
Page xix, line 4: $\mathbb{Z}/(n)$ Integers mod n

Chapter 1
Page 2, last line of 1.1.3: $\pi_m(S^n) \to \pi_{m+1}(S^{n+1})$.
Page 3. Replace table with

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_k^s</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z}/(2)$</td>
<td>$\mathbb{Z}/(24)$</td>
<td>0</td>
<td>0</td>
<td>$\mathbb{Z}/(2)$</td>
<td>$\mathbb{Z}/(240)$</td>
<td>$(\mathbb{Z}/(2))^2$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_k^s</td>
<td>$(\mathbb{Z}/2)^3$</td>
<td>$\mathbb{Z}/6$</td>
<td>$\mathbb{Z}/(504)$</td>
<td>0</td>
<td>$\mathbb{Z}/(3)$</td>
<td>$(\mathbb{Z}/(2))^2$</td>
<td>$\mathbb{Z}/(480) \oplus \mathbb{Z}/(2)$</td>
</tr>
</tbody>
</table>

Page 3, last line: $f: S^{n+i} \to S^n$
Page 4, line 2 after 1.1.10: Insert “For example, the 2-component of 3-stem is cyclic of order 4 (see Fig. 3.3.18) on S^3 and of order 8 on S^8 (see Fig. 3.3.10).”

Page 4, end of line 2 after 1.1.10: $\pi_{2i+1+j}(S^{2i+1})$
Page 4, 1.1.11: Replace $\mathbb{Z}/2$ with $\mathbb{Z}/(2)$
Page 6, line −9: “Then $\pi_{n'}(F) = \pi_{n'}(X) = \pi'$ is the next nontrivial homotopy group of X.”
Page 7, line 3 after (1.2.6): “$\pi_{n+10}(S^n)$ and the 2-component of $\pi_{n+14}(S^n)$”
Page 15, Line −10 above 1.3.5: \[G = \{ f(x) \in \mathbb{Z}[x] \mid f(x) \equiv x \text{ mod } (x)^2 \} \]
Page 15, Line −8 above 1.3.5: “formal group law F_g”

Chapter 3
Page 79, line 3 of third paragraph after 3.3.9: “From this and 3.3.8 (c)…”

Chapter 4
Page 146, line 3: $\pi_{14}^s = \mathbb{Z}/(2) \oplus \mathbb{Z}/(2)$

Appendix 3
Page 372 Table A.3.6: For $(n, k) = (5, 18)$, replace 24.2.22 by 24.22. For $(n, k) = (8, 15)$, replace 120.27 by 120.25. For $(n, k) = (12, 12)$, replace 2 by 22.
Page 372, line 2 of text below Table A.3.6: “The notation a^j denotes the direct sum of j cyclic groups, each having order a. “