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1. An Introduction to p-Adic Numbers

Kurt Hensel is responsible for first developing p-adic numbers. His

work followed that of his supervisor in the development of arithmetic

in algebraic number fields. In 1897, the Weierstrass method of power-

series development for algebraic functions led him to the invention of

the p-adic numbers. Hensel was interested in the exact power of a prime

which divides the discriminant of an algebraic number field. The p-

adic numbers can be regarded as a completion of the rational numbers

in a different way from the usual completion which leads to the real

numbers. The potential of p-adic numbers remained untapped until

1921 when Hasse formulated the local-global principle, now reffered to

as the Hasse principle. This showed that an equation in the quadratic

form has a rational solution if and only if it has a solution in the p-adic

numbers for every prime p and a solution in the reals. [9][1]

1.1. p-Adic Numbers.

1.1.1. Metrics and Norms. There are some basic ideas that must be

understood before dealing with p-adic numbers. The first concept is a

metric space.
1
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Definition 1. A metric space is a set X together with a metric d usually

denoted as (X,d).

Now you may ask, what is a metric? It is a function that dictates

the distance between two points in a set.

Definition 2. A metric on a non-empty set X is a function d(x,y) with

x,y ∈ X.

(1) d(x, y) = 0 if an only if x = y.

(2) d(x, y) = d(y, x).

(3) d(x, z) ≤ d(x, y) + d(y, z).

The function d sends the pair of elements (x, y) to the non-negative

real numbers. The first property is called the Identity of Indiscernibles.

If two points are in the exact same position, then it is obvious that they

have no distance separating them. If the distance between two points

in 0, then the points must actually be the same, or at least in the exact

same location.

The second property is the symmetric property. This simply says

that the distance from x to y is the same as the distance from y to x.

The third property is the Triangle Inequality. Pretend that we are

at one corner, x, of a square and we want to get to the opposite corner,

z. If we were trying to go from point x to point z, we would travel in a

straight line through the middle of the square. However, if we needed

to stop at point y on the way to point z, then we might need to travel

further. If y was on our shortest path, then we would not need to walk

any more so d(x, z) = d(x, y) + d(y, z). If y was off our path, then

d(x, z) < d(x, y) + d(y, z).

The next term to define is a field.

Definition 3. A field, F is a set together with two operations, additive

(+) and multiplicative (·), such that F is a commutative group under

+, F−{0} is a commutative group under · , and the distributive law

holds.

Two examples of fields that should be familiar are the real numbers,

R, and the rational numbers, Q.

Definition 4. A norm on a field F satisfies
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(1) ‖a‖ = 0 if and only if a = 0

(2) ‖ab‖ = ‖a‖ ‖b‖
(3) ‖a+ b‖ ≤ ‖a‖+ ‖b‖

Note: If F has a norm ‖·‖, we can define a metric of F by: d(x, y) :=

‖x− y‖

1.1.2. Norms on Q. One norm that we are quite familiar with is the

absolute value, |·|. When we set F to be Q, we can define a metric to

be d := |x− y|. Is this the only norm on Q? The answer is no. There

are infinitely many norms of Q, one for each prime p. These are our

p-adic norms.

Let p be a prime number. For n ∈ Z, n = mpv where gcd(m, p) = 1.

Definition 5. The p-adic ordinal of n is v. The ordinal is denoted

ordp(n) = v where v ∈ Z≥0.

Example 1. Consider the number 45. 45 factors into 32 · 5. Letting

p = 3, ord3(45) = 2 since 2 is the exponent on 3. By changing p to be

7, ord7(45) = 0 since 45 = 70 · 45. �

We can also find the p-adic ordinal of any rational number by the

following:

ordp

(a
b

)
:= ordp(a)− ordp(b).

To write it so that is mirrors the first introduced form,
a

b
=
c

d
pv with gcd(c, p) = 1 = gcd(d, p) hence ordp

(a
b

)
= v.

Example 2. We now have two ways to find ord3

(
10
21

)
where p = 3.

The first way mentioned goes like this:

10

21
=

(
10

7

)(
1

3

)
=

(
10

7

)
3−1 =⇒ ord3

(
10

21

)
= −1

The second method is as follows:

ord3

(
10

21

)
= ord3 (10)− ord3 (21) .
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ord3 (10) = 0 because 10 = 30 · 10 and ord3(21) = 1 since 21 = 31 · 7.
Thus we get

ord3(10)− ord3(21) = 0− 1 = −1.

Both methods give us the same answer, −1. �

As I have said, there is one norm for every prime that we can use to

build a metric on Q.

Definition 6. The p-adic norm, |·|p on Q is defined by

|x|p :=

{
0 if x = 0

1
pord3(x) if x 6= 0

The normal absolute value that we are familiar with is geometric. It

measures the distance a point is from the origin. The p-adic absolute

value is arithmetic in nature. It measures how “divisible” a number is

by p. It is the basis for the algebra of p-adic numbers. When consider-

ing |x − y|p, it measures how many digits past the ”decimal point” in

the base p expansions of x and y are the same, but counting from the

rightmost digit[4]. (See 1.1.3)

Definition 7. A norm is called non-Archimedean if

‖x+ y‖ ≤ max{‖x‖, ‖y‖} ≤ ‖x‖+ ‖y‖

or if ‖x‖ 6= 0 6= ‖y‖,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} < ‖x‖+ ‖y‖

The p-adic norm satisfies the relations

(1) |x|p ≥ 0 ∀x
(2) |x|p = 0 if and only if x = 0

(3) |xy|p = |x|p|y|p ∀x and y

(4) |x+ y|p ≤ |x|p + |y|p ∀x and y

(5) |x+ y|p ≤ max(|x|p, |y|p) ∀x and y

Relation 4 is the triangle inequality which falls out trivially from

relation 5, also known as the strong triangle inequality. [8] The above

relations show that |·|p is non Archimedean. However, |·| is not non-

Archimedean, making it Archimedean.
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Example 3.

• |21|3
21 = 3 · 7. 1

3ord3(21)
=

1

31
=

1

3
.

• |45|3

45 = 32 · 5. 1

3ord3(45)
=

1

32
=

1

9
.

• |p|p
p = p1.

1

pordp(p)
=

1

p1
=

1

p
.

�

When the prime p divides the number x in |x|p many times, the

resulting value will be small. Similarly, if the denominator of x is

highly divisible by p, then the answer will be large. A nice example of

this is |27|3 = 1
33 and

∣∣ 1
27

∣∣
3

= 33.

1.1.3. The Field of p-Adics. Using |·| on Q, we create R. Using |·|p on Q,

we create Qp. Qp is the completion of Q by using the p-adic norm. This

is the field that the we will be working with in the following sections.

But first, we will build up an abstract definition of R and then expand

that definition to make Qp.

Definition 8. A sequence is Cauchy if

∀ε > 0, ∃N > 0 so that ∀n,m ≥ N, |an − am| < ε.

The beauty of a Cauchy sequence is that it does not mention the

limit of the sequence itself, but it encapsulates the convergence of the

sequence.

If we define a set S to be the set of all Cauchy sequences of Q, then

R is the set of all equivalence classes of S. This abstract definition of

R can be made to describe Qp by changing the norm used. To build

R, we used |·|, so to make Qp, we will simply use |·|p for a fixed p 6=∞

Lemma 1. If x ∈ Q and |xp| ≤ 1, then for any i, ∃α ∈ Z such that

0 ≤ α ≤ pi such that |α− x|p ≤ 1
pi .
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Proof. Let x = a
b

where gcd(a, b)=1. Since |x|p ≤ 1, it follows that p - b
so (p, b) = 1 and hence b and pi are relatively prime. So we can find

integers m and n such that mb+ npi = 1. Let α = am.

|α− x|p =
∣∣∣am− (a

b

)∣∣∣
p

=
∣∣∣a
b

∣∣∣
p
|mb− 1|p

≤ |mb− 1|p = |npi|p = |n|p|pi|p.

|pi|p = 1

pordp(pi)
. So also |n|p = 1

pordp(n) . No matter what i is, |n|p|pi|p ≤
1
pi . We can add a multiple of pi to α to obtain and integer between 0

and pi for which |α− x|p ≤ p−i still holds.[6] �

We will use this lemma in the proof of the following theorem. After

proving the next theorem, we will not need to think about “equivalence

classes of Cauchy sequences” again.

Theorem 1. Every equivalence class a in Qp for which |a|p ≤ 1 has

exactly one representative Cauchy sequence of the form {ai} for which:

(1) 0 ≤ ai < pi for i = 1, 2, 3, . . .

(2) ai ≡ ai+1 (mod p)i for i = 1, 2, 3, . . .

Proof. We first prove uniqueness. If {a′i} is a different sequence satis-

fying (1) and (2), and if ai0 6= a′i0 , then ai0 6= a′i0 (mod pi0). This is

because both are between 0 and pi0 . But then, for all i ≥ i0, we have

ai ≡ ai0 6≡ a′i0 ≡ ai (mod p)i0 . Thus

|ai − a′i|p >
1

pi0

for all i ≥ i0, and {ai} � {a′i}.
So suppose we have a Cauchy sequence {bi}. We want to find an

equivalent sequence {ai} satisfying (1) and (2). To do this, we use

Lemma 1. For every j = 1, 2, 3, . . . , let N(j) be a natural number such

that |bi − b′i|p ≤ p−j whenever i, i′ ≥ N(j). Notice that |bi|p ≤ 1 if

i ≥ N(1), because for all i′ ≥ N(1),

|bi|p ≤ max(|b′i|p, |bi − b′i|p)
≤ max(|b′i|p, 1/p)

and |b′i|p → |a|p ≤ 1 as i′ →∞.
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We now use the lemma to find a sequence of integers aj, where

0 ≤ aj < pj, such that

|aj − bN(j)|p ≤
1

pj
.

aj+1 ≡ aj (mod p)j. |aj+1−ai|p = |aj+1−bN(j+1)+bN(j+1)−bN(j)−(ai−bN(j))|p
≤ max(|aj+1−bN(j+1)|p, |bN(j+1)−bN(j)|p)

≤ max

(
1

pj+1
,

1

pj
,

1

pj

)
=

1

pj
.

Take j ≥ N(j) and i ≥ N(j).

|ai − bi|p = |ai − aj + aj − bN(j) − (bi − bN(j))|p

≤ max(|ai − aj|p, |aj − bN(j)|p, |bi − bN(j)|p)

≤ max

(
1

pj
,

1

pj
,

1

pj

)
=

1

pj
.

This is the same limit point as before. |ai − bi|p → 0 as i→∞ and

thus the proof is finished.[6] �

To summarize what we have just done, consider a ∈ Qp where |a|p ≤
1. By the theorem, a = b0 + b1p + b2p

2 + . . . where bi ∈ Z satisfy

0 ≤ bi ≤ p− 1.

a1 = b0

a2 = b0 + b1p

a3 = b0 + b1p+ b2p
2

...

and so on. Note how a3 ≡ a2 (mod p2) which essentially kills off terms

p2, p3, . . .. When |a|p > 1, ∃N such that |pNa|p = 1
pN |a|p. As N in-

creases, 1
pN |a|p ≤ 1. So,

pNa = b0 + b1p+ b2p
2 + . . .

a =
b0
pN

+
b1
pN+1

+
b2
pN+2

+ . . .+ bN + bN+1p+ . . .

This is the p-adic expansion of a and will be a convenient way to

write out numbers in Qp. Now, what might the p-adic integers look

like? They are numbers in Qp whose p-adic expansion involves no

negative powers of p. Zp = {a ∈ Qp | |a|p ≤ 1}. If we take a, b ∈ Qp,

if (a−b)
pn ∈ Zp then we can say that a ≡ b (mod pn). This is equivalent
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to saying that if the first nonzero digit in the p-adic expansion of a− b
does not occur prior to the pn-place.

1.1.4. Arithmetic in Qp. Now we have set up a new way of writing

p-adic numbers. Since Qp is a field, let’s now figure out how to add,

subtract, multiply, and divide. Let’s put our new theoretical knowledge

to a ‘practical’ use. These operations in Qp are extremely similar to

the corresponding operations in our normal decimal numbers, the same

operations we learned in grade school. The only difference is that we

work from left to right in Qp rather than right to left. This includes

borrowing and carrying.

Example 4. Addition in Q7

Step 1: Since 5 + 4 = 9 = 71 + 2 ≡ 2 (mod 7),

5× 7−1 + 0× 70 + 4× 71 + . . .

+ 4× 7−1 + 6× 70 + 5× 71 + . . .

2× 7−1

Step 2: Now we carry the 71 to the next power of 7, namely 70 in this

example. In this step, we now have 0 + 6 + 1 = 7 ≡ 0 (mod 7).

5× 7−1 + 0× 70 + 4× 71 + . . .

+ 4× 7−1 + 6× 70 + 5× 71 + . . .

2× 7−1 + 0× 70

Step 3: We continue to add an carry as far as needed, ending up

with

5× 7−1 + 0× 70 + 4× 71 + . . .

+ 4× 7−1 + 6× 70 + 5× 71 + . . .

2× 7−1 + 0× 70 + 3× 71 + . . .

�
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Subtraction works the same way. Here is an example using the same

numbers as in the previous example.

Example 5. Subtraction in Q7

Since we cannot subtract 4 from 2, we try to borrow from the 70 place.

Unfortunately this is 0, so we try the next place over, 71

2× 7−1 + 0× 70 + 3× 71 + . . . 9× 7−1 + 6× 70 + 2× 71 + . . .

− 4× 7−1 + 6× 70 + 5× 71 + . . . =⇒ − 4× 7−1 + 6× 70 + 5× 71 + . . .

Now we can continue to subtract and borrow like we just did to finish

the problem.

2× 7−1 + 0× 70 + 3× 71 + . . .

4× 7−1 + 6× 70 + 5× 71 + . . .

5× 7−1 + 0× 70 + 4× 71 + . . .

�

We will not go through multiplication and division in such detail.

Here are two completed examples that would be beneficial to work

through if there are any uncertainties about the process.

Example 6. Multiplication in Q7

3 + 6× 7 + 2× 72 + . . .

× 4 + 5× 7 + 1× 72 + . . .

5 + 4× 7 + 4× 72 + . . .

1× 7 + 4× 72 + . . .

3× 72 + . . .

5 + 5× 7 + 4× 72 + . . .

�



10 JAIME SORENSON

Example 7. Division in Q7

5 + 1× 7 + 6× 72 + . . .

3 + 5× 7 + 1× 72 + . . .
∣∣∣1 + 2× 7 + 4× 72 + . . .

1 + 6× 7 + 1× 72 + . . .

3× 7 + 2× 72 + . . .

3× 7 + 5× 72 + . . .

4× 72 + . . .

4× 72 + . . .

�

The most important things to remember when doing arithmetic in

Qp is to remember to work left to right and to remember what the

value of p is.

1.1.5. Hensel’s Lemma.

Theorem 2. (Hensel’s Lemma). Let F (x) = c0 + c1x + . . . + cnx
n

be a polynomial whose coefficients are p-adic integers. Let F ′(x) =

c1 + 2c2x + 3c3x
2 + . . . + ncnx

n−1 be the derivative of F (x). Let a0 be

a p-adic integer such that F (a0) 6= 0 (mod p)). Then there exists a

unique p-adic integer a such that

F (a) = 0 and a ≡ a0 (mod p).

This version of the lemma was apparently first give in Serge Lang’s

Ph.D. thesis in 1952 (Annals of Mathematics, Vol. 55, p. 380). Hensel’s

lemma is often called the p-adic Newton’s lemma. It is important

result in valuation theory which gives information on finding roots of

polynomials [7]. The following proof is taken from Neal Koblitz’s book

[6] because it is one of the more elegant proofs I have found.

Proof. By induction on n, we will prove that there are unique sequences

of rational integers a1, a2, . . . such that for all n ≥ 1:
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(1) F (an) ≡ 0 (mod pn+1).

(2) an ≡ an−1 (mod pn).

(3) 0 ≤ an < pn+1.

If n = 1, first let ã0 be the unique integer in {0, 1, . . . , p− 1} which

is congruent to a0 mod p. Any a1 satisfying (2) and (3) must be of the

form ã0 + b1p, where 0 ≤ b1 ≤ p− 1. Now, looking at F (ã0 = b1p), we

expand the polynomial. Since we only need congruence to 0 mod p2,

we can ignore any terms divisible by p2:

F (a1) = F (ã0 + b1p) =
∑

ci(ã0 + b1p)
i

=
∑

(ciã
i
0 + iciã

i−1
0 b1p+ terms divisible by p2)

≡
∑

ciã
i
0 +

(∑
iciã

i−1
0

)
b1p (mod p2)

= F (ã0) + F ′(ã0)b1p.

Since F (a0) ≡ 0 (mod p) by assumption, we can write F (ã0) ≡ αp

(mod p2) for some α ∈ {0, 1, . . . , p − 1}. In order to get F (a1) ≡ 0

(mod p2) we must get αp+F ′(ã0)b1p ≡ 0 (mod p2), or equivalently, α+

F ′(ã0)b1 ≡ 0 (mod p). But, since F ′(a0) 6≡ 0 (mod p) by assumption,

this equation can always be solved for the unknown b1. Using Lemma

1 from 1.1.3, we chose b1 ∈ {0, 1, . . . , p − 1} so that b1 ≡ −α/F ′(ã0)

(mod p). Clearly this b1 is uniquely determined by this condition.

Now, to proceed with the induction, suppose we already have

a1, a2, . . . , an−1. We want to find aN By (2) and (3), we need an =

an−1 + bnp
n with bn ∈ {0, 1, . . . , p− 1}. We expand F (an−1 + bnp

n) as

we did before when n was 1, only this time we ignore terms divisible

by pn+1. This gives us:

F (an) = F (an−1 + bnp
n) ≡ F (an−1)bnp

n (mod pn+1).

Since F (an−1) ≡ 0 (mod pn) by the induction assumption, we can

write F (an−1) ≡ α′pn (mod pn+1), and our goal of F (an) ≡ 0 (mod pn1)

becomes

α′pn + F ′(an−1)bnp
n ≡ 0 (mod pn+1)

α′ + F ′(an−1)bn ≡ 0 (mod p)

Now, since an−1 ≡ a0 (mod p), it easily follows that F ′(an−1) ≡
F ′(a0) 6≡ 0 (mod p), and we can find the required bn the exact same

way as in the case of b1. The theorem follows immediately from what
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was just proved, just let a = ã0 + b1p + b2p
2 + . . . . Since for all n we

have F (a) ≡ F (an) ≡ 0 (mod pn+1), it follows that the p-adic number

F (a) must be 0. Conversely, any a = ã0 + b1p + b2p
2 + . . . . gives a

sequence of an as in (1), (2), and (3). The uniqueness of that sequence

implies the uniqueness of the a.

�

2. A Glimpse at Dirichlet Functions

Dirichlet functions were created by none other than Johann Peter

Gustave Lejeune Dirichlet. Born February 13, 1805 in the French Em-

pire, he attended the Jesuit gymnasium in Cologne where he learned

from Georg Ohm. His first paper was a partial proof of Fermat’s last

theorem for the case n = 5. In 1831, Dirichlet introduced Dirichlet

characters and their L-series in order to prove a theory of his about

arithmetic progressions. Dirichlet only studied these functions for real

s, especially as it tends to 1. Bernhard Riemann extended these func-

tions to complex s in 1859 [2]. Dirichlet characters are used to define

Dirichlet L-functions, which are meromorphic functions with a variety

of interesting analytic properties. If χ is a Dirichlet character, one

defines its Dirichlet L-series by

L(χ, s) =
∞∑
n=1

χ(n)

ns

where s is a complex number with real part > 1 [3].

2.1. Definition and properties.

Definition 9. A Dirichlet character is any function, χ : Z→ C, which

satisfies the following three properties:

(1) ∃k ∈ Z+ such that χ(n) = χ(n+ k), ∀n ∈ Z. This is called the

modulus of χ.
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(2) gcd(n, k) > 1 =⇒ χ(n) = 0; gcd(n, k) = 1 =⇒ χ(n) 6= 0.

(3) χ(m,n) = χ(m)χ(n), ∀m,n ∈ Z
Note: property (1) of a Dirichlet character is equivalent to saying a ≡ b

mod k =⇒ χ(a) = χ(b).

Corollary 1. χ(0) = 0, ∀k > 1, and χ(0) = 1 if k = 1.

Proof. By property (1), χ(0) = χ(k) since 0 ≡ k mod k. Since

gcd(k, k) = k, then property (2) implies that χ(k) = 0 when k > 1

and χ(0) = 1 when k = 1. �

Corollary 2. χ(1) = 1, for any Dirichlet character.

Proof. Property (3) of the Dirichlet definition implies that χ(1) =

χ(1)χ(1), and since gcd(1, k) = 1, ∀k, then χ(1) 6= 0 by property

(2). Hence χ(1)
χ(1)

= χ(1) = 1. �

Corollary 3. gcd(a, k) = 1 =⇒ χ(a) is a ϕ(k)th root of unity.

Proof. aϕ(k) ≡ 1 mod k, where ϕ(k) is the Euler ϕ-function, that is

ϕ(k) is the number of integers j ≤ k such that gcd(j, k) = 1. This

implies that χ(aϕ(k)) = 1 by property (1) and Corollary 2. Since χ is

multiplicative, we get χ(aϕ(k)) = χ(a)ϕ(k) = 1. Hence χ(a) is a solution

to the polynomial zϕ(k) = 1, which means χ(a) is a ϕ(k)th root of unity;

the nth roots of unity are the complex numbers of the form e2πi`/n where

0 ≤ ` < n. �

Definition 10. The unique Dirichlet character of modulus 1 is called

the trivial character.

Definition 11. A Dirichlet character, χ(n), is called principal if it

is equal to 1 for all n relatively prime to its modulus and equal to 0

otherwise.

Definition 12. A Dirichlet character is called real if it only assumes

real values. Therefore, Corollary 3 implies that a real character can

only attain the values 0, 1, or -1. Any character that is not real is

called complex.
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2.2. Character Tables and Constructions. Fix a modulus k. Then

χ(a) = χ(b) ⇐⇒ a ≡ b (mod k), where χ is any k-modulus Dirichlet

character function. We know that the values that χ can take on are

the ϕ(k) roots of unity. The important thing to remember though is

how the group of units modulo k are generated. The set of all units,

modulo k, form an abelian group.

Definition 13. A unit modulo k is an integer in Zk such that it has a

multiplicative inverse. That is, a is a unit if there exists b in Zk such

that ab = ba = 1 (mod k).

Note: This is not the same as the roots of unity.

The Dirichlet character designations χ1, χ2, . . . are arbitrary. Usu-

ally, χ1 is reserved for the trivial character. In the character charts,

the rows can be rearranged because of these arbitrary designations.

Example 8. Character table modulus 5: a cyclic group

Because ϕ(5) = 4 there are 4 unique Dirichlet characters making the

rows of the table. Since this is modulo 5, there are 5 possible values

for n which make the columns of the table. 2 will generate the group

of units modulo 5 so first we tackle that n value first. This is because

21 ≡ 2 (mod 5), 22 ≡ 4 (mod 5), 23 ≡ 3 (mod 5), 24 ≡ 1 (mod 5) is

the set of all units in Z5.

Since ϕ(5) = 4, each Dirichlet character takes on values in the set of

4th roots of unity. And since 2 will generate all the units of Z5, then for

any fixed value of χ(2), we will define one unique character function.

(Note: since the sets of units are the integers modulo k that have inverses,
then gcd(n, k) = 1 if n is a unit. Hence, if an integer m modulo k is not a
unit, then gcd(m, k) 6= 1 =⇒ χ(m) = 0).

χ 0 1 2 3 4

χ1(n) 0 1 1 1 1

χ2(n) 0 1 i −i −1

χ3(n) 0 1 −1 −1 1

χ4(n) 0 1 −i i −1
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Since the 4th roots of unity are 1,−1, i,−i, let’s start the first char-

acter function, χ1(n), by setting χ(2) = 1. Thus

χ(2)χ(2) = χ(2 · 2) = χ(4) = 1 · 1 = 1.

χ(2)χ(4) = χ(2 · 4) = χ(8) = χ(3) = 1 · 1 = 1.

χ(2)χ(3) = χ(2 · 3) = χ(6) = χ(1) = 1 · 1 = 1.

This leaves χ(0) = 0. Now let the second character function start with

χ(2) = −1. This implies that

χ(2)χ(2) = χ(2 · 2) = χ(4) = −1 · −1 = 1.

χ(2)χ(4) = χ(2 · 4) = χ(8) = χ(3) = −1 · 1 = −1.

χ(2)χ(3) = χ(2 · 3) = χ(6) = χ(1) = −1 · −1 = 1.

Setting the third character to be χ(2) = i,

χ(2)χ(2) = χ(2 · 2) = χ(4) = i · i = −1.

χ(2)χ(4) = χ(2 · 4) = χ(8) = χ(3) = i · −1 = −i.

χ(2)χ(3) = χ(2 · 3) = χ(6) = χ(1) = i · −i = 1.

The unit remaining will be assigned to the last character, χ(2) = −i.

χ(2)χ(2) = χ(2 · 2) = χ(4) = −i · −i = −1.

χ(2)χ(4) = χ(2 · 4) = χ(8) = χ(3) = −i · −1 = i.

χ(2)χ(3) = χ(2 · 3) = χ(6) = χ(1) = −i · i = 1.

These values all correspond to the values in the above table. �

Modulus 5 is a straight forward example. However, there are other

types of groups out there. Consider modulus 8. This is more com-

plicated since Z8 has a unit group structure of C2 × C2 and has two

generators for the set of units; they are 3 and 7. We know how to deal

with one generator, but what about two?
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Example 9. The set of units modulo 8 is {1, 3, 5, 7} which can be

generated by powers of 3 and 7. Thus χ(0) = χ(2) = χ(4) = χ(6) = 0

for all character functions below. These numbers also share a factor

with 8 so their gcd with 8 is not 1. Since ϕ(8) = 4, there will be exaclty

4 unique Dirichlet characters of modulus 8. Since 7 generates one of

the copies of C2 and 3 generates the other copy, then we can arbistrarily

assign 2nd roots of unity to each of χ(3) and χ(7).

Since there are two choices for each of χ(3) and χ(7), then there are

four possible choices:

• χ(3) = 1 χ(7) = 1

• χ(3) = 1 χ(7) = −1

• χ(3) = −1 χ(7) = 1

• χ(3) = −1 χ(7) = −1

The same method of multiplication as in example 8 will yield the fol-

lowing table of values.

χ \ n 0 1 2 3 4 5 6 7

χ1(n) 0 1 0 1 0 1 0 1

χ2(n) 0 1 0 1 0 −1 0 −1

χ3(n) 0 1 0 −1 0 1 0 −1

χ4(n) 0 1 0 −1 0 −1 0 1

�

3. Concluding Remarks

This paper is a partial compilation of my notes from an independent

study I did under Professor C. Doug Haessig in the Fall of 2008 and

Spring of 2009 at the University of Rochester. It closely follows the two

books that we studied from, Neal Koblitz [6] and Kenkichi Iwasawa [5].
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I would like to thank Professor Haessig for all the time he has spent
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fellow students and I sidetracked him from his office hours.

References

[1] http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hensel.html
[2] http://www-history.mcs.st-andrews.ac.uk/Biographies/Dirichlet.html
[3] http://en.wikipedia.org/wiki/Dirichlet character
[4] http://everything2.com/title/p-adic%2520norm
[5] Iwasawa, Kenkichi, Lectures on p-Adic L-functions. Princeton University

Press, 1972
[6] Koblitz, Neal, Graduate Texts in Mathematics: p-adic Numbers, p-adic Anal-

ysis, and Zeta-Functions. Springer, New York, 2nd Edition, 1991
[7] Weisstein, Eric W. ”Hensel’s Lemma.” From MathWorld–A Wolfram Web Re-

source. http://mathworld.wolfram.com/HenselsLemma.html
[8] Weisstein, Eric W. ”p-adic Norm.” From MathWorld–A Wolfram Web Re-

source. http://mathworld.wolfram.com/p-adicNorm.html
[9] Weisstein, Eric W. ”p-adic Number.” From MathWorld–A Wolfram Web Re-

source. http://mathworld.wolfram.com/p-adicNumber.html


	1. An Introduction to p-Adic Numbers
	1.1. p-Adic Numbers

	2. A Glimpse at Dirichlet Functions
	2.1. Definition and properties
	2.2. Character Tables and Constructions

	3. Concluding Remarks
	References

