and

1
p(N)

p(N)∑
n=1

ξ(n)ξ(n+ q(N + j + i)− q(N + j))

is going to zero as N → ∞ because deg q < deg p. Therefore we have the latter
identity with δN,J,i → 0 as N →∞ and J, i are fixed.
Denote by wqi,j(n) = ξ(n+ q(N + j + i)− q(N + j)), r(x) = q(x+ i)− q(x). Note
that deg r(x) = deg q(x)−1 and r(x)→∞ as x→∞. By the induction hypothesis
there exists J(i) such that for every J ≥ J(i) there exists N(J, i) such that for
every N ≥ N(J, i) we have

7 Notice that we also proved that for any non-constant polynomial p(n) ∈ Z[n] with a positive
leading coefficient and any a ∈ N, for every ε > 0 there exists J(ε) such that for any J ≥ J(ε)

there exists N(J) such that for every N ≥ N(J) we have

1

p(N)

p(N)X
n=1

0@ 1

J

JX
j=1

ξ(n+ aj)

1A2

< ε.

This statement will be used later on.
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∥∥∥∥∥∥ 1
J

J∑
j=1

wqi,j

∥∥∥∥∥∥
p(N)

<
ε

4

The latter implies that there exists J(I) such that for every J ≥ J(I) there exists
N(J) such that for every N ≥ N(J) we have for every i ∈ {1, 2, . . . , I} the following∥∥∥∥∥∥ 1

J

J∑
j=1

wqi,j

∥∥∥∥∥∥
p(N)

<
ε

4
.

Cauchy-Schwartz inequality implies

∣∣∣∣∣∣ 1J
J∑
j=1

〈vqj , v
q
j+i〉p(N)

∣∣∣∣∣∣ ≤ ‖ξ‖p(N)

∥∥∥∥∥∥ 1
J

J∑
j=1

wqi,j

∥∥∥∥∥∥
p(N)

+ |δN,J,i| =
ε

4
+ |δN,J,i|

for any i ∈ {1, 2, , . . . , I}, J ≥ J(I) and every N ≥ N(J). Taking into account
that δN,J,i → 0 as N → ∞ implies that the inequality (2.2) is fulfilled for all
i ∈ {1, 2, . . . , I}, any J ≥ J(I) and any N ≥ N(J). �

Proof of Proposition 1. Denote by uj(n) = ξ(p(N + j)− n).
Case deg p(x) = 1: Assume p(x) = ax+ b. Then∥∥∥∥∥∥ 1

J

J∑
j=1

uj

∥∥∥∥∥∥
2

p(N)

=
1

aN + b

aN+b∑
n=1

 1
J

J∑
j=1

ξ(n+ aj)

2

+ δN,J ,

where δN,J → 0 as N →∞. One gets the displayed equation by making the change
of variables n→ −n+ aN + b. By the remark in footnote 7 the case deg p(x) = 1
follows immediately.

Case deg p(x) > 1: We use van der Corput lemma (Lemma 5). Without loss of
generality we assume that ‖ξ‖∞ ≤ 1. Let ε > 0. Let I = I(ε) be as in van der
Corput lemma. One sees that

1
J

J∑
j=1

〈uj , uj+i〉p(N) = 〈ξ(n),
1
J

J∑
j=1

ξ(n+ p(N + j + i)− p(N + j))〉p(N) + δN,J,i,

where δN,J,i → 0 as N →∞ and J, i are fixed. One gets the displayed equation by
making the change of variables n→ −n+ p(N + j). By Lemma 1 there exists J(i)
such that for any J ≥ J(i) there exists N(J, i) such that for every N ≥ N(J, i) we
have ∣∣∣∣∣∣〈ξ(n),

1
J

J∑
j=1

ξ(n+ q(N + j))〉p(N)

∣∣∣∣∣∣ ≤ ε

2
.
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The latter implies that there exists J(I) such that for any J ≥ J(I) there exists
N(J) such that for every N ≥ N(J) and every i ∈ {1, 2, . . . , I} we have∣∣∣∣∣∣ 1J

J∑
j=1

〈uj , uj+i〉p(N)

∣∣∣∣∣∣ < ε.

Van der Corput lemma implies the statement of the Proposition. �

3. Orthogonality of polynomial shifts along weakly mixing
sequences

We start with a statement which is analogous to Proposition 1. The only dif-
ference is that we assume that the sequence (ξ(n)) is weakly mixing rather than
totally ergodic. As a consequence we get a stronger conclusion than in Proposition
1.

Proposition 2. Let (ξ(n))n∈N0 be a weakly mixing sequence of zero mean, p1, . . . , pk ∈
Z[n] be essentially distinct polynomials of the same degree d ≥ 1, with positive lead-
ing coefficients such that p1(n) − pi(n) → +∞, ∀1 < i ≤ k as n → ∞. For every
ε > 0 there exists J(ε) such that for any J ≥ J(ε) there exists N(J) such that for
every N ≥ N(J) and any {0, 1}-valued sequence (an)n∈N we have∥∥∥∥∥∥ 1

J

J∑
j=1

aN+jξ(p1(N + j)− n)ξ(p2(N + j)− n) . . . ξ(pk(N + j)− n)

∥∥∥∥∥∥
p1(N)

< ε.

Remark 1. The assumption that all the polynomials have the same degree is made
because otherwise the conclusion of Proposition 2 is trivial. Recall that we assume
that ξ(n) = 0 for n < 0.

To prove Proposition 2 we will need the following claim.

Lemma 2. Let (ξ(n))n∈N0 be a weakly mixing sequence of zero mean, p1, . . . , pk ∈
Z[n] be essentially distinct polynomials, and q(n) ∈ Z[n] be such that for every
i : 1 ≤ i ≤ k we have q(n)

|pi(n)| → ki ∈ (1,+∞] as n → ∞8. For every ε > 0
there exists J(ε) such that for every J ≥ J(ε) there exists N(J) such that for every
N ≥ N(J) and any {0, 1}-valued sequence (an)n∈N we have∥∥∥∥∥∥ 1

J

J∑
j=1

aN+jξ(n− p1(N + j))ξ(n− p2(N + j)) . . . ξ(n− pk(N + j))

∥∥∥∥∥∥
q(N)

< ε.

We will prove a more general statement by using an analog of Bergelson’s PET
induction, see [1]. Let F = {p1, . . . , pk} be a finite set of polynomials and assume
that the largest of the degrees of pi equals d. For every i : 1 ≤ i ≤ d we denote by
ni the number of different groups of polynomials of degree i, where two polynomials
pj1 , pj2 of degree i are in the same group if and only if they have the same leading
coefficient. We will say that (n1, . . . , nd) is the characteristic vector of F .

8We will say that the polynomial q grows faster to infinity than the family {p1, . . . , pk}.
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We prove a more general statement than the statement of the lemma.
Let F(n1, . . . , nd) be the family of all finite sets of essentially distinct polynomials
having characteristic vector (n1, . . . , nd). Consider the following two statements:

L(k;n1, . . . , nd): For every {g1, . . . , gn1 , q1, . . . , ql} ∈ F(n1, . . . , nd), where g1, . . . , gn1

are linear polynomials, q(n) ∈ Z[n] which grows faster to infinity than the family
{g1, . . . , gn1 , q1, . . . , ql}, every (ci)n1

i=1 ∈ (Z \ {0})k and every ε, δ > 0 there exists
H(δ, ε, (ci)) ∈ N such that for every H ≥ H(δ, ε, (ci)) there exists J(H) such that
for every J ≥ J(H) there exists N(J) such that for every N ≥ N(J) for a set of
h ∈ {1, 2, . . . ,H}k of density at least 1− δ for every {0, 1}-valued sequence (an)n∈N
we have9∥∥∥∥∥∥ 1
J

J∑
j=1

aN+j

n1∏
i=1

∏
ε∈{0,1}k

ξ(n− gi(N + j)− (ciε) · h)
l∏
i=1

ξ(n− qi(N + j))

∥∥∥∥∥∥
q(N)

< ε,

where ciε = (ci1ε1, . . . , c
i
kεk) for ci = (ci1, . . . , c

i
k), ε = (ε1, . . . , εk).

L(k;n1, . . . , ni, ni+1, . . . , nd): L(k;n1, . . . , nd) is valid for any n1, . . . , ni.

Lemma 2 is the statement L(0;n1, . . . , nd). In order to prove the latter it is enough
to establish L(k; 1) , ∀k ∈ N0, and to prove the following implications.

Lemma 3.

S.1d : L(k + 1;n1, n2, . . . , nd)⇒ L(k;n1 + 1, n2, . . . , nd).

Lemma 4.
k, n1, . . . , nd−1 ≥ 0, nd ≥ 1, d ≥ 1

S.2d,i : L(0;n1, . . . , ni−1, ni, . . . , nd)⇒ L(k; 0, . . . , 0︸ ︷︷ ︸
i−1 zeros

, ni + 1, ni+1, . . . , nd);

k, n1, . . . , nd−1 ≥ 0, nd ≥ 1, d ≥ i > 1
S.3d : L(k;n1, . . . , nd)⇒ L(k; 0, . . . , 0︸ ︷︷ ︸

d zeros

, 1), k ≥ 0 , d ≥ 1.

Proof of Lemma 3. Let F be a family of essentially distinct polynomials having
the characteristic vector (n1 +1, n2, . . . , nd). Denote the linear polynomials from F
by10 g1(n) = e1n+d1, . . . , gn1+1 = en1+1n+dn1+1. The remaining polynomials in F
we denote by q1, . . . , ql. Let (an)n∈N be a {0, 1}-valued sequence, h ∈ {1, 2, . . . ,H}k
and ci ∈ (Z \ {0})k for 1 ≤ i ≤ n1 + 1. Denote by uj(n) the following vectors:

uj(n) = aN+j

n1+1∏
i=1

∏
ε∈{0,1}k

ξ(n− gi(N + j)− (ciε) · h)
l∏
i=1

ξ(n− qi(N + j)),

n = 1, . . . , q(N).
Denote by bN+j = aN+jaN+j+h, ri(n) = (ei+1 − e1)n+ (di+1 − d1) , i : 1 ≤ i ≤ n1,
si(n) = qi(n)− g1(n) , ti(n) = qi(n+ h)− g1(n) , i : 1 ≤ i ≤ l. Then we have

1
J

J∑
j=1

〈uj , uj+h〉q(N) = δN,J+

9In the case n1 = 0 and k > 0 we require that the similar inequality is true for c1 ∈ (Z\{0})k.
10In any group of degree one there is only one polynomial.
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〈
∏

ε∈{0,1}k

ψ1(n−(ciε)·h),
1
J

J∑
j=1

bN+j

n1∏
i=1

∏
ε∈{0,1}k

ψi2(n−ri(N+j)−(ciε)·h)
l∏
i=1

ψi3(n)〉q(N),

where
ψ1(n) = ξ(n)ξ(n− e1h),

ψi2(n) = ξ(n)ξ(n− ei+1h),

ψi3(n) = ξ(n− si(N + j))ξ(n− ti(N + j)).

Notice that δN,J → 0 as N → ∞. The last identity is produced by use of the
growth condition on q(n) and the change of variables n → n − g1(N + j). For
every i : 1 ≤ i ≤ l the polynomials si, ti are in the same group (they have the
same degree and the same leading coefficient), therefore the characteristic vector
of the family {s1, t1, . . . , sl, tl} is the same as of the family {s1, s2, . . . , sl} and
the latter family has the same characteristic vector as the family {q1, q2, . . . , ql}.
Thus the characteristic vector of the family {r1, . . . , rn1 , s1, t1, . . . , sl, tl} is equal to
(n1, n2, n3, . . . , nd). L(k + 1;n1, . . . , nd), Cauchy-Schwartz inequality and van der
Corput lemma imply the validity of L(k;n1 + 1, n2, . . . , nd). �

Proof of Lemma 4. We will prove only S.2d,i. The statement S.3d is proven
similarly. Suppose that F is a finite set of essentially distinct polynomials and
assume that the characteristic vector of F equals (0, . . . , 0︸ ︷︷ ︸

i−1zeros

, ni + 1, ni+1, . . . , nd).

Fix any of the ni + 1 groups of polynomials of degree i and denote its polynomials
by g1, . . . , gm. Denote the remaining polynomials in F by q1, . . . , ql. Notice that
there are no linear polynomials among the polynomials of F . Let c1 ∈ (Z\{0})k. To
establish L(k; 0, . . . , 0︸ ︷︷ ︸

i−1 zeros

, ni + 1, ni+1, . . . , nd) we have to prove that for every ε, δ > 0

there exists H(ε, δ, c1) such that for every H ≥ H(ε, δ, c1) there exists J(H) such
that for any J ≥ J(H) there exists N(J) such that for every N ≥ N(J) for a set of
h ∈ {1, . . . ,H}k of density which is at least 1−δ and for any {0, 1}-valued sequence
(an)n∈N we have∥∥∥∥∥∥ 1
J

J∑
j=1

aN+j

∏
ε∈{0,1}k

ξ(n− (c1ε) · h)
m∏
c=1

ξ(n− gc(N + j))
l∏

e=1

ξ(n− qe(N + j))

∥∥∥∥∥∥
q(N)

< ε.

Let (an)n∈N be a {0, 1}-valued sequence and h ∈ {1, 2, . . . ,H}k. Denote by

uj(n) = aN+j

m∏
c=1

ξ(n− gc(N + j))
l∏

e=1

ξ(n− qe(N + j)),

w(n) =
∏

ε∈{0,1}k

ξ(n− (c1ε) · h),

vj(n) = w(n)uj(n).

Let ε > 0. Without loss of generality we can assume that ‖ξ‖∞ ≤ 1. This implies
that ‖w‖∞ ≤ 1 and therefore to prove that ‖ 1

J

∑J
j=1 vj‖q(N) < ε it is sufficient to

show that ‖ 1
J

∑J
j=1 uj‖q(N) < ε.
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Let h ≥ 1. A simple routine calculation gives that

1
J

J∑
j=1

〈uj , uj+h〉q(N) = 〈ξ(n),
1
J

J∑
j=1

bN+j

2m+2l−1∏
c=1

ξ(n− rc(N + j))〉q(N) + δN,J ,

where bN+j = aN+jaN+j+h, δN,J → 0 as N →∞ and
rt(n) = gt+1(n)− g1(n) , t : 1 ≤ t ≤ m− 1
rt(n) = qt−(m−1)(n)− g1(n) , t : m ≤ t ≤ m+ l − 1
rt(n) = gt−(m+l−1)(n+ h)− g1(n) , t : m+ l ≤ t ≤ 2m+ l − 1
rt(n) = qt−(2m+l−1)(n+ h)− g1(n) , t : 2m+ l ≤ t ≤ 2m+ 2l − 1.

To get the identity we have used the growth condition on q(n) and the change of
variables n→ n− g1(N + j).
For all but a finite number of h’s the polynomials (rt(n))2m+2l−1

t=1 are essentially
distinct. We notice that if we take two polynomials rt’s from the same group (there
are 4 groups), then their difference is a non-constant because the initial polynomials
are essentially distinct. If we take two polynomials from different groups then
three cases are possible. In the first case the difference of these polynomials is
gt(n+h)− gt(n) or qt(n+h)− qt(n) for some t. The assumption i > 1 implies that
deg (qt),deg (gt) > 1 and from this it follows that gt(n+ h)− gt(n) and qt(n+ h)−
qt(n) are non-constant polynomials. In the second case we get for some t1 6= t2:
gt1(n+h)−gt2(n) or qt1(n+h)−qt2(n). Here we note that the map h 7→ p(n+h) is
an injective map from N to the set of essentially distinct polynomials, if deg (p) > 1.
Thus, for all but a finite number of h’s we get again a non-constant difference. In
the third case we get for some t1, t2: gt1(n+h)− qt2(n) or qt1(n+h)− gt2(n). The
resulting polynomial has the same degree as qt.
The characteristic vector of the set of polynomials {r1, . . . , r2m+2l−1} has the form
(c1, . . . , ci−1, ni, ni+1, . . . , nd). The polynomials from the second and the fourth
group have the same degree as qt and the same leading coefficient as qt if deg (qt) >
deg (g1) and the leading coefficient will be the difference of leading coefficients of
qt and g1 if deg (qt) = deg (g1). The polynomials from the first and the third group
will be of degree smaller than deg (g1).
L(0;n1, . . . , ni−1, ni, . . . , nd)11 and Cauchy-Schwartz inequality imply that for all
but a finite number of h’s there exists J(ε, h) such that for every J ≥ J(ε, h) there
exists N(J) such that for every N ≥ N(J) and any {0, 1}-valued sequence (an)n∈N
we have12 ∣∣∣∣∣∣ 1J

J∑
j=1

〈uj , uj+h〉q(N)

∣∣∣∣∣∣ < ε

2
.

Van der Corput lemma implies that there exists J(ε) such that for every J ≥ J(ε)
there exists N(J) such that for every N ≥ N(J) and any {0, 1}-valued sequence
(an)n∈N we have ∥∥∥∥∥∥ 1

J

J∑
j=1

uj

∥∥∥∥∥∥
q(N)

< ε.

11Notice that for all t the polynomial q(n) grows faster to infinity than rt(n).
12The sequence (an)n∈N is involved in the definition of uj ’s.
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Thus we have shown the validity of L(k; 0, . . . , 0︸ ︷︷ ︸
i−1zeros

, ni + 1, ni+1, . . . , nd). �

Proof of L(k; 1) , ∀k ∈ N0:
Let g1(n) = c1n + d1 with c1 > 0, c1 = (c11, . . . , c

1
k) ∈ (Z \ {0})k and q(n) ∈ Z[n]

with q(n)− g1(n)→∞ as n→∞. We need to prove the following statement.

For every ε, δ > 0 there exists H(δ, ε, c1) such that for every H ≥ H(δ, ε, c1) there
exists J(H) such that for every J ≥ J(H) there exists N(J) such that for every
N ≥ N(J) for a set of (h1, . . . , hk) ∈ {1, . . . ,H}k of density which is at least 1− δ
for any {0, 1}-valued sequence (an)n∈N we have∥∥∥∥∥∥ 1

J

J∑
j=1

aN+j

∏
ε∈{0,1}k

ξ(n− g1(N + j)− ε1c11h1 − . . .− εkc1khk)

∥∥∥∥∥∥
q(N)

< ε.

By total ergodicity of the sequence (ξ(n)n∈N0) there exist a totally ergodic system
(X,BX , µ, T ), a function f ∈ L∞(X) and an f -generic point x0 ∈ X such that

ξ(n) = f(Tnx0), ∀n ∈ N0.

Let (bj)j∈N be a {0, 1}-valued sequence. Then by f -genericity of ξ we have

q(N)
q(N)− g1(N)

∥∥∥∥∥∥ 1
J

J∑
j=1

bj
∏

ε∈{0,1}k

ξ(n− g1(N + j)− ε1c11h1 − . . .− εkc1khk)

∥∥∥∥∥∥
2

q(N)

→

(3.1)∫
X

 1
J

J∑
j=1

bJ+1−jT
c1j

 ∏
ε∈{0,1}k

T ε1c
1
1h1+...+εkc

1
khkf(x)

2

dµ(x) as N →∞.

To get equation (3.1) we used the assumption that q grows faster to infinity than
g1 and we made the change of variables n → n − g1(N + j) − c11h1 − . . . − c1khk.
Denote by gh1,...,hk

the following function on X:

gh1,...,hk
(x) =

∏
ε∈{0,1}k

T ε1h1+...+εkhkf(x).

The following statement is a corollary of Theorem 13.1 of Host and Kra in [5].13

For every ε, δ > 0 there exists H(δ, ε) ∈ N such that for every H ≥ H(δ, ε) for a
set of (h1, . . . , hk) ∈ {1, . . . ,H}k which has density at least 1− δ we have14∣∣∣∣∫

X

gh1,...,hk
(x)dµ(x)

∣∣∣∣ < ε.

13We just used a special case of Theorem 13.1 from [5] for weak mixing systems which is not

hard to prove directly.
14The mean zero of ξ is equivalent to

R
fdµ = 0.



14 ALEXANDER FISH

Let ε, δ > 0. By the foregoing statement there exists H(δ, ε) such that for every
H ≥ H(δ, ε) the set of those (h1, . . . , hk) ∈ {1, . . . ,H}k such that∣∣∣∣∫

X

gh1,...,hk
(x)dµ(x)

∣∣∣∣ <√ε

8

has density at least 1− δ.
For any fixed h = (h1, . . . , hk) Lemma 6 implies that there exists J(ε,h) such that
for every J ≥ J(ε,h) and any {0, 1}-valued sequence (en)n∈N we have∥∥∥∥∥∥ 1

J

J∑
j=1

ejT
c1j

(
gh1,...,hk

(x)−
∫
X

gh1,...,hk
(x)dµ(x)

)∥∥∥∥∥∥
L2(X)

<

√
ε

8
.

Therefore, by merging the last two statements we conclude that there exists H(δ, ε)
such that for every H ≥ H(δ, ε) there exists J(H) such that for every J ≥ J(H)
and for a set of (h1, . . . , hk) ∈ {1, . . . ,H}k which has density at least 1− δ we have∥∥∥∥∥∥ 1

J

J∑
j=1

ejT
c1jgh1,...,hk

(x)

∥∥∥∥∥∥
L2(X)

<

√
ε

2

for any {0, 1}-valued sequence (ej)j∈N.
By making δ smaller we conclude that the same statement is true when we

replace gh1,...,hk
(x) by the function∏

ε∈{0,1}k

T ε1c
1
1h1+...+εkc

1
khkf(x).

By (3.1), the fact that limN→∞
q(N)

q(N)−g1(N) > 0 and the last statement we get that
there exists N(J) such that for every N ≥ N(J), for a set of h ∈ {1, . . . ,H}k of
density 1− δ and every {0, 1}-valued sequence (bj)1≤j≤J we have∥∥∥∥∥∥ 1

J

J∑
j=1

bj
∏

ε∈{0,1}k

ξ(n− g1(N + j)− ε1c11h1 − . . .− εkc1khk)

∥∥∥∥∥∥
q(N)

< ε.

The latter statement implies the validity of L(k; 1).

Proof of Proposition 2. For a family of polynomials F = {p1, . . . , pk} with a maxi-
mal degree d denote by nd the number of different leading coefficients of polynomials
of degree d.
As in the proof of Lemma 2 we fix one of the groups of polynomials of degree d
(all polynomials in the same group have the same leading coefficient). Assume that
the group {g1, . . . , gm} has the maximal leading coefficient among all polynomials
p1, . . . , pk. The rest of the polynomials we denote by q1, . . . , ql. Without loss of
generality assume that p1 = g1, . . . , pm = gm. For any integer j denote by uj the
vector

uj(n) = aN+jξ(p1(N+j)−n)ξ(p2(N+j)−n) . . . ξ(pk(N+j)−n), 1 ≤ n ≤ p1(N).

Denote by ri(n) = p1(n) − qi(n) ; si(n) = p1(n) − qi(n + h) , i : 1 ≤ i ≤ l and
ti(n) = p1(n)− pi(n) ; fi(n) = p1(n)− pi(n+ h) , i : 1 ≤ i ≤ m. Also denote by

ψi(x, y) = ξ(x− ri(y))ξ(x− si(y)), for 1 ≤ i ≤ l.
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For any h ≥ 1 we have

1
J

J∑
j=1

〈uj , uj+h〉p1(N) = δJ,N+

〈ξ(n),
1
J

J∑
j=1

bN+j

m−1∏
i=1

ξ(n− ti+1(N + j))
l∏
i=1

ψi(n,N + j)
m∏
i=1

ξ(n− fi(N + j))〉p1(N),

where bn = anan+h and δJ,N → 0 as N → 0. To get the last identity we have
used the growth condition on p1(n) and we made the change of variables n →
p1(N + j)− n.

For all but a finite number of h’s the polynomials in the family

F̃ = {r1, . . . , rl, s1, . . . , sl, t2, . . . , tm, f1, . . . , fm}

are essentially distinct and p1 grows faster to infinity than any polynomial in F̃ .
For all but a finite number of h’s, by Lemma 2 for any ε > 0 there exists J(ε) such
that for any J ≥ J(ε) there exists N(J) such that for every N ≥ N(J) we have∥∥∥∥∥∥ 1
J

J∑
j=1

bN+j

m−1∏
i=1

ξ(n− ti+1(N + j))
l∏
i=1

ψi(n,N + j)
m∏
i=1

ξ(n− fi(N + j))

∥∥∥∥∥∥
p1(N)

< ε.

Cauchy-Schwartz inequality and van der Corput’s lemma imply the validity of the
statement of the lemma.

�

4. Proof of Theorem 1

We remind the statement.

Theorem 1. Let A ⊂ N be a TE set. Then for any B ⊂ N of positive upper density
and any non-constant polynomial p(n) ∈ Z[n] with a positive leading coefficient we
have (A+B) ∩ {p(n) |n ∈ N} 6= ∅. Moreover, if the lower density of B is positive
then the set Rp = {n ∈ N | p(n) ∈ A+B} has bounded gaps.

Proof. Let B ⊂ N be a set of positive upper density, A ⊂ N be a TE set and
p(n) ∈ Z[n] a non-constant polynomial with a positive leading coefficient. Denote
by (ξ(n))n∈N0 the sequence15

ξ(n) = 1A(n)− d(A).

Denote by c = d(B) > 0, uj(n) = ξ(p(N + j)− n); 1 ≤ n ≤ p(N), 1 ≤ j ≤ J .
If (A + B) ∩ {p(n)|n ∈ N} = ∅ then for any b ∈ B and for all N, j we have
p(N + j)− b 6∈ A. Thus

〈1B ,
1
J

J∑
j=1

uj〉p(N) =
1

p(N)

p(N)∑
n=1

1B(n)
1
J

J∑
j=1

ξ(p(N + j)− n) =

−d(A)
|B ∩ {1, 2, . . . , p(N)}|

p(N)
.

15We assume that ξ(0) = 0.
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Therefore for infinitely many N ’s we have16∣∣∣∣∣∣〈1B , 1
J

J∑
j=1

uj〉p(N)

∣∣∣∣∣∣ ≥ d(A)c
2

.

Cauchy-Schwartz inequality together with Proposition 1 imply a contradiction.

Assume that the lower density of B is positive. If the conclusion of the theorem is
not true then for any J > 0 there exist infinitely many N ’s such that (A + B) ∩
{p(N + 1), . . . , p(N + J)} = ∅. The latter implies that for these N ’s which are
sufficiently large we have

(4.1)

∣∣∣∣∣∣〈1B , 1
J

J∑
j=1

uj〉p(N)

∣∣∣∣∣∣ ≥ d(A)d(B)
2

.

But by Cauchy-Schwartz inequality and Proposition 1 we get that the left hand
side of (4.1) is arbitrary close to zero for sufficiently large J and N > N(J). Thus
we get a contradiction and, therefore, the set

Rp = {n ∈ N | p(n) ∈ A+B}
has bounded gaps. �

5. Proof of Theorem 3

We remind the statement.

Theorem 3. Let A ⊂ N be a WM set, let p1(n), . . . , pk(n) ∈ Z[n] be essentially
distinct polynomials of the same degree with positive leading coefficients, let B ⊂ N
of positive upper density. Then the set

Rp1,...,pk
= {n ∈ N | ∃b ∈ B : p1(n), p2(n), . . . , pk(n) ∈ A+ b}

has lower Banach density 1.

Proof. Let A be a WM set and let p1, . . . , pk ∈ Z[n] be essentially distinct poly-
nomials of the same degree d ≥ 1 with positive leading coefficients. Assume that
for sufficiently large n’s we have p1(n) > pi(n) , ∀i : 2 ≤ i ≤ k. We notice that
n ∈ Rp1,...,pk

if and only if there exists (x, y1, . . . , yk) ∈ B×Ak such that the system

(5.1)


x+ y1 = p1(n)
x+ y2 = p2(n)
. . .
x+ yk = pk(n)

holds. Let F be the set of all n’s for which the statement of the theorem fails.

F = {n ∈ N | for any (x, y1, . . . , yk) ∈ B ×Ak the system (5.1) fails to hold}.
We prove that d∗(F ) = 0. Denote by (an)n∈N the indicator sequence of F , i.e.,
an = 1F (n). Let ξ be the sequence

ξ(n) = 1A(n)− d(A), for all n ∈ N.

16d(B) > 0 implies that there exists a subsequence (Nk)k∈N such that for every k we have
|B∩{1,2,...,p(Nk)}|

p(Nk)
> c

2
. The latter uses that

p(N+1)
p(N)

→ 1 as N →∞.
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Denote by BN,J the following expression

BN,J = 〈1B(n),
1
J

J∑
j=1

aN+j1A(p1(N + j)− n) . . . 1A(pk(N + j)− n)〉p1(N).

Suppose that d∗(F ) > 0. Then for every J there exist intervals (IJ` )`∈N such that
IJ` = {NJ

` +1, . . . , NJ
` +J} and NJ

` →∞ as `→∞. Also we demand from (IJ` )`∈N

that |F∩I
J
` |

J > d∗(F )
2 for J big enough and every `. Denote by

c = min
2≤i≤k

ci
c1
,

where ci is a leading coefficient of polynomial pi.
For i, 0 ≤ i ≤ k − 1 denote by ψj(x, y) and by φj(x, y) the following expressions:

ψj(x, y) =
i∏

m=1

1A(pm(x+ j)− y), φj(x, y) =
k∏

m=i+1

ξ(pm(x+ j)− y).

By Proposition 2 and an induction on i, 0 ≤ i ≤ k − 1 the following statement is
true.

Claim 1: For any ε > 0 there exists J(ε) such that for any J ≥ J(ε) there exists
`(J) such that for every ` ≥ `(J) and any {0, 1}-valued seuquence (bn)n∈N we have17∣∣∣∣∣∣〈1B(n),

1
J

J∑
j=1

bNJ
` +jψj(N

J
` , n)φj(NJ

` , n)〉p1(NJ
` )

∣∣∣∣∣∣ < ε.

To prove the theorem we will use the following statement.
Claim 2: For any ε > 0 there exists J(ε) such that for every J ≥ J(ε) there exists
`(J) such that for every ` ≥ `(J) we have18∣∣∣BNJ

` ,J

∣∣∣ ≥ c(1− ε)d(B)dk(A)
d∗(F )

3
.

Claim 1 for i = k − 1 and an induction on k imply the validity of Claim 2.

By the definition of F it follows that for every J and N the expression BN,J = 0.
The latter contradicts Claim 2. Thus, indeed, we have d∗(F ) = 0. �

6. Appendix

Lemma 5. (van der Corput) Let ε > 0 and (uj)j∈N be a bounded sequence of
vectors in a Hilbert space. There exists I(ε)19 such that for every I ≥ I(ε) there

17The statement is true for any integer k.
18Claim 2 will be wrong if not all the degrees of p1, . . . , pk are the same. Because in the latter

case we cannot use the formula 1A(pi(N + j) − n) = ξ(pi(N + j) − n) − d(A) on a set of n’s of

positive density in {1, . . . , p1(N)}.
19It is very important that I(ε) depends only on ε and the sup norm of the sequence (uj(n))j∈N.

This property is used in an essential way in the proofs.
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exists J(I), such that for any J ≥ J(I) for which we have∣∣∣∣∣∣ 1J
J∑
j=1

〈uj , uj+i〉

∣∣∣∣∣∣ < ε

2
,

for a set of i’s in the interval {1, . . . , I} of density 1− ε
3 the following holds∥∥∥∥∥∥ 1

J

J∑
j=1

uj

∥∥∥∥∥∥ < ε.

This is a finitary modification of Bergelson’s lemma in [1]. Its proof may be
found in [3], Lemma 5.1.
The following lemma is a simple fact that for a weakly mixing system we have a
convergence in L2-norm even of weighted ergodic averages. The precise statement
is the follwoing.

Lemma 6. Let (X,B, µ, T ) be a weakly mixing system and f ∈ L2(X) with
∫
X
fdµ =

0. Let ε > 0. There exists J(ε) such that for any J > J(ε) and any {0, 1}-valued
sequence (bn)n∈N we have ∥∥∥∥∥∥ 1

J

J∑
j=1

bjT
jf

∥∥∥∥∥∥
L2(X)

< ε.

Proof. Weak mixing implies that for any f ∈ L2(X) with
∫
X
fdµ(x) = 0 we have

1
N

N∑
n=1

|〈Tnf, f〉| → 0.

Denote by cn = c(−n) = |〈Tnf, f〉|. Then we have

(6.1)
1
N

N∑
n=1

cn → 0 as N →∞.

Let ε > 0. From (6.1) it follows that there exists J(ε) such that for any J > J(ε)
we have ∥∥∥∥∥∥ 1

J

J∑
j=1

bjT
jf

∥∥∥∥∥∥
2

≤ 1
J2

J∑
j,k=1

bjbkcj−k ≤
1
J2

J∑
j,k=1

cj−k < ε.

�
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