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ABSTRACT. We prove that when a pre-independence space satisfies some natural proper-
ties, then its cyclic flats form a bounded lattice under set inclusion. Additionally, we show
that a bounded lattice is isomorphic to the lattice of cyclic flats of a pre-independence
space. We also prove that the notion of cyclic width gives rise to dual-closed and minor-
closed classes of B-matroids. Finally, we find a difference between finite matroids and
B-matroids by using the notion of well-quasi-ordering.

1. INTRODUCTION

For finite matroids, J. Bonin et.al. said in [1]: cyclic flats of a matroid have played sev-
eral important roles in matroid theory. This paper will discuss some properties relating
to cyclic flats of an infinite matroid. Though J. Oxley pointed out in [2]: there is no sin-
gle class of structures that one calls infinite matroids, one does notice that most of infi-
nite matroids presented in [2, 3, 9], etc. are pre-independence spaces. Thus we find that
pre-independence spaces are widespread and have a profound influence among infinite
matroids. Therefore, this paper adopts pre-independence spaces to study and establish
the relationship between bounded lattices and cyclic flats of pre-independence spaces.
Simultaneously, it explores the class of B-matroids– a special class of pre-independence
spaces and shows that the class of cyclic width k or less among B-matroids is closed under
duals and minors.

We will narrate our working investigations in this paper as follows.
In light of the definition of pre-independence space (cf. Definition 1) and the definition

of independence space (cf. [2], p. 387& 3, p. 74), we know that an independence space is a
pre-independence space, but [2], Example 3.1.1, and [3], p.387, Theorem 3 and Theorem
4, together hint that a pre-independence space is perhaps not an independence space.

In addition, we notice that Sims [10] presents a way to show that any lattice of finite
length is isomorphic to the lattice of fully dependent flats of a rank-finite independence
space (a fully dependent flat is called a cyclic flat in the present paper).

On the other hand, according to [4, 5], we may observe that a finite length lattice is a
bounded one, but not vice versa.

Hence, we need to build up the relationship between a bounded lattice and an infi-
nite matroid. We may solve this relationship with the help of cyclic flats of an infinite
matroid. Analyzing the results of Sims, we will not choose the set of rank-finite indepen-
dence spaces. Recalling back that the viewpoint of J. Oxley in [2]: there is no single class
of structures that one calls infinite matroids, . . . , it is natural to ask which family of infinite
matroids are suitable for playing the role in the above relationship?
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We exactly choose the family of pre-independence space as the discussing object. The
results from Section 2 to Section 4 will demonstrate the correctness of this choice. Of
course, in view of Section 2 and Section 3, we can say that the results here are a general-
ization of [1] with [10].

First of all, we may begin by reviewing some knowledge what will be needed later on. In
what follows, we assume that S is some arbitrary–possibly infinite–set.

Definition 1.1. From [2], p. 74 & 3, pp. 385–387, A pre-independence space Mp (S) is a set S
together with a collection I of subsets of S(called independent sets) such that
(i1) I 6= ;;
(i2) A subset of an independent set is independent;
(i3) If I1, I2 ∈I with |I1| < |I2| <∞, then there exists x ∈ I2 − I1 such that I1 ∪x ∈I .

X ⊆ S is called dependent if X ∉I . A circuit of Mp (S) is a minimal dependent set, and a
basis of Mp (S) is a maximal independent set.

Definition 1.2. From [2], p. 80, A B-matroid MB (S) is a set S together with a collection I

of subsets of S(called independent sets) such that I satisfies (i1) and (i2) together with
(IB 1) If T ⊆ X ⊆ S and T ∈I , then there is a maximal I -subset of X containing T .
(IB 2) For all X ⊆ S, if B1 and B2 are maximal I -subsets of X and x ∈ B1 −B2, then there is
an element y of B2 −B1 such that (B1 −x)∪ y is a maximal I -subset of X .

X ∉I is called dependent. A maximal member of I is called a basis.
From [2], pp. 83–84, if f is defined as f (X ) = X ∪ {x : I ∪ x ∉I for some I ⊆ X such that

I ∈I } for all X ⊆ S, then we call f the closure operator of MB (S).

Remark 1.3. (1) A minimal dependent set of MB (S) is a circuit. Let f be the closure opera-
tor of MB (S). If f (X ) = X , then X is called a flat of MB (S).

(2) Our lattice theory follows [4, 5]. A bounded poset is referred to [5], p. 62. We assume
that the reader is familiar with vector space theory (cf.[6]).

We use 0L and 1L for the least and greatest elements of a bounded lattice L. For x, y ∈ L,
if x and y are incomparable, then it will be denoted by x||y .

(3) In this paper, the family of all the circuits of Mp (S) is denoted by C (Mp (S)).
(4) Since all the discussion in [1] are of finite cases, it follows that all the lattices appear-

ing in [1] are bounded, though this is not pointed out in [1]. Thus some of results here are
the generalizations of that found in [1].

2. SOME PROPERTIES OF PRE-INDEPENDENCE SPACES

This section discusses some properties about pre-independence spaces and postulates
that if a pre-independence space satisfies some special properties, its cyclic flats form a
lattice.

Property 2.1. Let Mp (S) = (S,Ip ) be a pre-independence space. The closure operator of
Mp (S) is a function σp : 2S → 2S as X 7→ X ∪ {x : I ∪ x ∉ I for some I ⊆ X and I ∈ I }. A
subset X ⊆ S is a flat of Mp (S) if σp (X ) = X .

(1) σp satisfies the following properties
(cl1) X ⊆σp (X ) for all X ⊆ S.
(cl2) X ⊆ Y ⊆ S implies σp (X ) ⊆σp (Y ).

(2) If σp satisfies (cl3): σp (σp (X )) =σp (X ) for ∀X ⊆ S. Then
(2I) σp (X ) is the smallest flat containing X .
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(2II) That A,B are flats of Mp (S) asserts that A∩B is a flat of Mp (S).
(2III) Ip |T = {Y ⊆ T : Y ∈Ip } is the collection of independent sets of a pre-independence
space Mp |T on T ⊆ S. One calls it the restriction of Mp (S) to T . The closure operator σpT

of Mp |T states that for any Y ⊆ T , there is a flat X of Mp (S) satisfying σpT (Y ) = X ∩T .
(2IV) The set of circuits of Mp |T is C (Mp |T ) = {C ⊆ T : C ∈C (Mp (S))}.

Proof. (1) Routine verification.
(2) (2I) σp (X ) is a flat since (cl3). X ⊆σp (X ) as (cl1). Let Y be a flat and X ⊆ Y ⊆σp (X ).

By (cl2) and (cl3), σp (X ) ⊆σp (Y ) ⊆σp (σp (X )) =σp (X ), and hence, Y =σp (X ).
(2II) x ∈ σp (A ∩B)− (A ∩B) means I ∪ x ∉ Ip for some I ∈ Ip with I ⊆ A ∩B , further,

I ⊆ A,B , and so, x ∈σp (A) = A,σp (B) = B . Thus, x ∈ A∩B . Say σp (A∩B) = A∩B .
(2III) It is a straightforward to assurance that Ip |T satisfies (i1)-(i3).
Let Y ⊆ T and X = σp (Y ). Then σpT (Y ) = Y ∪ {y : IT ∪ y ∉ Ip |T for some IT ⊆ Y and

IT ∈ Ip |T } = Y ∪ {y ∈ T : IT ∪ y ∉ I for some IT ⊆ Y and IT ∉ Ip }. On the other hand,
X ∩T = (Y ∩T )∪ ({x : I ∪x ∉Ip for some I ⊆ Y and I ∈Ip }∩T ). Hence, σpT (Y ) = X ∩T .

(2IV) It is straightforward.
�

Remark 2.2. In [2], p. 74, Example 3.1.1, shows that some of pre-independence spaces have
no circuits or no bases, and so I ∗

p = {X : S −X contains a basis of Mp (S)} and Ip .T = {Y ⊆
T : Y ∪B ∈Ip for some basis B of Mp |T } is not guaranteed to be the set of independent sets
of a pre-independence space on S and on T ⊆ S respectively. Besides, this example implies
that Ip does not satisfy (IB 1). However, for some class of pre-independence spaces such
as B-matroids, both I ∗

p and Ip .T exist as B-matroids M∗
B (S) = (S,I ∗

p )(the dual of MB (S))
and MB .T = (T,Ip .T ) (the contraction of MB (S) to T ) (cf.[2]).

As in finite matroids, a flat of Mp (S) is cyclic if it is a (possibly empty) union of circuits.
The family of cyclic flats of Mp (S) is denoted by L(Mp ). Then

Theorem 2.3. Let Mp (S) = (S,I ) be a pre-independence space such that C (Mp (S)) exists
and for X ∉I , there is a circuit C ∈C (Mp (S)) satisfying C ⊆ X , and additionally,σp satisfies
(cl3). Then (L(Mp ),⊆) forms a bounded lattice and for any A,B ∈ L(Mp ), A∨B =σp (A∪B)
and A∧B is the union of all circuits contained in A∩B.

Proof. By Property 2.1, σp (A∪B) is the smallest flat of Mp (S) containing A and B , and so,
one does need only to prove that σp (A∪B) is the union of circuits of Mp (S).

Let x ∈ σp (A ∪B)− (A ∪B). One has I A∪B ∪ x ∉ I for some I A∪B ∈ I and I A∪B ⊆ A ∪B ,
and so, there is a circuit Cx satisfying Cx ⊆ I A∪B ∪ x. Further, by (i2), x ∈ Cx is true. Thus
σp (A ∪B) is a cyclic flat. Considered with the definition of L(Mp ), then A ∨B =σp (A ∪B)
is followed.

Let X = ⋃
A∩B⊇C∈C (Mp (S))

C . We seek to prove that X is a flat of Mp (S). Put x ∈ σp (X )− X .

Then I ∪ x ∉ I for some I ⊆ X and I ∈ I . Considering (i2) with the given, it follows that
there is a circuit Cx of Mp (S) satisfying x ∈ Cx ⊆ I ∪ x. Because A ∩B is a flat by Property
2.1, one has σp (X ) ⊆ A ∩B , and so x ∈ A ∩B , further, Cx ⊆ A ∩B . Hence Cx ⊆ X . Herein
σp (X ) = X . Obviously, A∧B = X .

Similarly to the above,
⋃

S⊇C∈C (Mp (S))
C is the greatest element in (L(Mp ),⊆). Evidently,

σp (;) is the least element in (L(Mp ),⊆).
�
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In what follows, the lattice (L(Mp ),⊆) is said to be L(Mp ), if there is no confusion from
the context.

3. THE LATTICE OF CYCLIC FLATS

In [7], H. Mao presents that every finite height geometric lattice is isomorphic to the
lattice of flats of some matroid of arbitrary cardinality. Here, we only discuss more general
cases and obtains that for any bounded lattice L, there is a pre-independence space Mp (S)
for which the lattice L(Mp ) is isomorphic to L.

Theorem 3.1. Every bounded lattice L is isomorphic to the lattice L(Mp ) of cyclic flats of
a pre-independence space Mp in which C (Mp ) exists and if X is not an independent set of
Mp , then there is C ∈C (Mp ) satisfying C ⊆ X , and additionally, σp satisfies (cl3).

Proof. We construct a pre-independence space Mp for which L(Mp ) is isomorphic to L.
We will finish the proof by five steps.

Step 1. (I) Let B be the set of elements in L other than 1L . For z ∈ L, let Vz = {y : z � y}.
Evidently, Vz ⊆B and z ∉Vz for z ∈ L.

Let f : z 7→ Vz . Then ({Vz : z ∈ L},⊆) is a lattice, where Vx∧z = Vx ∧Vz ,Vx∨z = Vx ∨Vz for
x, z ∈ L. The closely following proofs (III) and (V) inform us that these definitions of lattice
operators for ({Vz : z ∈ L},⊆) are effective.

(II) We will prove that f is an isomorphism between L and the lattice ({Vz : z ∈ L},⊆).
Let x, z ∈ L and x < z. As Vz = {y ∈B : y < z}∪ {y ∈B : y ||z} and Vx = {w ∈B : w < x}∪ {w ∈

B : w ||x}, w ∈ Vx assures w < x or w ||x. But if w < x, then w < x < z; if w ||x, then w ||z or
w < z. No matter which status happens, it has w ∈Vz . Namely, Vx ⊂Vz .

Conversely, let Vx ⊂Vz .
Assume that z < x. By the above proof, one has Vz ⊂Vx , a contradiction with Vx ⊂Vz .
Assume that x||z. It has z ∈ Vx , and so z ∈ Vz since Vx ⊂ Vz , a contradiction to z ∉ Vz

according to the definition of Vz .
Therefore, x < z is real.
It is not difficult to see that f is a bijection. By the definition of isomorphism between

two lattices in [4], p. 19, it follows that f is an isomorphism. Besides, f (0L) = V0L = {y :
0L � y} =;, f (1L) =V1L =B and f (z) 6= ; for z ∈B−0L .

(III) The following sets to prove that Vx∧z =Vx ∧Vz is effective for x, z ∈ L.
The above (II) and x∧z ≤ x, z causes Vx∧z ⊆Vx ,Vz , and so Vx∧z ⊆Vx∩Vz . Let Vt ⊆Vx∩Vz .

Then t ≤ x, z by (II), and so t ≤ x ∧ z, further Vt ⊆Vx∧z . Thus, Vx∧z =Vx ∧Vz .
(IV) Next to prove Vx∨z =Vx ∪Vz for x, z ∈ L.
x, z ≤ x ∨ z and the above (II) taken together leads to Vx ∪Vz ⊆Vx∨z . Let y ∈Vx∨z .
Assume that y < x ∨ z. Under this assumption, there are three cases to be considered as

follows.
If x < y . Then z � y , otherwise, x ∨ z ≤ y , a contradiction. It implies y ∈Vz ⊆Vx ∪Vz .
If x||y . Then y ∈Vx ⊆Vx ∪Vz .
If y < x. Then y ∈Vx ⊆Vx ∪Vz .

Similarly, for the relation between z and y , one has y ∈Vx ∪Vz .
Assume that y ||(x ∨ z).

This means y � x and y � z. Hence y ∈Vx and y ∈Vz , and so y ∈Vx ∪Vz .
Summing up the above, Vx∨z =Vx ∪Vz .

By the mathematical induction, one has
∨∨n

i=1 xi =
n⋃

i=1
Vxi .
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(V) The result in (IV) implies that Vx∨z =Vx ∨Vz is effective.
(VI) The following will prove V ∨

β∈B
xβ =

⋃
β∈B

Vxβ for xβ ∈ L (∀β ∈B).

It is easy to see that
⋃

β∈B
Vxβ ⊆ V ∨

β∈B
xβ . The following will prove the converse. Let p =∨

β∈B
xβ and Q = {q : p covers q in L}.

Assume that |Q| = 1. p = ∨
β∈B

xβ = (
∨

β∈B−Q
xβ)∨ q causes that there is β0 ∈ B satisfying

Vβ0 =Vp , and so, Vp ⊆Vβ0 ∪ (
⋃

β∈B,xβ 6=p
Vxβ) ⊆ ⋃

β∈B
Vxβ because Vxβ ⊆Vp for any β ∈B.

Assume that 2 ≤ |Q|. If there is β0 ∈B satisfying β0 = p, then similarly to the discussion
for |Q| = 1, the need is obtained. The other cases are proved as follows.

Since Vp = {s : p � s} = {s : s < p}∪ {s : s||p}.
If s||p. Then, because of q1 ∨ q2 = p for any q1, q2 ∈ Q, it follows that there is qp ∈ Q

satisfying qp ||s, and so, s ∈Vqp ⊆ ⋃
q∈Q

Vq ⊆ ⋃
β∈B

Vxβ .

If s < p and s 6= xβ for any β ∈B.
Suppose s < qs for some qs ∈Q. This brings about s ∈Vqs ⊆

⋃
q∈Q

Vq ⊆ ⋃
β∈B

Vxβ .

Suppose s ≮ q for any q ∈Q. This means s||q for any q ∈Q, and further, s ∈Vq ⊆ ⋃
q∈Q

Vq ⊆⋃
β∈B

Vxβ .

If s < p and s = xβ for some β ∈B, then s ∈ ⋃
β∈B

Vxβ is evident.

Step 2. We write B in detailed as B= {b j : j ∈J }. Let F be an infinite field with 0,1 as the
zero and unit element in F respectively. The map g : b j 7→ a j = (0, . . . ,1,0, . . .), where a j is a
vector whose entries are all zero except for a 1 in the j th position. Let VF = {x = ∑

α∈Ax

kαaα :

kα ∈ F }. We prove easily that VF satisfies V1-V8 in [6], p. 2, Definition 1.4, and hence, VF

is a vector space over F . g is evidently a bijection between B and {a j : j ∈J }. We say that
there is no difference between a j and b j whenever it is clear from the context.

For ∀z ∈ B, one has Vz = {y ∈ L : z � y} = {aα : z � y, aα = g (y),α ∈Zz}. Simply say Vz =
{aα : α ∈ Zz}. Select one Sz = ∑

α∈Zz

kαaα where kα 6= 0 for ∀α ∈ Zz . Let V = B∪ {Sz : z ∈ B},

or say, V = {a j : j ∈J }∪ {Sz : z ∈B}. Then V ⊆VF .

Step 3. (I) Let IF = {X = {xα :α ∈AX } ⊆VF :
∑

α∈AX

kαxα = 0 ⇔ kα = 0 for all α ∈AX where

kα ∈ F (α ∈AX )}. One asserts that (VF ,IF ) is a pre-independence space.
Since IF 3 {a j } ⊆VF for j ∈J is evident, one has IF 6= ;, i.e. (i1) holds for IF .
Let VF ⊇ Y ⊆ X = {xα :α ∈AX } ∈IF . If Y = {yα :α ∈AY } ∉IF . Then there exist nonzero

scalars pα ∈ F, (α ∈AY ) such that
∑

α∈AY

pαyα = 0. Since Y ⊆ X tells us X = Y ∪{xβ :β ∈ (AX −
AY )}. Put qβ = 0 forβ ∈AX −AY and qα = pα forα ∈AY . Then

∑
α∈AY

qαyα+ ∑
β∈AX −AY

qβxβ =
0. Herein, X ∉IF , a contradiction. Thus (i2) holds.

Let I1, I2 ∈IF and |I1| < |I2| <∞. Suppose |I1 ∩ I2| = k. That is
I1 = {x1, . . . , xk , xk+1, . . . , xn}, I2 = {x1, . . . , xk , yk+1, . . . , yn , yn+1, . . . , ym}.

If k = n−1,m = n+1, then I1 = {x1, . . . , xn−1, xn}, I2 = {x1, . . . , xn−1, yn , yn+1}. Suppose I1∪
yn , I1∪yn+1 ∉IF , i.e. yn =

n∑
i=1

fi xi =
n−1∑
i=1

fi xi + fn xn , yn+1 =
n∑

i=1
gi xi =

n−1∑
i=1

gi xi +gn xn ( fi , gi ∈
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F ; i = 1, . . . ,n). Since I2 ∈ IF and (i2), it follows fn , gn 6= 0, and so, xn = 1
fn

yn +
n−1∑
i=1

(− fi
fn

)xi ,

further yn+1 =
n−1∑
i=1

gi xi + gn
fn

yn +
n−1∑
i=1

(− fi
fn

gn)xi =
n−1∑
i=1

(gi − fi
fn

gn)xi + gn
fn

yn , a contradiction to

I2 ∈IF .
By the mathematical induction, we have that (i3) holds.
Therefore, (VF ,IF ) is a pre-independence space, denoted it by Mp .
(II) Next to prove that Mp satisfies that C (Mp ) exists and for any Y ⊆VF , if Y ∉IF , then

there is X ⊆ Y satisfying X ∈C (Mp ).
Let a j0 = (1,0, . . .) and k ∈ F −0. Then it is easy to see that {ka j0 , a j0 } is a circuit. Namely,

C (Mp ) exists.
Y = {yα : α ∈ AY } ∉ IF means that there are nonzero scalars kα ∈ F (α ∈ AY ) satisfying∑

α∈AY

kαyα = 0. The set of subscripts relative with all nonzero elements in {kα : α ∈ AY }

is in notation DY . Then
∑

α∈DY

kαyα = 0. Besides, one should notice that for any XY ⊂
DY ,

∑
α∈XY

kαyα 6= 0 according to the background of DY . Thus, we may say {yα : α ∈ DY } ∈
C (Mp ).

(III) The closure operator σp of Mp satisfying (IB 1) is shown in the following.
Let T ∈IF and T ⊆ X ⊆ S.
Assume that |X | <∞. If X −T = {x}, then T ∪x ∈IF or not depends only on the property

of x. Namely, if T ∪ x ∈ IF , then T ∪ x is a maximal IF -subset of X , otherwise, T is the
maximal one. All these results are found quite easily. By the mathematical induction,
when |X | <∞, we obtain the needed result.

Assume that |X |≮∞. According to the Well Order Principle in [8], p. 14, there is a well
order ≤ on X −T . Suppose {c : c < d}, (d ,c ∈ X −T ), there is a maximal IF -subset IT of
T ∪ {c : c < d}. It is easy to determine IT ∪d ∈IF or IT ∪d ∉IF in view of the definition of
IF . We may equivalently say, let IT = {xi : i ∈Tc } be a maximal IF -subset of T ∪{c : c < d},
if d = ∑

i∈Tc

ki xi (ki ∈ F, i ∈Tc ), then IT ∪d ∉IF ; otherwise, IT ∪d ∈IF . Thus, if IT ∪d ∈IF ,

then IT ∪ d is a maximal IF -subset of T ∪ {c : c ≤ d}; if not, then IT is a maximal one.
Finally, by the Principle of Transfinite Induction (cf.[8], p. 14, Theorem 7.1), the needed
result follows.

(IV) That σp satisfying (cl3) is proved as follows.
By (III), we have that there exists a basis B = {ci : i ∈BB } of X for any X = {xi : i ∈SX } ⊆ S.

We prove that σp (X ) =σp (B).
In virtue of (cl2), σp (B) ⊆σp (X ). Because B ∈IF , one has σp (B) = B ∪ {q : B ∪q ∉IF } =

B ∪ {q ∈ VF : q = ∑
δ∈∆q

eδcδ and eδ ∈ F,δ ∈ ∆q ⊆ BB }. Obviously, q 6= 0 since cδ 6= 0,(δ ∈ ∆q )

and B ∈ IF . Besides σp (X ) = X ∪ {y : y = ∑
i∈Yy

fi xi , ( fi ∈ F, i ∈ Yy )}. Since B is a basis of

X , it follows that xi = ∑
γ∈Rxi

(tγcγ) ∈σp (B), (tγ ∈ F,γ ∈Rxi ⊆BB ), and so, for y ∈σp (X )− X ,

y = ∑
i∈Yy

fi (
∑

γ∈Rxi

(tγcγ)) = ∑
i∈Yy ,γ∈Rxi

( fi tγ)cγ, and hence y ∈σp (B).

One gets σp (X ) = σp (B) and B is a basis of σp (X ). Furthermore, σp (σp (X )) = σp (B),
and so (cl3) holds for σp .

(V) By Theorem 2.3, L(Mp ) exists.
(VI) In view of Property 2.1, Mp |V = (V ,I = IF |V ) is a pre-independence space and

C (Mp |V ) exists. We may easily observe that L(Mp |V ) exists by Property 2.1 and Theorem
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2.3.

Step 4. (I) It is obviously proven Vz ∪ Sz ∈ C (Mp |V ) from the definition of I , where
C (Mp |V ) is the set of all the circuits of Mp |V . Furthermore, Vz ∪ {Sx : x ≤ z} is the union of
circuits because Vx ⊆Vz for x ≤ z. Next, one proves C (Mp |V ) = {Vz ∪Sz : z ∈B}.

Suppose C ∈C (Mp |V )− {Vz ∪Sz : z ∈ B}. By (i1), C 6= ;. In virtue of (i2) and C ∉I , one
gets C ∩B 6= ; and C ∩ {Sz : z ∈ B} 6= ;. Let Sz ∈ C . By the definition of Sz and C ∉ I , one
has Vz ∪Sz ⊆C . By the minimality of C and Vz ∪Sz ∈C (Mp |V ), one gets C =Vz ∪Sz . This
means that Vz ∪Sz is the one and only single circuit containing Sz in Mp |V .

(II) We will prove that Vz ∪ {Sx : x ≤ z} is a flat of Mp |V .
Let σpV be the closure operator of Mp |V . Because Vz is a maximal I -subset in Vz , one

has σpV (Vz) = Vz ∪ {y : Vz ∪ y ∉ I }. In addition, evidently, for any I ⊆ Vz and y ∈ B, it has
I ∪ y ∈ I . Hence y ∈ σpV (Vz)−Vz follows y ∈ V −B = {Sz : z ∈ B}. Moreover, y = Sx for
some x ∈ B. If x ≤ z, then Vx ⊆ Vz , and so, by the above step 4 (I), Vx ∪Sx ∈C (Mp |V ), and
hence Vz ∪Sx ∉I . If x > z, then Sx = ∑

ai ∈Vz
ki 6=0

ki ai + ∑
ai ∈Vx−Vz

ti 6=0

ti ai , and so Vz ∪Sx ∈I . If x||z, then

z ∈ Vx . Certainly, z ∉ Vz . Hence there is az = g (z), where g is defined as in Step 2. Since
Sx = ∑

ai ∈Vx={ai :i∈Hx }

i∈Hx ,ki∈F−0

ki ai = kz az + ∑
ai∈Vx−z

ki ai , one follows that Sx could not be represented by

all the elements in Vz , and so Vz ∪Sx ∈I .
Consequently, σpV (Vz) =Vz ∪ {Sx : x ≤ z}.
(III) In view of B= ⋃

z∈B
Vz , one has V = (

⋃
z∈B

Vz)∪ {Sz : z ∈B} = ⋃
z∈B

(Vz ∪Sz) = ⋃
z∈B

(Vz ∪ {Sx :

x ≤ z}), and so, V is a cyclic flat of Mp |V . Therefore, the greatest and least elements in
L(Mp |V ) are V and ; respectively.

(IV) One proves: for any cyclic flat X 6=V of Mp |V , X ∈ {(Vz ∪ {Sx : x ≤ z}) : z ∈B}.
For Sz ∈ X , since Vz ∪Sz ∈C (Mp |V ) and the above closely (I), one has Vz ∪Sz ⊆ X .
For v ∈ X ∩B, since v ∈ X and X is a cyclic flat, one obtains that there is a circuit Cv ⊆ X

satisfying v ∈Cv . By the proof in Step 4 (I), Cv ∩ {Sz : z ∈B} 6= ;, and so there is some y ∈B
satisfying Sy ∈Cv . Furthermore, Cv =Vy ∪Sy .

Thus, X is the closure of ∪{Vz : Sz ∈ X −B}.
By Step 1 (VI), one has X =σpV (Vz ′) where z ′ =∨{z : Sz ∈ X −B}. Thus the cyclic flats of

Mp |V are the sets Vz ∪ {Sx : x ≤ z}.

Step 5. Let h : 1L 7→ V , z 7→ Vz ∪ {Sx : x ≤ z} for z ∈ B. Then combining with the results
from Step 1 to Step 4, one has that L is isomorphic to L(Mp |V ).

�

Combining Theorem 2.3 with Theorem 3.1, we get the following result.

Corollary 3.2. There is a bijection between the set of a bounded lattice and the set of a pre-
independence space Mp = (S,I ) in which C (Mp ) exists and if X ∉I , then it has C ∈C (Mp )
satisfying C ⊆ X , additionally, σp satisfies (cl3).

According to [3], p. 388, for any independence space MI (S) with σ as its closure op-
erator, then σ satisfies (cl1)–(cl3), and besides, when considered with [2] and [3], all of
(2I)–(2IV) are correct for MI . In addition, by [3], pp. 386–388, one gets that MI (S)) exists
and for X ∉ I , it has a circuit C ∈ C (MI (S)) satisfying C ⊆ X . Thus, all the results in Sec-
tion 2 and Section 3 are true for independence spaces. That is, the consequences provided
for are a generalization of that in [10].
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At the same time, we note that [1], Theorem 3.2, gives a method to formulate the defini-
tion of a finite matroid using cyclic flats and its ranks. For infinite matroids, we foresee a
similar proof.

4. CYCLIC WIDTH

We may ask: do the properties of L(Mp ) imply infinite matroid theoretic properties of
a pre-independence space Mp (S) = (S,Ip )? We know that the three of dual operation,
restriction operation and contraction operation are basic operations for finite matroids.
But by Remark 2.2, (S,I ∗

p ) and (T,Ip .T ) for T ⊆ S may fail to exist as a pre-independence
space. Even though, [2] informs us that B-matroids is closed under the dual operation,
or restriction operation or contraction operation respectively. Hence, this section aims to
discuss some properties for a B-matroid MB (S) = (S,I ) by the properties of L(MB ).

A B-matroid N on T is called a minor of MB (S) if N is obtained by any finite combi-
nations of restrictions and contractions of MB (S). Besides by [2], (MB |T )∗ = M∗

B .T and
(M∗

B (S))∗ = MB (S). One notices that by [2] and Theorem 2.3, L(MB ) indeed exists. Recall
in [5], p. 98 & [4] that the width of a poset is the maximum number of elements in a set of
incomparable elements. Hence, the cyclic width of MB (S) is defined as the width of L(MB ).

In what follows, CW (k) represents the family of all B-matroids whose cyclic width is at
most k. One first shows that CW (k) is closed under duals and minors.

Theorem 4.1. The class CW (k) is closed under duals and minors.

Proof. By the dual operation of MB (S) ∈CW (k), it follows the closure under duals.
In light of [2],§3.2, we only need to prove the closure under the restriction operation.
Let σ be the closure operator of MB (S) and T ⊆ S.
If k ≮∞, then obviously, MB |T ∈CW (k).
If k < ∞. By the discussion in [2], pp. 82–83, one has σT (Y ) = σ(Y )∩T for all Y ⊆ T

where σT is the closure operator of MB |T . Suppose MB |T ∈ CW (kT ). Before proceeding,
we recall that the family of dependent sets of MB |T is {Y : Y ⊆ T,Y ∉ I }, and further,
C (MB |T ) = {Y : Y ⊆ T,Y ∈C (MB (S))}.

Let {Yα : α ∈ DT } be a maximal antichain in L(MB |T ) and the cardinality |DT | of DT is
kT . Let Bα ⊆ Yα be a basis of Yα in MB |T . Then Bα is also a basis of Yα in MB , and further,
σT (Yα) =σT (Bα). Furthermore, σ(Bα) = Bα∪{x : Bα∪x ∉I } = Yα∪{x ∈ S−Yα : Bα∪x ∉I }.
Since Bα∪x ∉I and Bα ∈I together implies that there exists a circuit Cx of MB satisfying
x ∈Cx ⊆ Bα∪ x, and hence σ(Bα) = Yα∪ ⋃

x∈Cx⊆Bα∪x∉I
Cx . Let Xα =σ(Bα). One has that Xα

is a cyclic flat and Yα = Xα∩T .
One sees that {Xα :α ∈DT } is a set of incomparable elements in L(MB ) because {Yα :α ∈

DT } is an antichain in L(MB |T ). Herein, kT ≤ k, and further, MB |T ∈CW (k).
�

Example Let S be the edge set of the infinite graph G shown in Figure 1. IG = {X ⊆
S : X does not contain the edge set of any cycle in G}. It is a straightforward to prove that
(S,IG ) is a B-matroid, and obviously, C ((S,IG )) = {{e1, a}}. Let σ be the closure operator
of (S,IG ). Then σ(e1) =σ(a) = {e1, a} as the one and only one cyclic flat in (S,IG ). Hence,
(S,IG ) ∈CW (1), and so, the width of L((S,IG )) is 1.
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Figure 1

Let Hi = S − ei (i = 3,4, . . .). Routine verification posits that (Hi ,IG |Hi ) is a B-matroid
and (Hi ,IG |Hi ) is isomorphic to (S,IG ), and additionally, (Hi ,IG |Hi ) is a minor of (S,IG )
and the width of L((Hi ,IG |Hi )) is 1. (i = 3,4, . . .).

Remark 4.2. As finite matroids (cf.[1]), a class of B-matroids is well-quasi-ordered if it con-
tains no infinite antichain in the minor order. [1] tells that for finite matroids, CW (1) is
well-quasi-ordered. But the above example shows that CW (1) is not a well-quasi-ordered
class of B-matroids. This is also a difference between finite matroids and infinite matroids.
More study is needed.
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