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1 Introduction

The first records of studies of prime numbers come from the Ancient Greeks. Euclid proved
that there are an infinite number of primes as well as the Fundamental Theorem of Arithmetic
which states that every natural number greater than 1 can be written as a unique product of
prime numbers. Since the Greeks, prime numbers have been found to apply to more than just
pure mathematics, but have applications in cryptography and even animation. As of now, there
is no one pattern that can find all prime numbers but there are many other patterns that can
find finite sequences of prime and satisfy other conditions. Ben Green of Cambridge University in
England and Terry Tao of UCLA in the US published a paper [4] in 2005 which impacted the prime
world significantly. They showed that for any integer k there are infinitely many k-term arithmetic
progressions of primes, that is, there exist infinitely many distinct pairs of nonzero integers a, d
such that a, a+ d, . . . , a+ (k − 1)d are all primes. A related paper [2] by Antal Balog deals with the
prime k-tuplets conjecture on average and Balog squares. Andrew Granville discusses and expands
on these two papers in [3].

2 Prime number patterns: Results and examples

Where Green and Tao [4] proved the existence of numerous patterns, Granville [3] sought to
find examples of each of these patterns, find the smallest examples, and attempt to predict how
large the smallest sample is with some generality. He shows how the results of Green and Tao
generate all sorts of mathematically and aesthetically desirable patterns.

2.1 Arithmetic progressions of primes

Before we begin to analyze the various patterns of primes, we shall define the following:
Definition An arithmetic progression of primes is a set of primes of the form p1 + kd for
fixed p1 and d and consecutive k, i.e., {p1, p1 + d, p1 + 2d, ...}.
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One example of the smallest arithmetic progression of length 5 is given by 5, 11, 17, 23, 29.
When we say “smallest” we mean the example in which the largest prime in the set is smallest. If
there is a tie, the set in which the second largest prime is smallest.

Length k Arithmetic Progression (0 ≤ n ≤ k − 1) Last Term
3 3 + 2n 7
4 5 + 6n 23
5 5 + 6n 29
6 7 + 30n 157
7 7 + 150n 907
8 199 + 210n 1669
9 199 + 210n 1879
10 199 + 210n 2089
11 110437 + 13860n 249037
12 110437 + 13860n 262897
13 4943 + 60060n 725663
14 31385539 + 420420n 36850999
15 115453391 + 4144140n 173471351
16 53297929 + 9699690n 198793279
17 3430751869 + 87297210n 4827507229
18 4808316343 + 717777060n 17010526363
19 8297644387 + 4180566390n 83547839407
20 214861583621 + 18846497670n 572945039351
21 5749146449311 + 26004868890n 6269243827111

The k-term arithmetic progression of primes with smallest last term.

Granville asks if it is it is possible to predict the size of the last term or the smallest k-term
arithmetic progression of primes. He expects that the smallest k-term arithmetic progression of
primes has largest prime around (

e1−γk

2

)k/2

where γ is the Euler Mascheroni constant defined by γ = limN→∞
(

1
1 + 1

2 + 1
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1
N

)
− logN

2.2 Generalized arithmetic progressions of primes:

Definition Generalized arithmetic progressions of primes (GAPs) are sets of integers of the
form a+ n1b1 + n2b2 + . . .+ ndbd ,

The GAP above has dimension d and volume N1, . . . Nd. While the integers in a GAP are not
necessarily distinct, there is no linear dependence among the bjs which implies that they must be
distinct. It is possible to show that there is a GAP that generates distinct integers for any given
dimension and volume. All other cases follow from the proof of the dimension 1 case, which is the
arithmetic progression we previously discussed.
Proof:

Let N = max1≤j≤dNj and k=N . Suppose that we have a k-term arithmetic progression of
primes, a+jq, 0 ≤ j ≤ k−1. Let bi = (Ni−1)q for each i, so that a+n1b1+n2b2+. . .+ndbd = a+jq
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where we write j in base N as j = n1 + n2N + n3N
2 + . . . + ndN

d − 1. Therefore the GAP is a
subset of our k-term arithmetic progression. Since each j has a unique expansion in base N , no
two elements of the GAP are equal. Hence the GAP is made up entirely of distinct primes, as
desired. A few other examples of smallest GAPs are:

5 17 29 29 41 53
47 59 71 59 71 83
89 101 113 89 101 113

The 3-by-3 GAPs 5 + 12i + 42j and 29 + 12i + 30j .

11 47 83 503 1721 2939 4157
101 137 173 863 2081 3299 4517
191 227 263 1223 2441 3659 4877
281 317 353 1583 2801 4019 5237

The 4-by-3 GAP 11 + 90i + 36j , and the 4-by-4 GAP 503 + 360i + 1218j .

Let’s go through the first 3-by-3 GAP given by 5 + 12i + 42j to clarify any doubts. The first
element in (i,j)=(0,0) is 5 which is 5 + 12(0) + 42(0). Letting (i,j)=(1,0) gives us 5 + 12(1) +
42(0) which is 17. Lets look at one more, (i,j)=(1,2), 5 + 12(1) + 42(2) =101.

2.3 Balog cubes

Balog cubes are similar to n-by-n GAPs. Balog proved that there are infinitely many 3-by-3
squares of distinct primes where each row and each column forms an arithmetic progression. He
also proved that there are infinitely many 3-by-3-by-3 cubes of distinct primes where each row
and each column and each vertical line forms an arithmetic progression. Balog’s concept has been
expanded by Green and Tao to include an N-by-N-by- . . . -by-N Balog cube of primes. This is due
to the nature of any GAP of distinct primes with dimension d and N1 = N2 = . . . = Nd = N

11 17 23
59 53 47
107 89 71

The smallest 3-by-3 Balog cube of primes.

We can see here that every row and column for an arithmetic progression. The first row
is given by 11 + 6n, the second is 59 – 6n, and the third is 107 – 18n. Similarly the columns are
given by 11 + 48n, 17 + 36n, and 23 + 24n respectively. This also clearly shows that this cube is
not a 3-by-3 GAP. Now adding another dimension gives us the following:

47 383 719 149 401 653 251 419 587
179 431 683 173 347 521 167 63 359
311 479 647 197 293 389 83 107 131
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A 3-by-3-by-3 Balog cube of primes.

Now we have a 3-by-3-by-3 cube so let us check a few of the vertical lines. The first one is 47,
149, 251 which comes from 47 + 102n. Another one is 479, 293, 107 which is given by 479 – 186n.

2.4 Sets of primes, averaging in pairs:

Another of Balog’s results is that statement that there exist arbitrarily large sets A of distinct
primes such that for any a, b∈ A the average a+b

2 is also prime (and all of these averages are distinct).
This follows from the result of Green and Tao [4]. Suppose that we want A to have n elements. If
we did not mind whether the averages were all distinct then we could take any k-term arithmetic
progression of primes, where k = 2n, a+ jd, 0 ≤ j ≤ k− 1, and let A = {a+ 2jd : 0 ≤ j ≤ n− 1}.
In this case 1

2((a + 2id) + (a + 2jd)) = a + (i + j)d is prime, since whenever 0 ≤ i, j ≤ n − 1 we
have 0 ≤ i+ j < k − 1. However, we do want all the averages to be distinct. To do this, we must
introduce Sidon sequences.

Definition A Sidon sequences is a sequence of integers b1 < b2 < . . . < bn in which all of
the sums bi + bj , i < j , are distinct.

n Set of primes
2 3, 7
3 3, 7, 19
4 3, 11, 23, 71
5 3, 11, 23, 71, 191
6 3, 11, 23, 71, 191, 443
7 5, 17, 41, 101, 257, 521, 881
8 257, 269, 509, 857, 1697, 2309, 2477, 2609
9 257, 269, 509, 857, 1697, 2309, 2477, 2609, 5417
10 11, 83, 251, 263, 1511, 2351, 2963, 7583, 8663, 10691
11 757, 1009, 1117, 2437, 2749, 4597, 6529, 10357, 11149, 15349, 21757
12 71, 1163, 1283, 2663, 4523, 5651, 9311, 13883, 13931, 14423, 25943, 27611

Sets of n primes whose pairwise averages are all distinct primes

Going through n=3, we see that 3+7
2 = 5, 7+19

2 = 13, and 3+19
2 = 11.

2.5 Sets of primes, averaging all subsets

Now what if we wanted a set of integers A where each nontrivial subset S of A is also a prime.
For a set A of integers and nontrivial subset S of A, let µS be the average of the values in S. If
we did not mind whether the µS were all distinct or not, then we could take any k(= n(n!))-term
arithmetic progression of primes a+jd, 0 ≤ j ≤ k−1, and let A = {a+j(n!)d : 0 ≤ j ≤ n−1}. Then
for any nonempty subset J of {1, 2, . . . , n}, and corresponding S = SJ = {a + j(n!)d : j ∈ J},
we have µS = 1

|J |
∑

j∈J (a + j(n!)d). We can pull out the d and a since neither depend on j

to get µS = a + d
(∑

j∈J (j(n!)
)

. We can rewrite this as µS = a + d
(∑

j∈J (j)
)

n!
|J | . This
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shows that µS is an element of our progression and is also prime since n!
|J | is an integer and

0 ≤ n!
∑

j∈J

(
j
|J |

)
< n(n!) = k.

What if we wanted the averages to be distinct? Consider any set B = b1 < b2 < . . . < bn of
integers which average to µS are all distinct where we let S ⊂ B,S 6= ∅. Now, letting k =
(bn − b1)n!, take any k-term arithmetic progression of primes a+jd, 0 ≤ j ≤ k − 1, and then let
A = {a + (bj − b1)(n!)d : 1 ≤ j ≤ n}. By a similar argument as above, we can show that the
averages of any nontrivial subset S of B is a prime and that each average is distinct. Here are some
examples:

n Minimal set of primes
2 3, 7
3 7, 19, 67
4 5, 17, 89, 1277
5 209173, 322573, 536773, 1217893, 2484733

2.6 Monochromatic arithmetic progressions of primes

Green and Tao [4] proved the following theorem:
Theorem: Fix any δ > 0 and any integer k ≥ 3. If x is sufficiently large and if P is a subset

of the primes up to x containing at least δπ(x) elements then P contains a k-term arithmetic
progression of primes.

In this theorem, π(x) denotes the number of primes ≤ x. If we want an arithmetic progression
of length k then let δ = 1

r in the result above with x sufficiently large. A nice visualization is if
you color the primes with r colors, then there will be a monochromatic arithmetic progressions
of primes. If we let P1, . . . ,Pr be the partition of the primes up to x into their assigned colors,
then at least one of the Pjhas at least δπ(x) elements. Therefore it contains a k-term arithmetic
progression of primes of color j by the Green-Tao theorem from [4].

2.7 Magic squares of primes

Magic squares are fun little puzzles to solve where there is an n-by-n array of distinct integers
so that the sum of any given row, column, or diagonal is the same. Here is one example of a 3-by-3
magic square:

4 9 8
11 7 3
6 5 10

Note that each row, column and diagonal sums to 21. Here is another example :

17 89 71
113 59 5
47 29 101
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The sum for this magic square is 177. In this magic square, each entry is a distinct prime and
there is a relation between this 3-by-3 magic square and 3-by-3 GAPs. Here, the magic square is
a rearrangement of the 3-by-3 GAP given by 5 + 12i + 42j. Granville [4] claims that there is a
1-to-1 correspondence between 3-by-3 magic squares and 3-by-3 GAPs.

Magic squares can be made more complicated with the idea of bi-magic squares. Bi-magic
squares are magic squares that when the entries are squared, it also forms a magic square. Here is
a 6-by-6 bi-magic square:

17 36 55 124 62 114
58 40 129 50 111 20
108 135 34 64 38 49
87 98 92 102 1 28
116 25 86 7 96 78
22 74 12 81 100 119

Since
∑

(a+mi,jb)2 = a2
∑

1+2ab
∑
mi,j+b2

∑
m2
i,j we see that if there is at least one n-by-n

bi-magic square, then there are infinitely many n-by-n bi-magic squares of primes. The following
4-by-4 magic squares have a very interesting property. The one on the left contains every prime
between 31 and 101 while the one on the right contains all primes between 37 and 103.

37 83 97 41 41 71 103 61
53 61 71 73 97 79 47 53
89 67 59 43 37 67 83 89
79 47 31 101 101 59 43 73

3 Concluding remarks

This article surveyed recent developments in the mathematics of prime numbers, specifically
results following the Green and Tao paper [4]. By showing there are infinitely many k-tem arithemtic
progressions of primes, it was possible to expand this result into the various topics I discussed.
Granville did a wonderful job at summarizing and generalizing consequences of [4].
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