GENERALIZATION OF A STATISTIC ON LINEAR DOMINO ARRANGEMENTS

TOUFIK MANSOUR AND MARK SHATTUCK

Abstract

In this paper, we generalize an earlier statistic on square-and-domino tilings by considering only those squares covering a multiple of k, where k is a fixed positive integer. We consider the distribution of this statistic jointly with the one that records the number of dominos in a tiling. We derive both finite and infinite sum expressions for the corresponding joint distribution polynomials, the first of which reduces when $k=1$ to a prior result. The cases $q=0$ and $q=-1$ are noted for general k. Finally, the case $k=2$ is considered specifically, where further results may be given, including a combinatorial proof when $q=-1$.

1. Introduction

Let F_{n} be the Fibonacci number defined by the recurrence $F_{n}=F_{n-1}+F_{n-2}$ if $n \geq 2$, with initial conditions $F_{0}=0$ and $F_{1}=1$. See, for example, sequence A000045 in [12]. Let $G_{n}=G_{n}(t)$ be the Fibonacci polynomial defined by $G_{n}=G_{n-1}+t G_{n-2}$ if $n \geq 2$, with $G_{0}=0$ and $G_{1}=1$; note that $G_{n}(1)=F_{n}$ for all n. See, for example, [10]. Finally, the q-binomial coefficient $\binom{x}{k}_{q}$ is defined by

$$
\binom{x}{k}_{q}= \begin{cases}\prod_{i=1}^{k} \frac{1-q^{x-i+1}}{1-q^{i}}, & \text { if } k \geq 0 \\ 0, & \text { if } k<0\end{cases}
$$

Polynomial generalizations of F_{n} have arisen in connection with statistics on binary words [3], Morse code sequences [4], lattice paths [5], and linear domino arrangements $[10,11]$. Let us recall now a statistic related to domino arrangements. If $n \geq 1$, then let \mathscr{F}_{n} denote the set of coverings of the numbers $1,2, \ldots, n$, arranged in a row by indistinguishable dominos and indistinguishable squares, where pieces do not overlap, a domino is a rectangular piece covering two numbers, and a square is a piece covering a single number. The members of \mathscr{F}_{n} are also called (linear) tilings or domino arrangements. (If $n=0$, then \mathscr{F}_{0} consists of the empty tiling having length zero.)

Note that members of \mathscr{F}_{n} correspond uniquely to words in the alphabet $\{d, s\}$ comprising $i d$'s and $n-2 i s$'s for some $i, 0 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$. In what follows, we will frequently identify tilings c by such words $c_{1} c_{2} \cdots$. For example, if $n=4$, then $\mathscr{F}_{4}=\{d d, d s s, s d s, s s d, s s s s\}$. Note that $\left|\mathscr{F}_{n}\right|=F_{n+1}$ for all n. Given $\pi \in \mathscr{F}_{n}$, let $\rho(\pi)$ denote the sum of the numbers covered by squares in π. For example, if $n=15$ and $\pi=s d s^{2} d^{2} s d^{2} s \in \mathscr{F}_{15}$ (see Figure 1 below), then $\rho(\pi)=1+4+5+10+15=35$.

Figure 1. The tiling $\pi=s d s^{2} d^{2} s d^{2} s \in \mathscr{F}_{15}$ has $\rho(\pi)=35$.
Date: 2013-06-14.
2000 Mathematics Subject Classification. 11B39, 05A15.
Key words and phrases. tilings, Fibonacci numbers, polynomial generalization.

The statistic ρ was introduced in [11], where its distribution was studied on r-mino arrangements. Let $v(\pi)$ denote the number of dominos in the tiling π. Then the joint distribution for the ρ and v statistics on \mathscr{F}_{n} is given by

$$
\begin{equation*}
\sum_{\pi \in \mathscr{F}_{n}} q^{\rho(\pi)} t^{\nu(\pi)}=\sum_{j=0}^{n} q^{\binom{n-2 j+1}{2}}\binom{n-j}{j}_{q^{2}} t^{j}, \quad n \geq 0 \tag{1}
\end{equation*}
$$

where q and t are indeterminates. Equation (1) is the $r=2$ case (corresponding to square-and-domino tilings) of [11, Theorem 2.1], which is a result on more general r-mino arrangements. Here, we will provide a different generalization of (1). Note that (1) reduces to the well-known formula $F_{n+1}=\sum_{j=0}^{n}\binom{n-j}{j}$ when $q=t=1$.

Recently, generalizations of the Fibonacci sequence have been studied which specify the recurrence for each value of the index $\bmod k$, where k is a fixed positive integer. For example, the recurrence

$$
\begin{equation*}
Q_{m}=a_{j} Q_{m-1}+b_{j} Q_{m-2}, \quad m \equiv j(\bmod k), \tag{2}
\end{equation*}
$$

with $Q_{0}=0$ and $Q_{1}=1$, was considered in [8], where a Binet-like formula is derived. See also [6] for the case when $b_{j}=1$ for all j and [13] for the case $k=2$. These generalizations so far have been studied primarily from an algebraic standpoint such as through the use of generating functions [6] or orthogonal polynomials [8]. In [7], a special case of (2) and a closely related sequence are studied from a more combinatorial viewpoint in terms of statistics on linear tilings and new generalizations of F_{n} are obtained which extend prior ones.

In this paper, we continue this study by considering a generalization of the ρ statistic defined above, where one looks only at squares that cover multiples of k. More precisely, let ρ_{k} record the sum divided by k of all the multiples of k which are covered by squares within a member of \mathscr{F}_{n}. Note that ρ_{k} reduces to ρ when $k=1$.

In the next section, we obtain an explicit formula for all k (see Theorem 2.2 below) for the joint distribution

$$
a_{n}^{(k)}(q, t):=\sum_{\pi \in \mathscr{F}_{n}} q^{\rho_{k}(\pi)} t^{v(\pi)} .
$$

This yields an infinite family of q-generalizations for the numbers $G_{n}(t)$ defined above, and setting $q=1$ yields seemingly new expressions for $G_{n}(t)$. When $k=1$ in our formula, we obtain the explicit expression (1) above, but with a different proof than that given in [11]. We also note some special cases of q and provide an infinite expansion for $a_{n}^{(k)}(q, t)$ (see Theorem 2.7 below). In the third section, we consider specifically the case $k=2$, where further combinatorial results may be given. In particular, we provide a combinatorial proof explaining the values of $a_{n}^{(2)}(-1,1)$ as well as an explicit expression for the sum of the ρ_{2} values taken over all the members of \mathscr{F}_{n}. Note that ρ_{2} records half the sum of the even numbers covered by squares within a tiling.

2. General formulas

Suppose k is a fixed positive integer. Given $\pi \in \mathscr{F}_{n}$, let $v(\pi)$ denote the number of dominos of π and let $\rho_{k}(\pi)$ denote the sum divided by k of all the multiples of k covered by squares of π. For example, if $\pi=s^{2} d^{3} s d s d s d^{2} s^{2} d^{2} \in \mathscr{F}_{25}$ (see Figure 2 below), then $v(\pi)=9$ and

$$
\rho_{3}(\pi)=\frac{9+12+15+21}{3}=19 .
$$

If q and t are indeterminates, then define the distribution polynomial $a_{n}^{(k)}(q, t)$ by

$$
a_{n}^{(k)}(q, t):=\sum_{\pi \in \mathscr{F}_{n}} q^{\rho_{k}(\pi)} t^{v(\pi)}, \quad n \geq 1,
$$

with $a_{n}^{(0)}(q, t):=1$. For example, if $n=6$ and $k=3$, then

$$
a_{6}^{(3)}(q, t)=2 t^{2}+t^{3}+q(1+t)\left(t+2 q t+q^{2}+q^{2} t\right) .
$$

Note that $a_{n}^{(k)}(1, t)=G_{n+1}$ for all k and n.

Figure 2. The tiling $\pi=s^{2} d^{3} s d s d s d^{2} s^{2} d^{2} \in \mathscr{F}_{25}$ has $\rho_{3}(\pi)=19$.
In what follows, we will often suppress arguments and write a_{n} for $a_{n}^{(k)}(q, t)$. Considering whether the last piece within a member of \mathscr{F}_{n} is a square or a domino yields the recurrence

$$
\begin{equation*}
a_{n}=q^{\frac{n}{k}} a_{n-1}+t a_{n-2}, \quad n \geq 2, \tag{3}
\end{equation*}
$$

if n is divisible by k, and the recurrence

$$
\begin{equation*}
a_{n}=a_{n-1}+t a_{n-2}, \quad n \geq 2, \tag{4}
\end{equation*}
$$

if n is not, with the initial conditions $a_{0}=1$ and

$$
a_{1}= \begin{cases}q, & \text { if } k=1 \\ 1, & \text { if } k>1\end{cases}
$$

To solve recurrences (3) and (4), we first ascertain an explicit formula for the generating function of the numbers a_{n}.

Theorem 2.1. We have

$$
\begin{equation*}
\sum_{n \geq 0} a_{n} x^{n}=\left(\sum_{r=0}^{k-1} x^{r} G_{r+1}-t x^{k} \sum_{r=0}^{k-1}(-t x)^{r} G_{k-1-r}\right) \sum_{j \geq 0} \frac{\left.G_{k}^{j} q^{(j+1} 2_{2}\right)}{} x^{j k} . \tag{5}
\end{equation*}
$$

Proof. It is more convenient to first consider the generating function for the numbers $a_{n}^{\prime}:=$ $a_{n-1}^{(k)}(q, t)$. Then the sequence a_{n}^{\prime} has initial values $a_{0}^{\prime}=0$ and $a_{1}^{\prime}=1$ and satisfies the recurrences

$$
\begin{equation*}
a_{m k+r}^{\prime}=a_{m k+r-1}^{\prime}+t a_{m k+r-2}^{\prime}, \quad 2 \leq r \leq k \quad \text { and } \quad m \geq 0, \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{m k+1}^{\prime}=q^{m} a_{m k}^{\prime}+t a_{m k-1}^{\prime}, \quad m \geq 1 \tag{7}
\end{equation*}
$$

Let

$$
a_{r}(x)=\sum_{m \geq 0} a_{m k+r}^{\prime} x^{m}
$$

where $r \in[k]$. Then multiplying the recurrences (6) and (7) by x^{m}, and summing the first over $m \geq 0$ and the second over $m \geq 1$, gives

$$
\begin{aligned}
& a_{r}(x)=a_{r-1}(x)+t a_{r-2}(x), \quad 3 \leq r \leq k, \\
& a_{2}(x)=a_{1}(x)+t x a_{k}(x), \\
& a_{1}(x)=1+q x a_{k}(q x)+t x a_{k-1}(x) .
\end{aligned}
$$

By induction on r, we obtain

$$
a_{r}(x)=G_{r-1} a_{2}(x)+t G_{r-2} a_{1}(x), \quad 2 \leq r \leq k
$$

Therefore,

$$
a_{r}(x)=G_{r-1}\left(a_{1}(x)+t x a_{k}(x)\right)+t G_{r-2} a_{1}(x)
$$

which implies

$$
\begin{equation*}
a_{r}(x)=G_{r} a_{1}(x)+t x G_{r-1} a_{k}(x), \quad 2 \leq r \leq k \tag{8}
\end{equation*}
$$

Taking $r=k$ in (8) gives

$$
a_{1}(x)=\frac{1-t x G_{k-1}}{G_{k}} a_{k}(x)
$$

By induction on r, we obtain

$$
a_{r}(x)=\frac{G_{r}+(-t)^{r} x G_{k-r}}{G_{k}} a_{k}(x), \quad 1 \leq r \leq k
$$

Since $a_{1}(x)=1+q x a_{k}(q x)+t x a_{k-1}(x)$, the last relation may be rewritten as

$$
\begin{equation*}
a_{k}(x)=\frac{G_{k}}{1-2 t x G_{k-1}+(-t)^{k} x^{2}}+\frac{q x G_{k}}{1-2 t x G_{k-1}+(-t)^{k} x^{2}} a_{k}(q x) \tag{9}
\end{equation*}
$$

Iterating (9) yields

$$
a_{k}(x)=\sum_{j \geq 0} \frac{G_{k}^{j+1} q^{\left({ }_{2}^{+1}\right)} x^{j}}{\prod_{i=0}^{j}\left(1-2 t q^{i} x G_{k-1}+(-t)^{k} q^{2 i} x^{2}\right)}
$$

Thus, we have

$$
a_{r}(x)=\left(G_{r}+(-t)^{r} x G_{k-r}\right) \sum_{j \geq 0} \frac{G_{k}^{j} q^{\left({ }_{2}^{j+1}\right)} x^{j}}{\prod_{i=0}^{j}\left(1-2 t q^{i} x G_{k-1}+(-t)^{k} q^{2 i} x^{2}\right)}, \quad 1 \leq r \leq k
$$

which implies

$$
\begin{aligned}
\sum_{n \geq 0} a_{n}^{\prime} x^{n} & =\sum_{r=1}^{k} \sum_{m \geq 0} a_{m k+r}^{\prime} x^{m k+r}=\sum_{r=1}^{k} x^{r} a_{r}\left(x^{k}\right) \\
& =\left(\sum_{r=1}^{k} x^{r} G_{r}+x^{k} \sum_{r=1}^{k}(-t x)^{r} G_{k-r}\right) \sum_{j \geq 0} \frac{G_{k}^{j} q^{\left(c_{2}^{j+1}\right)} x^{j k}}{\prod_{i=0}^{j}\left(1-2 t q^{i} x^{k} G_{k-1}+(-t)^{k} q^{2 i} x^{2 k}\right)}
\end{aligned}
$$

The result now follows since

$$
\sum_{n \geq 0} a_{n} x^{n}=\sum_{n \geq 0} a_{n+1}^{\prime} x^{n}=\frac{1}{x} \sum_{n \geq 0} a_{n}^{\prime} x^{n}
$$

We now derive an explicit formula for the polynomials $a_{n}^{(k)}(q, t)$.
Theorem 2.2. If $n=k m+r$, where $m \geq 0$ and $0 \leq r \leq k-1$, then

$$
\begin{equation*}
a_{n}=G_{r+1} S(m)+(-t)^{r+1} G_{k-1-r} S(m-1) \tag{10}
\end{equation*}
$$

where

$$
S(m)=\sum_{j=0}^{m}(-1)^{k j} G_{k}^{j} q^{\binom{j+1}{2}} t^{m-(k-1) j} \sum_{a=j}^{m} d_{+}^{a} d_{-}^{m+j-a}\binom{a}{j}_{q}\binom{m+j-a}{j}_{q}, \quad m \geq 0
$$

with $S(-1)=0$ and

$$
d_{ \pm}=G_{k-1} \pm \sqrt{G_{k} G_{k-2}}
$$

Proof. Note first that

$$
d_{ \pm}=G_{k-1} \pm \sqrt{G_{k-1}^{2}-(-t)^{k-2}}
$$

by the identity $G_{m}^{2}-G_{m+1} G_{m-1}=(-t)^{m-1}$, which can be shown by induction (see, e.g., [2, Identity 8] for the $t=1$ case). Then

$$
1-2 t q^{i} x G_{k-1}+(-t)^{k} q^{2 i} x^{2}=\left(1-d_{+} t q^{i} x\right)\left(1-d_{-} t q^{i} x\right)
$$

Let $n=m k+r$, where $m \geq 0$ and $0 \leq r \leq k-1$. By Theorem 2.1, we have

$$
a_{n}=G_{r+1}\left[x^{m}\right](a(x))+(-t)^{r+1} G_{k-1-r}\left[x^{m-1}\right](a(x)),
$$

where

$$
a(x)=\sum_{j \geq 0} \frac{G_{k}^{j} q^{\left(\frac{(+1}{2}\right)} x^{j}}{\prod_{i=0}^{j}\left(1-2 t q^{i} x G_{k-1}+(-t)^{k} q^{2 i} x^{2}\right)} .
$$

Using the expansion [1]

$$
\frac{y^{j}}{\prod_{i=0}^{j}\left(1-q^{i} y\right)}=\sum_{a \geq j}\binom{a}{j}_{q} y^{a}
$$

and the fact $d_{+} d_{-}=(-t)^{k-2}$, we have

$$
\left.\begin{array}{rl}
{\left[x^{m}\right](a(x))} & =\sum_{j \geq 0}\left[x^{m}\right]\left(\frac{G_{k}^{j} q^{\left(j_{2}^{j+1}\right)} x^{j}}{\prod_{i=0}^{j}\left(1-d_{+} t q^{i} x\right)\left(1-d_{-} t q^{i} x\right)}\right.
\end{array}\right) .
$$

which completes the proof.
Letting $k=1$ in Theorem 2.2 gives the following expression for $a_{n}^{(1)}(q, t)$.
Corollary 2.3. If $n \geq 0$, then

$$
\begin{equation*}
a_{n}^{(1)}(q, t)=\sum_{j=0}^{n} q q_{2}^{\left(n_{2}^{2 j+1}\right)}\binom{n-j}{j}_{q^{2}} t^{j} . \tag{11}
\end{equation*}
$$

Proof. When $k=1$, we have $d_{ \pm}= \pm \frac{1}{\sqrt{t}}$ since $G_{0}=0$ and $G_{-1}=\frac{1}{t}$. Taking $k=1$ in (10) then gives

$$
\begin{aligned}
& a_{n}^{(1)}(q, t)=S(n)=\sum_{j=0}^{n}(-1)^{j} q^{\binom{(+1}{2}} t^{n} \sum_{a=j}^{n}\left(\frac{1}{\sqrt{t}}\right)^{a}\binom{a}{j}_{q} \cdot(-1)^{n+j-a}\left(\frac{1}{\sqrt{t}}\right)^{n+j-a}\binom{n+j-a}{j}_{q} \\
& =\sum_{j=0}^{n} q^{\binom{j+1}{2}} t^{\frac{n-j}{2}} \sum_{a=j}^{n}(-1)^{n-a}\binom{a}{j}_{q}\binom{n+j-a}{j}_{q} \\
& =\sum_{j=0}^{n} q\left(\begin{array}{c}
\binom{-j+1}{2}
\end{array} t^{\frac{j}{2}} \sum_{a=n-j}^{n}(-1)^{n-a}\binom{a}{n-j}_{q}\binom{2 n-j-a}{n-j}_{q}\right. \\
& =\sum_{j=0}^{n}(-1)^{j} q^{(n-j+1)} t^{\frac{j}{2}} \sum_{a=0}^{j}(-1)^{a}\binom{a+n-j}{n-j}_{q}\binom{n-a}{n-j}_{q} \\
& \left.=\sum_{\substack{j=0 \\
j \text { even }}}^{n}(-1)^{j} q^{\left(n_{2}^{n-j+1}\right)}\binom{n-j / 2}{n-j}_{q^{2}} t^{\frac{j}{2}}=\sum_{j=0}^{n} q q^{(n-2 j+1}\right)\binom{n-j}{j}_{q^{2}} t^{j},
\end{aligned}
$$

where we have used the identity

$$
\sum_{a=0}^{n-m}(-1)^{a}\binom{a+m}{m}_{q}\binom{n-a}{m}_{q}=\left\{\begin{array}{ll}
\left(\frac{n+m}{2}\right)_{q^{2}}, & \text { if } n \equiv m(\bmod 2) ; \tag{12}\\
0, & \text { otherwise, }
\end{array} \quad(0 \leq m \leq n)\right.
$$

Note that (12) may be obtained by writing

$$
\begin{aligned}
\sum_{a \geq 0}(-1)^{a}\binom{a+m}{m}_{q} x^{a} \cdot \sum_{a \geq 0}\binom{a}{m}_{q} x^{a} & =\frac{1}{\prod_{i=0}^{m}\left(1+q^{i} x\right)} \cdot \frac{x^{m}}{\prod_{i=0}^{m}\left(1-q^{i} x\right)}=\frac{x^{m}}{\prod_{i=0}^{m}\left(1-q^{2 i} x^{2}\right)} \\
& =\sum_{a \geq 0}\binom{a+m}{m}_{q^{2}} x^{2 a+m},
\end{aligned}
$$

and extracting the coefficient of x^{n} from both sides.

Remark: Formula (11) corresponds to the $r=2$ case of [11, Theorem 2.1], which is a result on more general r-mino arrangements where no restriction is placed on the positions of r-minos or squares. The proof there was combinatorial, though it does not seem that it can be extended to prove Theorem 2.2 above.

Taking $q=1$ and $r=k-1$ in (10), and noting $a_{n}^{(k)}(1, t)=G_{n+1}$, yields the following identity.

Corollary 2.4. If $m \geq 0$ and $k \geq 1$, then

$$
\begin{equation*}
G_{(m+1) k}=G_{k} \sum_{j=0}^{k}(-1)^{k j} G_{k}^{j} t^{m-(k-1) j} \sum_{a=j}^{m} d_{+}^{a} d_{-}^{m+j-a}\binom{a}{j}\binom{m+j-a}{j} \tag{13}
\end{equation*}
$$

where $d_{ \pm}=G_{k-1} \pm \sqrt{G_{k} G_{k-2}}$.
We have the following explicit formula for the number of members of \mathscr{F}_{n} (weighted according to the value of v) in which no square covers a multiple of k.

Corollary 2.5. If $n=k m+r$, where $m \geq 0$ and $0 \leq r \leq k-1$, then

$$
\begin{equation*}
a_{n}^{(k)}(0, t)=t^{m} G_{r+1} T(m)+(-1)^{r+1} t^{m+r} G_{k-1-r} T(m-1), \tag{14}
\end{equation*}
$$

where

$$
T(m)=\sum_{i=0}^{m}\binom{m+1}{2 i+1} G_{k-1}^{m-2 i}\left(G_{k} G_{k-2}\right)^{i} .
$$

Proof. Setting $q=0$ in (10) implies

$$
a_{m k+r}^{(k)}(0, t)=t^{m} G_{r+1} \sum_{a=0}^{m} d_{+}^{a} d_{-}^{m-a}+(-1)^{r+1} t^{m+r} G_{k-1-r} \sum_{a=0}^{m-1} d_{+}^{a} d_{-}^{m-1-a}
$$

with

$$
\sum_{a=0}^{m} d_{+}^{a} d_{-}^{m-a}=\frac{d_{+}^{m+1}-d_{-}^{m+1}}{d_{+}-d_{-}}=\frac{1}{2 \sqrt{G_{k} G_{k-2}}} \sum_{i=0}^{m} 2\binom{m+1}{2 i+1} G_{k-1}^{m-2 i}\left(\sqrt{G_{k} G_{k-2}}\right)^{2 i+1} .
$$

For example, when $k=1$ in (14), we see that $a_{n}^{(1)}(0, t)$ equals $t^{\frac{n}{2}}$ for n even and zero for n odd. Taking $k=2$ in (14) gives $a_{2 m}^{(2)}(0, t)=t^{m}$ and $a_{2 m+1}^{(2)}(0, t)=(m+1) t^{m}$ for $m \geq 0$. These formulas are readily seen directly.

We next consider the case $q=-1$. Recall that for any generating function in q, the evaluation at $q=-1$ gives the difference in cardinalities between those members of a structure having an even value for the statistic counted by q with those having an odd value. Letting $q=-1$ and $t=1$ in (5) gives the following formulas, where $f_{i}:=\sum_{n \geq 0} a_{n}^{(i)}(-1,1) x^{n}$:

$$
\begin{aligned}
& f_{1}=\frac{\left(1-x-x^{3}-x^{4}\right)\left(1-x^{6}\right)}{1-x^{12}}, \\
& f_{2}=\frac{\left(1+x+x^{3}+x^{4}+2 x^{5}-x^{6}+x^{7}+x^{9}-x^{10}\right)\left(1-x^{12}\right)}{1-x^{24}}, \\
& f_{3}=\frac{1+x+2 x^{2}-x^{3}+x^{4}}{1-x^{6}} \\
& f_{4}=\frac{\left(1+x+2 x^{2}+3 x^{3}-2 x^{4}+x^{5}-x^{6}\right)\left(1+x^{4}+x^{8}\right)}{1-5 x^{8}+x^{16}}
\end{aligned}
$$

The first three generating functions show that the sequences $a_{n}^{(i)}(-1,1), i=1,2,3$, are periodic with periods 12,24 , and 6 , respectively. The sequences $a_{n}^{(1)}(-1,1)$ and $a_{n}^{(2)}(-1,1)$ are seen to satisfy the stronger conditions $p_{n+6}=-p_{n}$ and $p_{n+12}=-p_{n}$ for all $n \geq 0$. From the appearance of the generating function f_{4}, it seems that the sequence $a_{n}^{(4)}(-1,1)$ would not be periodic, which is indeed the case. It turns out that there are no other values of k for which the sequence $a_{n}^{(k)}(-1,1)$ is periodic.

Proposition 2.6. The sequence $a_{n}^{(k)}(-1,1)$ is never periodic (or eventually periodic) when $k \geq 4$.

Proof. Substituting $q=-1$ and $t=1$ into the infinite part of (5) gives

$$
\begin{aligned}
& \sum_{j \geq 0} \frac{\left.F_{k}^{j}(-1)^{(j+1} 2\right)}{2_{2}} x^{j k} \\
& \prod_{i=0}^{j}\left(1-2 F_{k-1}(-1)^{i} x^{k}+(-1)^{k} x^{2 k}\right) \\
&=\sum_{m \geq 0} \frac{F_{k}^{2 m}(-1)^{m} x^{2 m k}}{\left(1-2 F_{k-1} x^{k}+(-1)^{k} x^{2 k}\right)\left(\left(1+(-1)^{k} x^{2 k}\right)^{2}-4 F_{k-1}^{2} x^{2 k}\right)^{m}} \\
&+\sum_{m \geq 0} \frac{F_{k}^{2 m+1}(-1)^{m+1} x^{(2 m+1) k}}{\left(\left(1+(-1)^{k} x^{2 k}\right)^{2}-4 F_{k-1}^{2} x^{2 k}\right)^{m+1}} \\
&=\frac{1+F_{k-3} x^{k}+(-1)^{k} x^{2 k}}{1+\left(F_{k}^{2}-4 F_{k-1}^{2}+2(-1)^{k}\right) x^{2 k}+x^{4 k}},
\end{aligned}
$$

and thus

$$
\sum_{n \geq 0} a_{n}^{(k)}(-1,1) x^{n}=\frac{\left(\sum_{r=0}^{k-1} F_{r+1} x^{r}-x^{k} \sum_{r=0}^{k-1}(-1)^{r} F_{k-1-r} x^{r}\right)\left(1+F_{k-3} x^{k}+(-1)^{k} x^{2 k}\right)}{1+\left(F_{k}^{2}-4 F_{k-1}^{2}+2(-1)^{k}\right) x^{2 k}+x^{4 k}} .
$$

Let $a(x)$ and $b(x)$ denote the numerator and the denominator in the (unsimplified) expression above for $\sum_{n \geq 0} a_{n}^{(k)}(-1,1) x^{n}$. Suppose now that

$$
\frac{a(x)}{b(x)}=c(x)+\frac{d(x)}{1-x^{\ell}},
$$

where ℓ is a positive integer, $c(x)$ is any polynomial (possibly zero), and $d(x)$ is of the form $d(x)=x^{m+1} e(x)$, with m denoting the degree of $c(x)$ (we take m to be -1 if $c(x)$ is the zero polynomial) and $e(x)$ being a polynomial of degree at most $\ell-1$. Then $\left(1-x^{\ell}\right)(a(x)-$ $b(x) c(x))=b(x) d(x)$ implies that the equation $b(x)=0$ must have at least one root of unity among its roots since $e(x)=\frac{d(x)}{x^{m+1}}$ is of degree at most $\ell-1$, with $e(x)$ not identically zero. Then the equation $b(u)=0$, where $u=x^{\frac{1}{2 k}}$, must also have at least one root of unity among its roots, since r a root of unity implies $r^{2 k}$ is as well.

The equation $b(u)=0$ is given by

$$
\begin{equation*}
1+\left(F_{k}^{2}-4 F_{k-1}^{2}+2(-1)^{k}\right) u+u^{2}=0 \tag{15}
\end{equation*}
$$

If $k \geq 4$, then

$$
F_{k}^{2}-4 F_{k-1}^{2}+2(-1)^{k} \leq-5,
$$

since

$$
F_{k}^{2}-4 F_{k-1}^{2}=\left(F_{k}-2 F_{k-1}\right)\left(F_{k}+2 F_{k-1}\right)=-F_{k-3}\left(F_{k}+2 F_{k-1}\right) \leq-7
$$

Note that an equation of the form

$$
1-a u+u^{2}=0, \quad a \geq 5
$$

has (real) roots $\frac{a}{2} \pm \frac{\sqrt{a^{2}-4}}{2}$. So the only possible roots of unity that are also roots to such an equation are ± 1. However, the equations $\frac{a}{2}+\frac{\sqrt{a^{2}-4}}{2}= \pm 1$ and $\frac{a}{2}-\frac{\sqrt{a^{2}-4}}{2}= \pm 1$ have solutions $a= \pm 2$ in each case, but $a \geq 5$. Thus no roots of unity satisfy equation (15) when $k \geq 4$, which implies the result.

Remark: When $k=1,2,3$, the equation (15) is satisfied by roots of unity and it works out that the sequences $a_{n}^{(k)}(-1,1)$ are periodic in these cases.

Let $(x: q)_{s}=\prod_{i=0}^{s-1}\left(1-q^{i} x\right)$. We conclude this section with the following infinite expansion for the numbers $a_{n}^{(k)}(q, t)$ for all $k \geq 1$.

Theorem 2.7. If $n=k m+r$, where $m \geq 1$ and $0 \leq r \leq k-1$, then

$$
\begin{align*}
a_{n} & =t^{m} G_{r+1} \sum_{s \geq 0} q^{s m}\left(d_{+}^{m} b_{s}+d_{-}^{m} c_{s}\right) \tag{16}\\
& +(-1)^{r+1} t^{m+r} G_{k-1-r} \sum_{s \geq 0} q^{s(m-1)}\left(d_{+}^{m-1} b_{s}+d_{-}^{m-1} c_{s}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& b_{s}=\sum_{j \geq s} \frac{(-1)^{s} G_{k}^{j} q^{\binom{j+1}{2}+\binom{s+1}{2}+s} d_{+}}{t^{j}(q: q)_{s}(q: q)_{j-s} \prod_{i=0}^{j}\left(q^{s} d_{+}-q^{i} d_{-}\right)} \\
& c_{s}=\sum_{j \geq s} \frac{(-1)^{s} G_{k}^{j} q^{\left.\binom{j+1}{2}+\begin{array}{c}
s+1 \\
2
\end{array}\right)+s} d_{-}}{t^{j}(q: q)_{s}(q: q)_{j-s} \prod_{i=0}^{j}\left(q^{s} d_{-}-q^{i} d_{+}\right)}
\end{aligned}
$$

and

$$
d_{ \pm}=G_{k-1} \pm \sqrt{G_{k} G_{k-2}}
$$

Proof. Note first that $d_{ \pm}=G_{k-1} \pm \sqrt{G_{k-1}^{2}-(-t)^{k-2}}$, as in the proof of Theorem 2.2, and thus

$$
1-2 t q^{s} x G_{k-1}+(-t)^{k} q^{2 s} x^{2}=\left(1-\rho_{s} x\right)\left(1-\theta_{s} x\right)
$$

where $\rho_{s}=d_{+} t q^{s}$ and $\theta_{s}=d_{-} t q^{s}$.
Let $n=m k+r$, where $m \geq 1$ and $0 \leq r \leq k-1$. By partial fractions, let us write

$$
\sum_{j \geq 0} \frac{G_{k}^{j} q^{(j+1)} x^{j}}{\prod_{i=0}^{j}\left(1-2 t q^{i} x G_{k-1}+(-t)^{k} q^{2 i} x^{2}\right)}=\sum_{s \geq 0} \frac{b_{s}}{1-\rho_{s} x}+\sum_{s \geq 0} \frac{c_{s}}{1-\theta_{s} x},
$$

where b_{s} and c_{s} are constants to be determined. By Theorem 2.1,

$$
\left.\begin{array}{rl}
a_{n} & =G_{r+1}\left[x^{m}\right]\left(\sum_{j \geq 0} \frac{G_{k}^{j} q^{\left({ }^{(j+1} 2_{2}\right)} x^{j}}{\prod_{i=0}^{j}\left(1-2 t q^{i} x G_{k-1}+(-t)^{k} q^{2 i} x^{2}\right)}\right) \\
& +(-t)^{r+1} G_{k-1-r}\left[x^{m-1}\right]\left(\sum_{j \geq 0} \frac{\left.G_{k}^{j} q^{(j+1}{ }_{2}^{2}\right)}{} x^{j}\right. \\
\prod_{i=0}^{j}\left(1-2 t q^{i} x G_{k-1}+(-t)^{k} q^{2 i} x^{2}\right)
\end{array}\right) .
$$

We also have

$$
\begin{aligned}
b_{s} & =\sum_{j \geq s} \frac{G_{k}^{j} q^{\binom{(+1}{2}}}{\rho_{s}^{j} \prod_{i=0}^{s-1}\left(1-\rho_{i} / \rho_{s}\right) \prod_{i=s+1}^{j}\left(1-\rho_{i} / \rho_{s}\right) \prod_{i=0}^{j}\left(1-\theta_{i} / \rho_{s}\right)} \\
& =\sum_{j \geq s} \frac{\left.\left.(-1)^{s} G_{k}^{j} q^{(j+1}\right)^{(+1}\right) \rho_{s}^{j+1}}{d_{+}^{j} t \prod^{j} \prod_{i=0}^{s-1}\left(q^{i}-q^{s}\right) \prod_{i=s+1}^{j}\left(q^{s}-q^{i}\right) \prod_{i=0}^{j}\left(d_{+} t q^{s}-d_{-} t q^{i}\right)} \\
& =\sum_{j \geq s} \frac{(-1)^{s} G_{k}^{j} q^{\binom{j+1}{2}+\binom{s+1}{2}} \rho_{s}}{t^{j+1}(q: q)_{s}(q: q)_{j-s} \prod_{i=0}^{j}\left(d_{+} q^{s}-d_{-} q^{i}\right)} \\
& =\sum_{j \geq s} \frac{(-1)^{s} G_{k}^{j} q^{\binom{(+1}{2}+\binom{s+1}{2}+s} d_{+}}{t^{j}(q: q)_{s}(q: q)_{j-s} \prod_{i=0}^{j}\left(q^{s} d_{+}-q^{i} d_{-}\right)}
\end{aligned}
$$

and, similarly,

$$
c_{s}=\sum_{j \geq 0} \frac{(-1)^{s} G_{k}^{j} q^{\binom{j+1}{2}+\binom{s+1}{2}+s} d_{-}}{t^{j}(q: q)_{s}(q: q)_{j-s} \prod_{i=0}^{j}\left(q^{s} d_{-}-q^{i} d_{+}\right)},
$$

which gives (16).

3. The case $k=2$

In this section, we consider further results concerning the polynomial sequence $a_{n}^{(2)}=$ $a_{n}^{(2)}(q, t)$. Taking $k=2$ in (10), and noting $d_{+}=d_{-}=1$ in this case, gives the explicit formulas

$$
\begin{align*}
a_{2 m}^{(2)} & =\sum_{j=0}^{m} q^{\left({ }_{2}^{j+1}\right)} t^{m-j} \sum_{a=j}^{m}\binom{a}{j}_{q}\binom{m+j-a}{j}_{q} \\
& -t \sum_{j=0}^{m-1} q^{\left({ }_{2}^{j+1}\right)} t^{m-1-j} \sum_{a=j}^{m-1}\binom{a}{j}_{q}\binom{m+j-1-a}{j}_{q}, \quad m \geq 0, \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
a_{2 m+1}^{(2)}=\sum_{j=0}^{m} q^{\left({ }_{2}^{j+1}\right)} t^{m-j} \sum_{a=j}^{m}\binom{a}{j}_{q}\binom{m+j-a}{j}_{q}, \quad m \geq 0 \tag{18}
\end{equation*}
$$

Though we are unable to give simpler expressions for the polynomials (17) and (18), they are seen to be solutions to the following relatively simple recurrences.
Proposition 3.1. If $m \geq 2$, then

$$
\begin{equation*}
a_{2 m}^{(2)}=\left(q^{m}+q t+t\right) a_{2 m-2}^{(2)}-q t^{2} a_{2 m-4}^{(2)}, \tag{19}
\end{equation*}
$$

with $a_{0}^{(2)}=1$ and $a_{2}^{(2)}=q+t$, and

$$
\begin{equation*}
a_{2 m+1}^{(2)}=\left(q^{m}+2 t\right) a_{2 m-1}^{(2)}-t^{2} a_{2 m-3}^{(2)} \tag{20}
\end{equation*}
$$

with $a_{1}^{(2)}=1$ and $a_{3}^{(2)}=q+2 t$.
Proof. We provide a combinatorial argument, the initial values being clear. To show (19), first note that if $m \geq 2$, then the total weight of all the members of $\mathscr{F}_{2 m}$ ending in $s s$ is $q^{m} a_{2 m-2}^{(2)}$, while the weight of those ending in d is $t a_{2 m-2}^{(2)}$. To determine the weight of the members of $\mathscr{F}_{2 m}$ ending in $d s$, first insert a domino before the final square within any member of $\mathscr{F}_{2 m-2}$ ending in s. By subtraction, the total weight of all the members of
$\mathscr{F}_{2 m-2}$ ending in s is $a_{2 m-2}^{(2)}-t a_{2 m-4}^{(2)}$, and the inserted domino increases both the v and ρ_{2} values by 1 (note that the final square moves from position $2 m-2$ to $2 m$). Thus, the total weight of all members of $\mathscr{F}_{2 m}$ ending in $d s$ is $q t\left(a_{2 m-2}^{(2)}-t a_{2 m-4}^{(2)}\right)$, which gives (19). By similar reasoning, the total weight of all members of $\mathscr{F}_{2 m+1}$ ending in $s s, d$ and $d s$ is $q^{m} a_{2 m-1}^{(2)}, t a_{2 m-1}^{(2)}$ and $t\left(a_{2 m-1}^{(2)}-t a_{2 m-3}^{(2)}\right)$, respectively, which gives (20).

We were unable to find, in general, two-term recurrences comparable to (19) and (20) for the sequences $a_{m k+r}^{(k)}(q, t)$, where k and r are fixed and $m \geq 0$. Let

$$
f(x ; q, t)=\sum_{n \geq 0} a_{n}^{(2)}(q, t) x^{n}
$$

which we'll also denote by $f(x)$.
Proposition 3.2. We have

$$
\begin{equation*}
f(x ; q, t)=\left(1+x-t x^{2}\right) \sum_{j \geq 0} \frac{q^{\left({ }_{2}^{j+1}\right)} x^{2 j}}{\prod_{i=0}^{j}\left(1-t q^{i} x^{2}\right)^{2}} . \tag{21}
\end{equation*}
$$

Proof. This follows from setting $k=2$ in (5) above, but we give an alternative derivation using Proposition 3.1 as follows. Let $b(x)=\sum_{m \geq 0} a_{2 m}^{(2)} x^{m}$. Multiplying (19) by x^{m}, and summing over $m \geq 2$, implies

$$
b(x)-1-(t+q) x=q x(b(q x)-1)+t x(1+q)(b(x)-1)-q t^{2} x^{2} b(x)
$$

or

$$
b(x)=\frac{1}{1-t x}+\frac{q x}{(1-t x)(1-q t x)} b(q x) .
$$

Iterating the last equation gives

$$
\begin{aligned}
b(x) & =\sum_{j \geq 0} \frac{q^{\left.\mathrm{j}_{2}^{j+1}\right)} x^{j}}{(1-t x) \prod_{i=1}^{j}\left(1-t q^{i} x\right)^{2}} \\
& =(1-t x) \sum_{j \geq 0} \frac{q^{\left({ }_{2}^{2+1}\right)} x^{j}}{\prod_{i=0}^{j}\left(1-t q^{i} x\right)^{2}} .
\end{aligned}
$$

Similarly, if $c(x)=\sum_{m \geq 0} a_{2 m+1}^{(2)} x^{m}$, then we have

$$
c(x)=\sum_{j \geq 0} \frac{q^{\left(y_{2}^{j+1}\right)} x^{j}}{\prod_{i=0}^{j}\left(1-t q^{i} x\right)^{2}}
$$

and thus

$$
\begin{aligned}
f(x) & =b\left(x^{2}\right)+x c\left(x^{2}\right) \\
& =\left(1-t x^{2}\right) \sum_{j \geq 0} \frac{\left.q^{(j+1}{ }_{2}\right) x^{2 j}}{\prod_{i=0}^{j}\left(1-t q^{i} x^{2}\right)^{2}}+x \sum_{j \geq 0} \frac{\left.q^{(j+1} 2\right) x^{2 j}}{\prod_{i=0}^{j}\left(1-t q^{i} x^{2}\right)^{2}},
\end{aligned}
$$

as desired.
Substituting $q=-1$ in (21) yields the following result.
Corollary 3.3. We have

$$
\begin{equation*}
\sum_{n \geq 0} a_{n}^{(2)}(-1, t) x^{n}=\frac{\left(1+x+t x^{2}\right)\left(1+x-t x^{2}\right)\left(1-x+t x^{2}\right)}{1-\left(2 t^{2}-1\right) x^{4}+t^{4} x^{8}} \tag{22}
\end{equation*}
$$

Corollary 3.4. The sequence $a_{n}^{(2)}(-1,1)$ is determined by the condition

$$
f(n+12)=-f(n), \quad n \geq 0
$$

with the values of $a_{n}^{(2)}(-1,1)$ for $0 \leq n \leq 11$ given by $1,1,0,1,1,2,-1,1,0,1,-1,0$.
Proof. Letting $t=1$ in (22), we have

$$
\begin{aligned}
\sum_{n \geq 0} a_{n}^{(2)}(-1,1) x^{n} & =\frac{\left(1+x+x^{2}\right)\left(1+x-x^{2}\right)\left(1-x+x^{2}\right)}{1-x^{4}+x^{8}} \\
& =\frac{\left(1+x+x^{3}+x^{5}-x^{6}\right)\left(1+x^{4}\right)\left(1-x^{12}\right)}{\left(1-x^{4}+x^{8}\right)\left(1+x^{4}\right)\left(1-x^{12}\right)} \\
& =\frac{\left(1+x+x^{3}+x^{4}+2 x^{5}-x^{6}+x^{7}+x^{9}-x^{10}\right)\left(1-x^{12}\right)}{1-x^{24}},
\end{aligned}
$$

which implies the result.

Combinatorial proof of Corollary 3.4.

Let \mathscr{F}_{n}^{e} and \mathscr{F}_{n}^{o} denote the subsets of \mathscr{F}_{n} having even and odd ρ_{2} values, respectively. We first define an involution of \mathscr{F}_{n} off of a set \mathscr{F}_{n}^{\prime} which pairs members of \mathscr{F}_{n}^{e} and \mathscr{F}_{n}^{o}. Let $\mathscr{F}_{n}^{\prime} \subseteq \mathscr{F}_{n}$ consist of those tilings of the form

$$
\begin{equation*}
\pi=d^{i}\left(s d^{2 i_{1}} s\right)\left(s d^{2 i_{2}} s\right) \cdots\left(s d^{2 i_{\ell}} s\right), \tag{23}
\end{equation*}
$$

if n is even, and of the form

$$
\begin{equation*}
\pi=d^{i}\left(s d^{2 i_{1}} s\right)\left(s d^{2 i_{2}} s\right) \cdots\left(s d^{2 i_{\ell}} s\right) s d^{j} \tag{24}
\end{equation*}
$$

if n is odd, for some ℓ where $i, j, i_{1}, i_{2}, \ldots, i_{\ell} \geq 0$. We define an involution of $\mathscr{F}_{n}-\mathscr{F}_{n}^{\prime}$ as follows. Given $\lambda \in \mathscr{F}_{n}-\mathscr{F}_{n}^{\prime}$, let j_{o} denote the smallest index $j \geq 1$ such that either
(i) an odd number of dominos occurs between the $(2 j-1)$-st and $(2 j)$-th squares, or
(ii) an even number of dominos occurs between the $(2 j-1)$-st and ($2 j$)-th squares with at least one domino between the $(2 j)$-th and $(2 j+1)$-st squares (or between the $(2 j)$-th square and the end of the tiling, if the $(2 j)$-th square is right-most).
Now exchange positions of the ($2 j_{o}$)-th square and the domino that precedes it if (i) occurs, or exchange the positions of the ($2 j_{o}$)-th square and the domino that directly follows it if (ii) occurs. Let λ^{\prime} denote the resulting member of \mathscr{F}_{n}^{\prime}. Then λ and λ^{\prime} have opposite ρ_{2}-parity (since their ρ_{2} values differ by one), and the mapping $\lambda \mapsto \lambda^{\prime}$ is an involution of $\mathscr{F}_{n}-\mathscr{F}_{n}^{\prime}$. For example, if $n=28$ and $\lambda=d^{2} s d^{2} s^{4} d^{3} s d s d^{2} s \in \mathscr{F}_{28}$, then $j_{o}=3$ and $\lambda^{\prime}=d^{2} s d^{2} s^{4} d^{2} s d^{2} s d^{2} s$. See Figure 3 below, where the ($2 j_{o}-1$)-st and $\left(2 j_{o}\right)$-th squares are shaded in each tiling.

Figure 3. The tiling λ has $\rho_{2}(\lambda)=35$, while $\rho_{2}\left(\lambda^{\prime}\right)=34$.
We now consider the signed sum of members of \mathscr{F}_{n}^{\prime}, i.e., $\sum_{\pi \in F_{n}^{\prime}}(-1)^{\rho_{2}(\pi)}$. First observe that if i is even in (23) and (24) above, then one may verify that

$$
\rho_{2}(\pi) \equiv\binom{\ell+1}{2}(\bmod 2),
$$

whereas if i is odd, then

$$
\rho_{2}(\pi) \equiv\binom{\ell}{2}(\bmod 2) .
$$

For the remainder of the proof, we will assume that n is even, the proof in the odd case being similar. Assume further that $n=2 m$, where m is odd, as the argument for the case of even m is basically the same.

First suppose that $\pi \in \mathscr{F}_{n}^{\prime}$ is of the form in (23) above, with i even. Note that m odd implies ℓ is odd. Let $\bar{\pi}$ be the tiling of length m given by

$$
\bar{\pi}=d^{\frac{i}{2}} s d^{i_{1}} s d^{i_{2}} \cdots s d^{i_{\ell}} ;
$$

note that all members of \mathscr{F}_{m} arise uniquely as π ranges over all members of \mathscr{F}_{n}^{\prime} for which i is even. Let $s(\sigma)$ denote the number of squares in a tiling σ. Then we have

$$
\rho_{2}(\pi) \equiv\binom{\ell+1}{2} \equiv \frac{\ell+1}{2}=\frac{s(\bar{\pi})+1}{2}(\bmod 2) .
$$

If $\pi \in \mathscr{F}_{n}^{\prime}$ is of the form in (23) with i odd, then m odd implies ℓ is even. Let π^{*} be the tiling of length $m-1$ given by

$$
\pi^{*}=d^{\frac{i-1}{2}} s d^{i_{1}} s d^{i_{2}} \cdots s d^{i_{\ell}} ;
$$

note that all members of \mathscr{F}_{m-1} arise uniquely in this manner. Observe that in this case

$$
\rho_{2}(\pi) \equiv\binom{\ell}{2} \equiv \frac{\ell}{2}=\frac{s\left(\pi^{*}\right)}{2}(\bmod 2) .
$$

Therefore, we have

$$
\begin{align*}
\sum_{\pi \in \mathscr{F}_{n}^{\prime}}(-1)^{\rho_{2}(\pi)} & =\sum_{\substack{\pi \in \mathscr{F}_{n}^{\prime} \\
i \text { even }}}(-1)^{\rho_{2}(\pi)}+\sum_{\substack{\pi \in \mathscr{F}_{n}^{\prime} \\
i \text { odd }}}(-1)^{\rho_{2}(\pi)} \\
& =\sum_{\sigma \in \mathscr{F}_{m}}(-1)^{(s(\sigma)+1) / 2}+\sum_{\sigma \in \mathscr{F}_{m-1}}(-1)^{s(\sigma) / 2} . \tag{25}
\end{align*}
$$

To evaluate the last two sums, we consider the statistic $\lceil s(\sigma) / 2\rceil$ on \mathscr{F}_{r} where $r \geq 1$ and pair members of \mathscr{F}_{r} of opposite parity with respect to this statistic. Given $\sigma=\sigma_{1} \sigma_{2} \cdots \epsilon$ \mathscr{F}_{r}, let a_{o} denote the smallest index $a \geq 1$ such that either
(i) $\sigma_{2 a-1}=d$, or
(ii) $\sigma_{2 a-1} \sigma_{2 a}=s s$.

Define an involution of \mathscr{F}_{r} by replacing $\sigma_{2 a_{o}-1}=d$ with $s s$ if (i) occurs or by replacing $\sigma_{2 a_{o}-1} \sigma_{2 a_{o}}=s s$ with d if (ii) occurs. Note that this mapping changes the value of $\lceil s(\sigma) / 2\rceil$ by one, whence it changes its parity. If $r \equiv 0(\bmod 3)$, then there is a single unpaired tiling in \mathscr{F}_{r}, namely, $(s d)^{r / 3}$, which has sign $(-1)^{\lceil r / 6\rceil}$. If $r \equiv 1(\bmod 3)$, then the single unpaired tiling $(s d)^{(r-1) / 3} s$ has $\operatorname{sign}(-1)^{\lceil(r+2) / 6]}$. If $r \equiv 2(\bmod 3)$, then each member of \mathscr{F}_{r} is paired with another of opposite parity, whence the resulting sum is zero.

Applying the preceding to (25) shows that if $m \equiv 0(\bmod 3)$, i.e., if $m=6 p+3$ for some p (since m was assumed odd) and $n=12 p+6$, then

$$
\begin{aligned}
a_{n}^{(2)}(-1,1) & =\sum_{\pi \in \mathscr{F}_{n}^{\prime}}(-1)^{\rho_{2}(\pi)} \\
& =\sum_{\sigma \in \mathscr{F}_{6} p+3}(-1)^{\lceil s(\sigma) / 2\rceil}+\sum_{\sigma \in \mathscr{F}_{6} p+2}(-1)^{\lceil s(\sigma) / 2\rceil} \\
& =(-1)^{\lceil(6 p+3) / 6\rceil}+0=(-1)^{p+1} .
\end{aligned}
$$

Similarly, if $n=12 p+2$, then $a_{n}^{(2)}(-1,1)=(-1)^{p+1}+(-1)^{p}=0$, and if $n=12 p+10$, then $a_{n}^{(2)}(-1,1)=0+(-1)^{p+1}=(-1)^{p+1}$. This yields the values of $a_{n}^{(2)}(-1,1)$ given in Corollary 3.4 above in the case when $n=2 m$, where m is odd. The other cases are obtained similarly.

Remark: Comparable proofs may be given to explain the periodic nature of the $a_{n}^{(1)}(-1,1)$ and $a_{n}^{(3)}(-1,1)$ values witnessed above.

Let $U_{n}(t)$ denote the n-th Chebyshev polynomial of the second kind defined by $U_{n+1}(t)=$ $2 t U_{n}(t)-U_{n-1}(t)$, with $U_{0}(t)=1$ and $U_{1}(t)=2 t$ (see, e.g., [9]).
Theorem 3.5. The coefficient of x^{n} for $n \geq 0$ in $\left.\frac{d}{d q} f(x ; q, t)\right|_{q=1}$ is given by

$$
\begin{aligned}
\frac{(i \sqrt{t})^{n+1}}{8(4 t+1)}\left(\frac{(2 n+1)(4 t+1)(-1)^{n}+2 n(n+1)-4 t-1}{2 i \sqrt{t}} U_{n}(y)\right. \\
\left.+\left((4 t+1)(-1)^{n}+4 t-1-2 n(n+2)\right) U_{n-1}(y)\right)
\end{aligned}
$$

where $y=\frac{1}{2 i \sqrt{t}}$ and $i=\sqrt{-1}$.
Proof. Differentiating the generating function $f(x ; q, t)$ in (21) with respect to q, and substituting $q=1$, yields

$$
g(x ; t):=\left.\frac{d}{d q} f(x, q)\right|_{q=1}=\frac{x^{2}\left(1-t x^{2}\right)\left(1+t x^{2}\right)}{\left(1-x-t x^{2}\right)^{3}\left(1+x-t x^{2}\right)^{2}} .
$$

By partial fractions, we may rewrite this as

$$
\begin{aligned}
g(x ; t) & =-\frac{3-2 t x}{16\left(1+x-t x^{2}\right)}+\frac{2+x}{8\left(1+x-t x^{2}\right)^{2}}-\frac{1+2 t x}{16\left(1-x-t x^{2}\right)} \\
& +\frac{1-t x}{4 t\left(1-x-t x^{2}\right)^{2}}-\frac{1-2 t x-x}{4 t\left(1-x-t x^{2}\right)^{3}} .
\end{aligned}
$$

By the fact that $\sum_{n \geq 0} U_{n}(t) x^{n}=\frac{1}{1-2 t x+x^{2}}$, we obtain

$$
\sum_{n \geq 1} n U_{n}(t) x^{n-1}=\frac{2 t-2 x}{\left(1-2 t x+x^{2}\right)^{2}}
$$

and

$$
\sum_{n \geq 2} n(n-1) U_{n}(t) x^{n-2}=\frac{8 t^{2}-2-12 t x+6 x^{2}}{\left(1-2 t x+x^{2}\right)^{3}}
$$

Let $y=\frac{1}{2 i \sqrt{t}}$, where $i=\sqrt{-1}$. Extracting the coefficient of x^{n} from each summand then gives

$$
\begin{aligned}
{\left[x^{n}\right]\left(-\frac{3-2 t x}{16\left(1+x-t x^{2}\right)}\right)=} & -\frac{(-i \sqrt{t})^{n}}{16}\left(3 U_{n}(y)-2 i \sqrt{t} U_{n-1}(y)\right) \\
{\left[x^{n}\right]\left(\frac{2+x}{8\left(1+x-t x^{2}\right)^{2}}\right)=} & \frac{(2+n)(-i \sqrt{t})^{n}}{8} U_{n}(y), \\
{\left[x^{n}\right]\left(-\frac{1+2 t x}{16\left(1-x-t x^{2}\right)}\right)=} & -\frac{(i \sqrt{t})^{n}}{16}\left(U_{n}(y)-2 i \sqrt{t} U_{n-1}(y)\right), \\
{\left[x^{n}\right]\left(\frac{1-t x}{4 t\left(1-x-t x^{2}\right)^{2}}\right)=} & \frac{(1+4 t+(t+1) n)(i \sqrt{t})^{n}}{4 t(1+4 t)} U_{n}(y) \\
& -\frac{(1+n)(2 t-1)(i \sqrt{t})^{n-1}}{4(1+4 t)} U_{n-1}(y), \\
{\left[x^{n}\right]\left(-\frac{1-2 t x-x}{4 t\left(1-x-t x^{2}\right)^{3}}\right)=} & \frac{\left(t n^{2}-(t+2) n-2(1+4 t)\right)(i \sqrt{t})^{n}}{8 t(1+4 t)} U_{n}(y) \\
& +\frac{\left(t n^{2}+(4 t-1) n-1+3 t\right)(i \sqrt{t})^{n}}{4(1+4 t)} U_{n-1}(y) .
\end{aligned}
$$

Adding all of these expressions yields the desired result.
Let $t_{n}\left(\rho_{2}\right)$ denote the sum of the ρ_{2} values of all the members of \mathscr{F}_{n}. Letting $t=1$ in the prior theorem, and noting $i^{n} U_{n}(-i / 2)=F_{n+1}$, gives the following expression for $t_{n}\left(\rho_{2}\right)$.

Corollary 3.6. If $n \geq 0$, then

$$
\begin{equation*}
t_{n}\left(\rho_{2}\right)=(-1)^{n} \frac{(2 n+1) F_{n+1}-2 F_{n}}{16}+\frac{\left(2 n^{2}+2 n-5\right) F_{n+1}+\left(4 n^{2}+8 n-6\right) F_{n}}{80} . \tag{26}
\end{equation*}
$$

References

[1] G. E. Andrews. The Theory of Partitions. Encyclopedia of Mathematics and Applications, (No. 2), Addison-Wesley, 1976.
[2] A. T. Benjamin and J. J. Quinn. Proofs that Really Count: The Art of Combinatorial Proof. Mathematical Association of America, 2003.
[3] L. Carlitz. Fibonacci notes 3: q-Fibonacci numbers. Fibonacci Quart. 12 (1974), 317-322.
[4] J. Cigler. Some algebraic aspects of Morse code sequences. Discrete Math. Theor. Comput. Sci. 6 (2003), 55-68.
[5] J. Cigler. q-Fibonacci polynomials and the Rogers-Ramanujan identities. Ann. Comb. 8 (2004), 269-285.
[6] M. Edson, S. Lewis, and O. Yayenie. The k-periodic Fibonacci sequence and an extended Binet's formula. Integers 11 (2011), \#A32.
[7] T. Mansour and M. Shattuck. Generalizations of two statistics on linear tilings. Appl. Appl. Math. 07:2 (2012), 508-533.
[8] J. Petronilho. Generalized Fibonacci sequences via orthogonal polynomials. Appl. Math. Comput. 218 (2012), 9819-9824.
[9] T. Rivlin. Chebyshev Polynomials, From Approximation Theory to Algebra and Number Theory. John Wiley, New York, 1990.
[10] M. Shattuck and C. Wagner. Parity theorems for statistics on domino arrangements. Electron. J. Combin. 12 (2005), \#N10.
[11] M. Shattuck and C. Wagner. A new statistic on linear and circular r-mino arrangements. Electron. J. Combin. 13 (2006), \#R42.
[12] N. J. Sloane. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, 2010.
[13] O. Yayenie. A note on generalized Fibonacci sequences. Appl. Math. Comput. 217 (2011), 5603-5611.

Department of Mathematics, University of Haifa, 31905 Haifa, Israel
E-mail address: tmansour@univ.haifa.ac.il
Department of Mathematics, University of Tennessee, Knoxville, TN 37996
E-mail address: shattuck@math.utk.edu

