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Abstract

Let P (n, k) denote the set of partitions of [n] = {1, 2, . . . , n} containing exactly k blocks.
Given a partition Π = B1/B2/ · · · /Bk ∈ P (n, k) in which the blocks are listed in increasing order
of their least elements, let π = π1π2 · · · πn denote the canonical sequential form wherein j ∈ Bπj

for all j ∈ [n]. In this paper, we supply an explicit formula for the generating function which
counts the elements of P (n, k) according to the number of strings k1 and r(r + 1), taken jointly,
occurring in the corresponding canonical sequential forms. A comparable formula for the statistics
on P (n, k) recording the number of strings 1k and r(r − 1) is also given which may be extended
to strings r(r − 1) · · · (r − m) of arbitrary length using linear algebra. In addition, we supply
algebraic and combinatorial proofs of explicit formulas for the total number of occurrences of k1
and r(r + 1) within all the members of P (n, k).

2010 Mathematics Subject Classification: Primary 05A18; Secondary 05A15.

1 Introduction

A partition of [n] = {1, 2, . . . , n} is a decomposition of [n] into nonempty subsets called blocks. A
partition with k blocks is also called a k-partition and is denoted by B1/B2/ · · · /Bk, where blocks are
listed in increasing order of their least elements. The set of all partitions of [n] with exactly k blocks
will be denoted by P (n, k) and has cardinality given by S(n, k), the well-known Stirling number of
the second kind [13].

Let us recall two statistics on P (n, k) which were introduced in [8].

Definition 1. Let Π = B1/B2/ · · · /Bk denote a member of P (n, k), where k > 1.

(i) A pair (a, a + 1), a ∈ [n], is called a (linear) connector if a ∈ Bi and a + 1 ∈ Bi+1, i ∈ [k − 1].

(ii) A pair (a, a + 1), a ∈ [n], is called a circular connector if a ∈ Bi and a + 1 ∈ Bi+1, i ∈ [k − 1],

or a ∈ Bk, a + 1 ∈ B1; the pair (n, 1) is a circular connector provided n ∈ Bk.

(iii) We define con(π) as the number of connectors in π, and ccon(π) as the number of cicular con-

nectors in π.

1



Furthermore, we denote the difference ccon(π)−con(π) by cir(π); note that cir(π) counts the number
of elements a ∈ [n] belonging to Bk for which a+1 ∈ B1 (with n being counted whenever n ∈ Bk). For
example, if Π = 1, 6, 8/2, 4/3/5, 7, 9 ∈ P (9, 4), then con(π) = 2, which accounts for (1,2) and (2,3),
ccon(π) = 5, with (5,6), (7,8), and (9,1) the corresponding circular connectors which aren’t linear, and
cir(π) = 3. Note that circular connectors are connectors when the blocks of a partition are arranged
on a circle. The concept of circular connectors may be viewed as an extension to set partitions of the
concept of circular combinations, the study of which was pioneered by Kaplansky [5]: subsets of [n]
are counted according to the number of pairs of elements a, b satisfying b − a ≡ 1 (mod n). See also
the recent related papers by Chen, Wang, and Zhang [1] and Guo [3]. The tables below compare the
arrays for 0 ! " ! n ! 5 obtained by counting the combinations of [n] according to the number of
pairs of consecutive elements (taken in a line or on a circle) and by counting the number of partitions
of [n] according to the number of linear and circular connectors.

n\" 0 1 2 3 4

1 2
2 3 1
3 5 2 1
4 8 5 2 1
5 13 9 6 2 1

n\" 0 1 2 3 4 5

1 2
2 3 0 1
3 4 3 0 1
4 7 4 4 0 1
5 11 10 5 5 0 1

Table 1.1: Number of linear and circular combinations of [n] with " pairs of consecutive elements,
where n = 1, 2, 3, 4, 5.

n\" 0 1 2 3 4

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 16 25 9 1

n\" 0 1 2 3 4 5

1 1
2 1 0 1
3 1 0 3 1
4 1 0 8 4 2
5 1 1 20 15 14 1

Table 1.2: Number partitions of [n] with " linear connectors and " circular connectors, where n =
1, 2, 3, 4, 5.

The study of partition statistics is often motivated by the analogous equidistribution question arising
in the study of permutations statistics (see, e.g., [15]). Accompanying this direction is the invention of
q-analogues for various enumerative functions including the Stirling numbers. Influential papers in this
direction include papers by Sagan [10] and Wachs and White [14]. Here we consider some particular
cases of the general problem of counting the members of a partition class having a restriction imposed
on the relative positions of elements within and among blocks (see, e.g., [2]).

In what follows, we will often represent a partition B1/B2/ · · · /Bk of [n] in the canonical sequential
form π = π1π2 · · ·πn such that j ∈ Bπj

for all j ∈ [n] (see, e.g., [13] for details). For example, if
Π = 1, 4/2, 5, 7/3/6, 8 is a partition of [8], then its canonical sequential form is π = 12312424 and in
such case we write Π = π. Note that π = π1π2 · · ·πn ∈ Pn,k is a restricted growth function from [n] to
[k] (see, e.g., [9] for details), meaning that it satisfies the following three properties: (i) π1 = 1, (ii) π
is onto [k], and (iii) πi+1 ! max{π1,π2, . . . ,πi} + 1 for all i, 1 ! i ! n − 1.
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A rise in a partition Π = B1/B2/ · · · /Bk of [n] is defined as a rise in the corresponding sequential form
π = π1π2 · · ·πn, i.e., an index i < n such that πi < πi+1 (see, e.g., [7]). Note that a connector (a, a+1)
in Π corresponds to a rise at a in π of size 1. If Π is the partition given in the previous paragraph,
then there are rises at positions 1, 2, 4, 5, and 7 in π, but only the first three rises correspond to
connectors in Π. Thus, if π = π1π2 · · ·πn ∈ P (n, k), then con(π) gives the total number of rises in π of
size 1 (i.e., the number of strings r(r +1) in π with r < k− 1), cir(π) gives the number of occurrences
of the string k1 (including πn = k, π1 = 1), and ccon(π) gives the number of occurrences of strings of
either type.

Counting the number of words containing a set of given strings as substrings a certain number of
times is a classical problem in enumerative combinatorics. The problem can, for example, be attacked
using the transfer matrix method (see [12, Section 4.7]). In particular, it is a well-known fact that the
generating function for words avoiding a fixed number of substrings is always rational. For example,
the generating function for the number of words in [3]n in which neither 22 nor 13 appear as two

consecutive digits is given by 3+x−x2

1−2x−x2+x3 .

Here, we consider the problem of counting the substrings 12, 23, . . . , (k − 1)k, k1 within members of
P (n, k), represented canonically as words. Since the number of substrings increases as n and k increase
and since there is a further restriction on the words (see the canonical form described above for set
partitions), it does not seem possible to apply the transfer matrix method in these cases. Instead,
to derive our results, we make use of certain decompositions of set partitions and introduce auxiliary
functions which count certain subsets of the partitions in question. The generating functions that we
find in the end by this method, nonetheless, are rational in all cases.

In particular, we first find an explicit formula for the generating function counting k-partitions of
[n], where k is fixed, according to the cir and con statistics, taken jointly, as requested in [8], which
generalizes several of the formulas found there. In addition, taking special values in this formula
yields expressions for generating functions which count certain restricted classes of partitions (see,
e.g., Corollary 2.8 below). We also find a comparable formula for the generating function which
counts members of P (n, k) according to the number of occurrences of the strings 1k and r(r−1), with
r > 1, which further extends the results in [8]. Using linear algebra, this formula may be generalized
to count members of P (n, k) according to the number of occurrences of the string r(r − 1) · · · (r −m)
of arbitrary length. We note here that there does not appear to be an analogous formula for strings of
the form r(r + 1) · · · (r + m). Furthermore, we provide algebraic and combinatorial proofs of explicit
expressions for the total value of the cir and con statistics taken over all the members of P (n, k) and
provide a bijective proof for a related recurrence, which was requested in [8]. For other examples of
the general problem of enumerating set partitions with respect to special patterns, see, e.g., Sagan
[11], Klazar [6], and Jelinik and Mansour [4] as well as the references contained within [4].

2 Counting rises

2.1 A joint generating function

In this section, we derive an explicit formula for the generating function of the joint distribution
polynomial for the cir and con statistics on P (n, k), as requested in [8], from which several prior
results as well as some new will follow directly as special cases.
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If α ∈ [k]n, then let cir(α) and con(α) denote, respectively, the number of strings in α of the forms
k1 and r(r +1) with r < k. Given n " 0 and k " 2, let Fn,k(p, q) be the joint distribution polynomial
on words α ∈ [k]n for the statistic values cir(kα1) and con(kα1), i.e.,

Fn,k(p, q) :=
∑

α∈[k]n

pcir(kα1)qcon(kα1),

and let Fk(x, p, q) be the corresponding generating function, i.e.,

Fk(x, p, q) :=
∑

n!0

Fn,k(p, q)xn.

Lemma 2.1. If k " 2, then the generating function Fk(x, p, q) for the number of k-ary words α of
length n according to the number of occurrences of the strings k1 and r(r + 1), with r < k, in kα1 is
given by

Fk(x, p, q) =
p + x[(k − 1) − (k − 2 + q)p] + x(1 − p)

(

1−xk−1(q−1)k−1

1+x(p−q)−xk(q−1)k−1(p−1)

)

R

1 − x(k − 1 + q) − x
(

1−xk(q−1)k

1+x(p−q)−xk(q−1)k−1(p−1)

)

R
, (2.1)

where R := (p − 1) + x(1 − q) + x(1 − p)(k − 2 + q).

Proof. We first introduce some auxiliary generating functions. If a ∈ [k], then let F (a) = Fk(x, p, q|a)
denote the generating function for the k-ary words α = α1α2 · · ·αn with α1 = a according to the
number of occurrences of the strings k1 and r(r + 1) in the word kα1. From the definitions, we have

F = p +
k

∑

a=1

F (a), (2.2)

where F = Fk(x, p, q). If a ∈ [k], then let Ga = Ga(x, p, q) denote the joint generating function for
k-ary words α according to the number of occurrences of the strings k1 and r(r + 1) in aα1. From
the definitions, we have

F (1) = xpG1, F (a) = xGa, 2 ! a ! k − 1, and F (k) = xF = xGk. (2.3)

We also have from the definitions,

Ga = 1 +
k

∑

i=1,i#=a+1

xGi + xqGa+1, 1 ! a ! k − 1, (2.4)

with Gk = F .

Combining (2.2) and (2.3) yields

F − p = x
k

∑

i=1

Gi + x(p − 1)G1. (2.5)

Combining (2.4) and (2.5) yields

Ga = 1 + (F − p − x(p − 1)G1 − xGa+1) + xqGa+1, (2.6)
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which we may rewrite as

Ga − x(q − 1)Ga+1 = F + 1 − p − x(p − 1)G1, 1 ! a ! k − 1, (2.7)

with Gk = F . Multiplying the ath equation of (2.7) by [x(q − 1)]a−1 and adding equations yields

G1 − (x(q − 1))k−1F = (F + 1 − p − x(p − 1)G1)

[

1 − (x(q − 1))k−1

1 − x(q − 1)

]

. (2.8)

After some algebra, equation (2.8) may be rewritten as

G1 =

(

1 − xk(q − 1)k

1 + x(p − q) − xk(q − 1)k−1(p − 1)

)

F +
(1 − p)(1 − xk−1(q − 1)k−1)

1 + x(p − q) − xk(q − 1)k−1(p − 1)
. (2.9)

In the lemma that follows we show that

F = p + x[(k − 1) − (k − 2 + q)p] + x(k − 1 + q)F + xRG1, (2.10)

where R := (p − 1) + x(1 − q) + x(1 − p)(k − 2 + q). Solving (2.9) and (2.10) simultaneously for G1

and F yields Lemma 2.1.

Lemma 2.2. We have

F = p + x[(k − 1) − (k − 2 + q)p) + x(k − 1 + q)F + xRG1, (2.11)

where F , R, and G1 are as defined above.

Proof. Adding the equations in (2.4) yields

k
∑

i=1

Gi = (k − 1) + F + x(k − 1)G1 + [x(k − 2) + xq]
k

∑

i=2

Gi. (2.12)

Rewriting the sum of the last two terms on the right side of (2.12), we have

x(k − 1)G1 + [x(k − 2) + xq]
k

∑

i=2

Gi = x(1 − q)G1 + x(k − 2 + q)
k

∑

i=1

Gi

= x(1 − q)G1 + (k − 2 + q)[F − p − x(p − 1)G1],

by (2.5), which implies

k
∑

i=1

Gi = (k − 1) + F + x(1 − q)G1 + (k − 2 + q)[F − p − x(p − 1)G1]. (2.13)

On the other hand, we have
k

∑

i=1

Gi =
F − p

x
− (p − 1)G1, (2.14)

by (2.5). Equating the expressions in (2.13) and (2.14) yields (2.11).
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We can now compute the joint generating function Hk(x, p, q) for k-partitions of [n] according to the
values of the cir and con statistics, i.e.,

Hk(x, p, q) :=
∑

n!0

xn
∑

π∈P (n,k)

pcir(π)qcon(π).

Let BWj(x, q) denote the generating function for the number of j-ary words α of length n according
to the value of con(jα(j + 1)). From the proof of Theorem 2.1 in [8], we have

BWj(x, q) = q − 1 +
1 − xj+1(q − 1)j+1

1 − x(j + q) + x1−xj+1(q−1)j+1

1−x(q−1)

, j " 1. (2.15)

Since each partition π with exactly k blocks can decomposed uniquely as

π = 1w(1)2w(2) · · ·kw(k),

where w(i) is a word over the alphabet [i], combining (2.1) and (2.15) yields an explicit formula for
Hk(x, p, q), as requested in [8].

Theorem 2.3. If k " 2, then the generating function Hk(x, p, q) for the number of partitions of [n]
with k blocks according to the value of the cir and con statistics is given by

Hk(x, p, q) = xkFk(x, p, q)
k−1
∏

j=1

BWj(x, q), (2.16)

where Fk(x, p, q) and BWj(x, q) are given by (2.1) and (2.15), respectively.

Several of the formulas shown in [8] now follow as special cases of (2.16). For example, taking p = 1
in (2.16) yields the generating function Ck(x, q) for the number of partitions of [n] with k blocks
according to the value of con.

Corollary 2.4. If k " 2, then the generating function Ck(x, q) for the number of partitions of [n]
with k blocks according to the number of occurrences of the string r(r + 1), with r ! k − 1, is given by

Ck(x, q) =
xk

1 − x
∑k

i=1
1−xi(q−1)i

1−x(q−1)

k−1
∏

j=1



q − 1 +
1 − xj+1(q − 1)j+1

1 − x(j + q) + x1−xj+1(q−1)j+1

1−x(q−1)



 . (2.17)

Taking q = 1 in (2.16) yields the generating function ACk(x, q) for the number of partitions of [n]
with k blocks according to the value of cir.

Corollary 2.5. If k " 2, then the generating function ACk(x, q) for the number of partitions of [n]
with k blocks according to the value of the cir statistic is given by

ACk(x, q) =
xk

(1 − x)(1 − 2x) · · · (1 − (k − 1)x)

(

q + (k − 2)(1 − q)x

1 − kx + (1 − q)x2

)

. (2.18)

Corollaries 2.4 and 2.5 occur, respectively, as Theorems 2.1 and 5.6 in [8].

Taking p = q in Theorem 2.3 yields an explicit formula for the generating function CCk(x, q) for the
number of partitions of [n] with k blocks according to the value of ccon.
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Corollary 2.6. If k " 2, then the generating function CCk(x, q) for the number of partitions of [n]
with k blocks according to the value of the ccon statistic is given by

CCk(x, q) = xkBVk(x, q)
k−1
∏

j=1

BWj(x, q), (2.19)

where BWj(x, q) is given by (2.15) and

BVk(x, q) :=
q + x[(k − 1) − (k − 2 + q)q] + x(1 − q)2[−1 + x(k − 1 + q)]

(

1−xk−1(q−1)k−1

1−xk(q−1)k

)

1 − x(k − 2 + 2q) − x2(1 − q)(k − 1 + q)
.

We note that formula (2.19) slightly corrects the expression for CCk(x, q) given in Theorem 2.2 of [8].

Let EAk(x) be the generating function for the number of k-partitions of [n] containing exactly one
string of the form a(a + 1) (necessarily 12) and at least one string of the form k1 (which may be
πn = k, π1 = 1). Such partitions are termed essentially arc-connected in [8]. Then EAk(x) can be
obtained from Hk(x, p, q) via the relation

EAk(x) =
Hk(x, p, q)

q
|p=1,q=0 −

Hk(x, p, q)

q
|p=q=0 . (2.20)

Simplifying the right-hand side of (2.20) yields the following explicit formula for EAk(x) which occurs
as Theorem 5.9 in [8].

Corollary 2.7. If k " 2, then the generating function EAk(x) for the number of essentially arc-
connected k-partitions of [n] is given by

EAk(x) = (−1)kx2k−2 (1 − (k − 3)x − (k − 1)x2 + (−x)k+1)2

(1 − x2)(1 − (k − 1)x)(1 − (−x)k)

∏k−1
j=2 (1 − j − jx − (−x)j)

∏k
j=2(1 − (j − 2)x − jx2 + (−x)j+2)

.

(2.21)

One may count other classes of partitions using (2.16) above. For example, let us call a k-partition
of [n] non-connected if it has cir value 0 and con value 1 (i.e., if the only connector is the trivial
connector 12 corresponding to the left-most occurrence of 2). If Nk(x) is the generating function for

the number of non-connected k-partitions of [n], then Nk(x) = Hk(x,p,q)
q

|p=q=0, which implies the
following result, using (2.16).

Corollary 2.8. If k " 2, then the generating function Nk(x) for the number of non-connected k-
partitions of [n] is given by

Nk(x) =
xk

1 − x

(

(k − 2)x + (k − 1)x2 − (−x)k

(1 + x)(1 − (k − 1)x)(1 − (−x)k)

) k−1
∏

j=2

(j − 1)x + jx2 − (−x)j+1

1 − (j − 2)x − jx2 + (−x)j+2
. (2.22)

Let us call a k-partition of [n] truly line-connected if it has cir value 0 and if it contains at least
one occurrence of r(r + 1) for some r ∈ [k − 1] in addition to the 12 corresponding to the left-most
occurrence of 2 (i.e., has con value of at least two). If Tk(x) denotes the corresponding generating
function, then Tk(x) may be given explicitly by Tk(x) = ACk(x, 0)−Nk(x), where ACk(x, q) is given
by (2.18) above.
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2.2 Some combinatorial results

In this section, we find explicit formulas for the total value of the con, cir, and ccon statistics taken
over all the members of P (n, k), providing both algebraic and combinatorial proofs. We first consider
con. Taking the derivative of Ck(x, q) in (2.17) above with respect to q and setting q = 1 gives

d

dq
Ck(x, q) |q=1 =

xk

(1 − x)(1 − 2x) · · · (1 − kx)





(k − 1)x2

1 − kx
+

k−1
∑

j=1

(1 − jx)(1 +
x − x2

(1 − jx)2
)





= Ck(x, 1)





(k − 1)x2

1 − kx
+ (k − 1)x +

k−1
∑

j=1

[

(1 − jx) +
(j − 1)x2

1 − jx

]



 .

Extracting coefficients of xn and using the fact (see, e.g., p. 46 of [12])

Ck(x, 1) =
∑

n!k

S(n, k)xn =
xk

(1 − x)(1 − 2x) · · · (1 − kx)

implies

[xn]
d

dq
Ck(x, q) |q=1 = (k − 1)S(n − 1, k) + (k − 1)

n−2−k
∑

i=0

kiS(n − 2 − i, k)

+
k−1
∑

j=1

(S(n, k) − jS(n − 1, k)) +
k−1
∑

j=1

(j − 1)
n−2−k
∑

i=0

jiS(n − 2 − i, k)

= (k − 1)(S(n − 1, k) + S(n, k)) −

(

k

2

)

S(n − 1, k)

+
k

∑

j=2

(j − 1)
n−2−k
∑

i=0

jiS(n − 2 − i, k).

This yields the following result.

Theorem 2.9. If n " k > 1, then the total con value of all the members of P (n, k) is given by

(k − 1)S(n, k) −

(

k − 1

2

)

S(n − 1, k) +
k

∑

j=2

(j − 1)
n−2−k
∑

i=0

jiS(n − 2 − i, k).

Proof. We may also establish this result directly by counting the total number of strings of the form
r(r + 1) occurring within all the members of P (n, k) as follows. We will call a letter t initial if it
represents the first occurrence of its type in a left-to-right scan of π ∈ P (n, k), represented canonically.
Note first that there are (k−1)S(n−1, k) strings j(j +1) within the members of P (n, k) in which the
letter j +1 is initial but j is not, as seen upon inserting the letter j directly before the first occurrence
of j + 1 within a member of P (n − 1, k) for any j ∈ [k − 1].

We now argue that the total number of strings r(r+1) in which both the letters r and r+1 are initial
is given by (k − 1)S(n, k) −

(

k
2

)

S(n − 1, k). First note that there are clearly a total of (k − 1)S(n, k)
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initial letters less than k occurring within all the members of P (n, k). From this, we subtract the
number of strings of the form ri, within all members of P (n, k), where r ∈ [k− 1] is initial and i ∈ [r].
For each fixed r ∈ [k − 1], there are rS(n− 1, k) such strings within all the members of P (n, k) (upon
inserting a letter i ∈ [r] directly after the first occurrence of r within a member of P (n − 1, k)) and

thus
∑k−1

r=1 rS(n − 1, k) =
(

k
2

)

S(n − 1, k) strings in all.

To complete the proof, we must show that the total number of strings r(r + 1) in which neither r nor
r + 1 is initial is given by

k
∑

j=2

(j − 1)
n−2−k
∑

i=0

jiS(n − 2 − i, k).

Given i and j, where 2 ! i ! n − 2 − k and 2 ! j ! k, consider all the members of Pn,k which may
be decomposed uniquely as

π = π′jαβ, (2.23)

where π′ is a partition with j − 1 blocks, α is a word of length i + 2 in the alphabet [j] whose
last two letters form a string r(r + 1), and β is possibly empty. For example, if i = 2, j = 4, and
π = 121324132345 ∈ P12,5, then π′ = 12132, α = 1323, and β = 45. The total number of strings
r(r + 1) in which neither letter is initial can then be obtained by finding the number of partitions
which may be expressed as in (2.23) for each i and j and then summing over all possible values of i
and j. Note that there are (j − 1)jiS(n − 2 − i, k) members of Pn,k which may be expressed as in
(2.23) since there are ji choices for the first i letters of α, j − 1 choices for the final two letters in α
(as the last letter must exceed its predecessor by one), and S(n − 2 − i, k) choices for the remaining
letters π′jβ which necessarily constitute a partition of an (n − 2 − i)-set into k blocks.

Next, we consider the cir statistic. Taking the q-partial derivative of both sides of (2.18) and setting
q = 1 gives

d

dq
ACk(x, q) |q=1 =

xk

(1 − x)(1 − 2x) · · · (1 − (k − 1)x)

[

1 − (k − 2)x

1 − kx
+

x2

(1 − kx)2

]

= ACk(x, 1)

[

1 − (k − 2)x +
x2

1 − kx

]

,

which implies

[xn]
d

dq
ACk(x, q) |q=1 = S(n, k) − (k − 2)S(n − 1, k) +

n−2−k
∑

i=0

kiS(n − 2 − i, k)

= S(n − 1, k − 1) + 2S(n − 1, k) +
n−2−k
∑

i=0

kiS(n − 2 − i, k),

where we have used the recurrence S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). This yields the following
result.

Theorem 2.10. If n " k > 1, then the total cir value of all the members of P (n, k) is given by

S(n − 1, k − 1) + 2S(n − 1, k) +
n−2−k
∑

i=0

kiS(n − 2 − i, k).
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Proof. We can show this directly by counting the total number of occurrences of the string k1 within
all the members of P (n, k) (counting πn = k, π1 = 1). We first count all k1 strings in which the k
corresponds to the last letter of a partition. In this case, there are S(n−1, k−1) such strings in which
the k is initial and S(n− 1, k) strings in which it is not. There are also S(n− 1, k) strings k1 in which
the k is initial but does not correspond to the final letter of a partition (simply insert 1 directly after
the first occurrence of k within a member of P (n − 1, k)).

To complete the proof, we must show that the total number of strings k1 in which neither k nor 1
is initial is given by

∑n−2−k
i=0 kiS(n − 2 − i, k). Given i, where 0 ! i ! n − 2 − k, consider all the

members of P (n, k) which may be decomposed uniquely as

π = π′kαk1β, (2.24)

where π′ is a partition with k − 1 blocks, α is a k-ary word of length i, and β is possibly empty. The
total number of strings k1 in which neither letter is initial can then be obtained by finding the number
of partitions which may be expressed as in (2.24) for each i and then summing over all i. And there
are kiS(n − 2 − i, k) members of P (n, k) which may be expressed as in (2.24) as there are ki choices
for α and S(n − 2 − i, k) choices for the letters π′kβ.

Taking the derivative in (2.19) or adding the expressions in Theorems 2.9 and 2.10 yields the following
corollary.

Corollary 2.11. If n " k > 1, then the total ccon value of all the members of P (n, k) is given by

kS(n, k) −

((

k

2

)

− 1

)

S(n − 1, k) +
k

∑

j=2

(j − 1 + δj,k)
n−2−k
∑

i=0

jiS(n − 2 − i, k).

We conclude this section by providing a direct proof of a related recurrence. The partition π =
π1π2 · · ·πn ∈ P (n, k), expressed canonically, is said to be purely line-connected if it contains no
occurrences of the string k1 (counting πn = k, π1 = 1), i.e., if its cir value is zero. Let "c(n, k)
denote the number of purely line-connected k-partitions of [n]. The following recurrence for "c(n, k)
was established algebraically in [8] and the question of finding a direct combinatorial proof was raised.
Here we supply the requested proof.

Theorem 2.12. Let n and k be positive integers with k > 1. Then

"c(n, k) = k"c(n − 1, k) − "c(n − 2, k) + (k − 2)S(n − 2, k − 1), n " k + 2, (2.25)

with "c(k, k) = 0 and "c(k + 1, k) = k − 2.

Proof. The boundary conditions are easily seen. To prove the recurrence, let P ∗(n, k) ⊆ P (n, k) denote
the subset of purely line-connected members, where k " 2 and n " k + 2 and let π = π1π2 · · ·πn ∈
P ∗(n, k), represented canonically. If πn−1 = k, where k is initial, then πn ∈ [k]− {1, k}, which implies
that there are (k − 2)S(n− 2, k− 1) such members of P ∗(n, k). So assume that the first k of π occurs
to the left of the (n − 1)st position. In this case, a member π ∈ P ∗(n, k) may be formed from a
member π′ ∈ P ∗(n − 1, k) by adding any letter c ∈ [k − 1] to the end of π′ (to obtain π ∈ P ∗(n, k)
whose second-to-last letter is less than k) or by inserting the letter c = k just before the final letter
of π′ (to obtain π ∈ P ∗(n, k) whose second-to-last letter is k). The latter can be performed provided
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the final letter of π′ is greater than 1. Note that in order for a partition π′ = π′′1 to belong to
P ∗(n− 1, k), we must have π′′ ∈ P ∗(n− 2, k). Subtracting this disallowed case, we see that there are
k"c(n− 1, k)− "c(n− 2, k) members of P ∗(n, k) in which the first k occurs to the left of the (n− 1)st

position, which completes the proof.

Using (2.25), it is possible to obtain Corollary 2.5 above directly in the case when q = 0. On the other
hand, there does not appear to be a comparable recurrence for the number of essentially arc-connected
k-partitions of [n].

3 Counting descents

We first find an explicit formula for the generating function Dk(x, q) for the number of set partitions
of [n] with exactly k blocks according to the number of occurrences of the string r(r − 1) with r > 1.
To obtain Dk(x, q), we must first ascertain the generating function WDk(x, q) for the number of k-ary
words of length n according to the number of occurrences of the string r(r − 1) with r > 1. In order
to do this, we let WDk(x, q|a) be the generating function for the number of k-ary words α1α2 · · ·αn

of length n according to the number of strings r(r − 1) with r > 1 and α1 = a. Clearly, from the
definitions, we have

WDk(x, q) = 1 +
k

∑

i=1

WDk(x, q|i),

WDk(x, q|i) = x(WDk(x, q) − WDk(x, q|i − 1)) + xqWDk(x, q|i − 1), 2 ! i ! k,

with WDk(x, q|1) = xWDk(x, q). By induction on i, this relation implies

WDk(x, q|i) = xWDk(x, q)
1 − (x(q − 1))i

1 − x(q − 1)
, i = 1, 2, . . . , k. (3.1)

Hence, the generating function WDk(x, q) is given by

WDk(x, q) =
1

1 − x
∑k

i=1
1−(x(q−1))i

1−x(q−1)

. (3.2)

Since each set partition π of [n] with exactly k blocks can be decomposed as π = 1w(1)2w(2) · · ·kw(k)

where each w(i) is i-ary, we see that the generating function Dk(x, q) is given by

Dk(x, q) =
k

∏

i=1

WDi(x, q|i),

which, by (3.1) and (3.2), yields the following result.

Theorem 3.1. The generating function Dk(x, q) for the number of partitions of [n] with k blocks
according to the number of occurrences of the string r(r − 1) with r > 1 is given by

Dk(x, q) =
xk

∏k
i=1

(

1 − x
∑i

j=1
1−(x(q−1))j

1−x(q−1)

)

k
∏

i=1

1 − (x(q − 1))i

1 − x(q − 1)
. (3.3)

We now provide two generalizations of Theorem 3.1, one in terms of a bivariate generating function
involving a second parameter and another allowing for strings of arbitrary length.
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3.1 According to the number of strings r(r − 1) and 1k

In this subsection, we extend (3.3) by considering the number of strings r(r − 1) together with the
number of strings 1k on k-partitions of [n] in analogy to section 2.1 above. Let Jk(x, p, q) denote
the generating function for the number of set partitions of [n] with exactly k blocks according to
the number of occurrences of the strings 1k and r(r − 1) with r > 1. Here, we provide an explicit
formula for Jk(x, p, q). We only state the necessary lemmas, the proofs being similar to that given for
Lemma 2.1 above. Several enumerative results will follow from our general formula as special cases.
For example, if one now defines a (circular) connector of a partition B1/B2/ · · · /Bk ∈ P (n, k) to be
some pair (i, i + 1), i < n, for which i ∈ Bj and i + 1 ∈ Bj−1 (where B0 = Bk), then taking p = q in
Jk(x, p, q) yields an explicit formula for the generating function which enumerates members of P (n, k)
according to the number of connectors as defined.

Lemma 3.2. If k " 3, then the generating function WEk(x, p, q) for the number of words kα of length
n, where α is k-ary, according to the number of occurrences of the strings 1k and r(r−1), with r > 1,
is given by

WEk(x, p, q) =
[x + x2(1 − q)]

∑k−1
i=0 xi(q − 1)i

[1 − x(k + q − 1)][1 − xk(q − 1)k−1(p − 1)] + x2(q − p)
∑k−1

i=0 xi(q − 1)i
. (3.4)

Lemma 3.3. If k " 2, then the generating function WD(1)
k (x, q|k) for the number of words kα of

length n, where α is k-ary, according to the number of occurrences of the string r(r − 1), r > 1, in
kα1 is given by

WD(1)
k (x, q|k) =

xk−1(q − 1)k−1[1 − x(k + q − 1)] + x
∑k−1

i=0 xi(q − 1)i

1 − x(k + q − 1) + x2(q − 1)
∑k−1

i=0 xi(q − 1)i
. (3.5)

If k " 3, then the generating function WLk(x, p, q) for the number of words (k − 1)α of length n,
where α is (k − 1)-ary, according to the number of occurrences of the strings 1k and r(r − 1), r > 1,
in (k − 1)αk is given by

WLk(x, p, q) = (p − 1)xWD(1)
k−1(x, q|k − 1) + WDk−1(x, q|k − 1),

or

WLk(x, p, q) =
xk−1(q − 1)k−2(p − 1)[1 − x(k + q − 2)] + [x + x2(p − q)]

∑k−2
i=0 xi(q − 1)i

1 − x(k + q − 2) + x2(q − 1)
∑k−2

i=0 xi(q − 1)i
. (3.6)

Since each π ∈ P (n, k) can be uniquely expressed as π = 1w(1)2w(2) · · · kw(k), where each w(i) is i-ary,
combining (3.1), (3.2), (3.4), and (3.6) yields the following result.

Theorem 3.4. If k " 3, then the generating function Jk(x, p, q) for the number of partitions of [n]
with k blocks according to the number of occurrences of the strings 1k and r(r − 1), r > 1, is given by

Jk(x, p, q) = WEk(x, p, q)WLk(x, p, q)
k−2
∏

i=1

WDi(x, q|i), (3.7)

where WDi(x, q|i), WEk(x, p, q), and WLk(x, p, q) are given, respectively, by (3.1), (3.4), and (3.6).
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Taking p = 1 in (3.7) yields (3.3). Taking q = 1 in (3.7) yields the following corollary.

Corollary 3.5. If k " 3, then the generating function ADk(x, q) for the number of partitions of [n]
with k blocks according to the number of occurrences of the string 1k is given by

ADk(x, q) =
xk

(1 − x)(1 − 2x) · · · (1 − (k − 1)x)

(

1 + (q − 1)x

1 − kx + (1 − q)x2

)

. (3.8)

Taking p = q in (3.7) yields the generating function which counts the members of P (n, k) according
to the number of circular connectors (as defined as the beginning of the section).

Corollary 3.6. If k " 3, then the generating function CDk(x, q) for the number of partitions of [n]
with k blocks according to the number of occurrences of strings of form either 1k or r(r − 1), r > 1,
is given by

CDk(x, q) =
Dk−2(x, q)

1 − x(k + q − 1)

(

xk(q − 1)k−1[1 − x(k + q − 2)] + x2
∑k−2

i=0 xi(q − 1)i

1 − x(k + q − 2) + x2(q − 1)
∑k−2

i=0 xi(q − 1)i

)

, (3.9)

where Dk−2(x, q) is defined by (3.3).

3.2 According to the number of strings r(r − 1) · · · (r − m)

The idea used to establish Theorem 3.1 above may be extended to study the generating function
WDk,m(x, q) for the number of k-ary words of length n according to the number of strings r(r −
1) · · · (r − m) of arbitrary length. More precisely, let WDk,m(x, q|a1a2 · · ·as) denote the generating
function for the number of k-ary words π1π2 · · ·πn of length n according to the number of strings
r(r − 1) · · · (r − m), with r > m and π1 · · ·πs = a1 · · · as. Clearly, from the definitions, we have

WDk,m(x, q) = 1 +
k

∑

i=1

WDk,m(x, q|i), (3.10)

and for all i,

WDk,m(x, q)

= 1 +
k

∑

i=1

WDk,m(x, q|i),

WDk,m(x, q|i)

= x(WDk,m(x, q) − WDk,m(x, q|i − 1)) + WDk,m(x, q|i(i − 1)),

WDk,m(x, q|i(i − 1))

= x2(WDk,m(x, q) − WDk,m(x, q|i − 2)) + WDk,m(x, q|i(i − 1)(i − 2)), (3.11)

...

WDk,m(x, q|i(i − 1) · · · (i − m + 1))

= xm(WDk,m(x, q) − WDk,m(x, q|i − m)) + WDk,m(x, q|i(i − 1) · · · (i − m)),

WDk,m(x, q|i(i − 1) · · · (i − m))

= xqWk,m(x, q|(i − 1)(i − 2) · · · (i − m)).
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In order to find an explicit formula for WDk,m(x, q), we will need the following lemmas.

Lemma 3.7. Fix m " 2 and let Ad,m = (aij) be the d × d matrix, where

aij =







xi−j+1, if i − m + 1 ! j ! i + 1;
xi−j+1qi−m−j+1, if 1 ! j ! i − m;
0, otherwise.

Then the generating function Am(y) =
∑

d!0 det(Ad,m)yd is given by

(1 + xy)(1 + qxy)

1 + qxy + (q − 1)(−xy)m+1
.

Moreover, the determinant of the matrix Ad,m is given by

det(Ad,m) =
∑

j!0

(

d − jm

j

)

qd−jm−j(1 − q)j(−x)d

+ (1 + q)
∑

j!0

(

d − 1 − jm

j

)

qd−1−jm−j(1 − q)j(−x)d−1 (3.12)

+ q
∑

j!0

(

d − 2 − jm

j

)

qd−2−jm−j(1 − q)j(−x)d−2.

Proof. It is not hard to show that the determinant of the matrix Ad,m satisfies

det(Ad,m) = −
m

∑

i=1

(−x)i det(Ad−i,m) −
d

∑

i=m+1

(−x)iqi−m det(Ad−i,m),

with det(A0,m) = 1, det(A1,m) = x and det(Aj,m) = 0 for all j = 2, . . . , m. Multiplying this
recurrence by yd and summing over all possible d " m + 1, we obtain

Am(y) − 1 − xy = xy(Am(y) − 1 − xy)

(

1 − (−xy)m−1

1 + xy

)

− (−xy)m(Am(y) − 1)

− qAm(y)
(−xy)m+1

1 + qxy
,

which is equivalent to

Am(y) =
(1 + xy)(1 + qxy)

1 + qxy + (q − 1)(−xy)m+1
.

Finding the coefficient of yd in

Am(y) = (1 + xy)(1 + qxy)
∑

i!0

(x(q − 1)(−xy)m − qx)iyi

= (1 + xy)(1 + qxy)
∑

i!0

i
∑

j=0

(

i

j

)

qi−j(1 − q)j(−x)i+jmyi+jm
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yields

det(Ad,m) =
∑

j!0

(

d − jm

j

)

qd−jm−j(1 − q)j(−x)d

+ (1 + q)
∑

j!0

(

d − 1 − jm

j

)

qd−1−jm−j(1 − q)j(−x)d−1

+ q
∑

j!0

(

d − 2 − jm

j

)

qd−2−jm−j(1 − q)j(−x)d−2,

as claimed.

Lemma 3.8. Fix m " 2 and let Bd,m = Bd,m(α1, . . . ,αd) = (bij) be the d × d matrix, where

bij =















xi−j , if i − m ! j ! i and j < d;
xi−jqi−j−m, if 1 ! j ! i − m − 1;
αi, if j = d;
0, otherwise.

Then the determinant of the matrix Bd,m is given by

d
∑

j=1

(−1)d+jαj det(Ad−j,m),

where the determinant det(Ad−j,m) is given in Lemma 3.7.

Proof. This follows from expanding the determinant along the final column.

Now we can find the generating function WDk,m(x, q) for m " 2. Induction on i, using (3.11), yields

WDk,m(x, q|i(i − 1) · · · (i − (m − 1))) = xm
i−m
∑

j=0

(xq)j(WDk,m(x, q) − WDk,m(x; q|i − m − j)),

for all i " m (take WDk,m(x, q|j) to be zero if j < 1). Again using (3.11), we obtain

WDk,m(x, q|i)

=
m−1
∑

j=1

xj(WDk,m(x, q) − WDk,m(x, q|i − j)) + xm
i−m
∑

j=0

(xq)j(WDk,m(x, q) − WDk,m(x, q|i − m − j)),

for all i " m, with the initial conditions WDk,m(x, q|i) = xWDk,m(x, q) for i = 1, 2, . . . , m − 1. We
may rewrite these equations for m ! i ! k in matrix form as

WDk;m







WDk,m(x, q|m)
...

WDk,m(x, q|k)






=







βm

...
βk






WDk,m(x, q), (3.13)
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where WDk,m = (wij)1"i,j"k−m+1 is a (k − m + 1) × (k − m + 1) matrix defined by

wij =







xi−j , if i − m ! j ! i;
xi−jqi−j−m, if 1 ! j ! i − m − 1;
0, otherwise,

and

βi =
m−1
∑

j=1

xj + xm
i−m
∑

j=0

(xq)j − x
m−1
∑

j=i−m+1

xj − xm+1
i−m−1
∑

j=max{i−2m+1, 0}

(xq)j , i = m, m + 1, . . . , k.

(3.14)

Theorem 3.9. If k " m " 2, then the generating function WDk,m(x, q) is given by

1

1 − (m − 1)x −
∑k−m

i=0

∑i
j=0(−1)i+jβm+j det(Ai−j,m)

.

Furthermore, the generating function WDk,m(x, q|i) is given by xWDk,m(x, q) for i = 1, 2, . . . , m− 1
and

WDk,m(x, q|i) = WDk,m(x, q)
i+1−m
∑

j=1

(−1)i−1−m+jβm−1+j det(Ai+1−m−j,m)

for i = m, m + 1, . . . , k, where βi is defined by (3.14).

Proof. Cramer’s rule, together with Lemmas 3.7 and 3.8, yields

WDk,m(x, q|i) = det(Bi+1−m,m(βm, . . . ,βi))WDk,m(x, q)

= WDk,m(x, q)
i+1−m
∑

j=1

(−1)i−1−m+jβm−1+j det(Ai+1−m−j,m), (3.15)

where i = m, m + 1, . . . , k, and

det(Ad,m) =
∑

j!0

(

d − jm

j

)

qd−jm−j(1 − q)j(−x)d

+ (1 + q)
∑

j!0

(

d − 1 − jm

j

)

qd−1−jm−j(1 − q)j(−x)d−1

+ q
∑

j!0

(

d − 2 − jm

j

)

qd−2−jm−j(1 − q)j(−x)d−2.

Combining (3.10) and (3.15), and noting WDk,m(x, q|i) = xWDk,m(x, q) for all i = 1, 2, . . . , m − 1,
yields the desired result.

Since each set partition π of [n] with exactly k blocks can be decomposed as π = 1w(1)2w(2) · · ·kw(k),
where each w(i) is i-ary, we see that the generating function Dk,m(x, q) for the number of set partitions
of [n] according to the number of strings r(r − 1) · · · (r − m) with r > m is given by

Dk,m(x, q) =
k

∏

i=1

WDi,m(x, q|i),
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which, by the above theorem, yields the following result.

Theorem 3.10. If m " 2, then the generating function for the number of partitions of [n] with k
blocks according to the number of occurrences of the string r(r − 1) · · · (r −m) with r > m is given by

Dk,m(x, q) =
k

∏

i=1

WDi,m(x, q|i),

where WDi,m(x, q|i) = x
1−ix

when i < m and is given by Theorem 3.9 when i " m.
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