A solution to the Arf-Kervaire invariant problem

Second Abel Conference: A Mathematical Celebration of John Milnor

February 1, 2012

Mike Hill
University of Virginia
Mike Hopkins
Harvard University
Doug Ravenel
University of Rochester
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy
Ingredients of the proof
The spectrum \(\Omega\)
How we construct \(\Omega\)
The slice spectral sequence

Mike Hill, myself and Mike Hopkins
Photo taken by Bill Browder
February 11, 2010
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence
The Kervaire-Milnor classification of exotic spheres

About 50 years ago three papers appeared that revolutionized algebraic and differential topology.
The Kervaire-Milnor classification of exotic spheres

About 50 years ago three papers appeared that revolutionized algebraic and differential topology.

- John Milnor’s *On manifolds homeomorphic to the 7-sphere*, 1956.
The Kervaire-Milnor classification of exotic spheres

About 50 years ago three papers appeared that revolutionized algebraic and differential topology.

- John Milnor’s *On manifolds homeomorphic to the 7-sphere*, 1956. He constructed the first “exotic spheres”, manifolds homeomorphic but not diffeomorphic to the standard S^7.
The Kervaire-Milnor classification of exotic spheres

About 50 years ago three papers appeared that revolutionized algebraic and differential topology.

- John Milnor’s *On manifolds homeomorphic to the 7-sphere*, 1956. He constructed the first “exotic spheres”, manifolds homeomorphic but not diffeomorphic to the standard S^7. They were certain S^3-bundles over S^4.

- Michel Kervaire’s *A manifold which does not admit any differentiable structure*, 1960. His manifold was 10-dimensional. I will say more about it later.
The Kervaire-Milnor classification of exotic spheres

About 50 years ago three papers appeared that revolutionized algebraic and differential topology.

- John Milnor’s *On manifolds homeomorphic to the 7-sphere*, 1956. He constructed the first “exotic spheres”, manifolds homeomorphic but not diffeomorphic to the standard S^7. They were certain S^3-bundles over S^4.

- Michel Kervaire 1927-2007

Michel Kervaire’s *A manifold which does not admit any differentiable structure*, 1960.
The Kervaire-Milnor classification of exotic spheres

About 50 years ago three papers appeared that revolutionized algebraic and differential topology.

- John Milnor’s *On manifolds homeomorphic to the 7-sphere*, 1956. He constructed the first “exotic spheres”, manifolds homeomorphic but not diffeomorphic to the standard S^7. They were certain S^3-bundles over S^4.

- Michel Kervaire 1927-2007

Michel Kervaire’s *A manifold which does not admit any differentiable structure*, 1960. His manifold was 10-dimensional.
The Kervaire-Milnor classification of exotic spheres

About 50 years ago three papers appeared that revolutionized algebraic and differential topology.

- John Milnor’s *On manifolds homeomorphic to the 7-sphere*, 1956. He constructed the first “exotic spheres”, manifolds homeomorphic but not diffeomorphic to the standard S^7. They were certain S^3-bundles over S^4.

- Michel Kervaire’s *A manifold which does not admit any differentiable structure*, 1960. His manifold was 10-dimensional. I will say more about it later.
The Kervaire-Milnor classification of exotic spheres (continued)

The Kervaire-Milnor classification of exotic spheres (continued)

• Kervaire and Milnor’s *Groups of homotopy spheres, I*, 1963.

For example, for $n = 1, 2, 3, \cdots, 18$, it will be shown that the order of the group Θ_n is respectively:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\Theta_n]$</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>992</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>16256</td>
<td>2</td>
<td>16</td>
<td>16.</td>
</tr>
</tbody>
</table>
The Kervaire-Milnor classification of exotic spheres (continued)

For example, for \(n = 1, 2, 3, \ldots, 18 \), it will be shown that the order of the group \(\Theta_n \) is respectively:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta_n)</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>992</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>16256</td>
<td>2</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

They gave a complete classification of exotic spheres in dimensions \(\geq 5 \), with two caveats:

For example, for $n = 1, 2, 3, \ldots, 18$, it will be shown that the order of the group Θ_n is respectively:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\Theta_n]$</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>992</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>16256</td>
<td>2</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

They gave a complete classification of exotic spheres in dimensions ≥ 5, with two caveats:

(i) Their answer was given in terms of the stable homotopy groups of spheres, which remain a mystery to this day.
The Kervaire-Milnor classification of exotic spheres (continued)

For example, for $n = 1, 2, 3, \ldots, 18$, it will be shown that the order of the group Θ_n is respectively:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\Theta_n]$</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>992</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>16384</td>
<td>2</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

They gave a complete classification of exotic spheres in dimensions ≥ 5, with two caveats:

(i) Their answer was given in terms of the stable homotopy groups of spheres, which remain a mystery to this day.

(ii) There was an ambiguous factor of two in dimensions congruent to 1 mod 4.
The Kervaire-Milnor classification of exotic spheres (continued)

For example, for \(n = 1, 2, 3, \ldots, 18 \), it will be shown that the order of the group \(\Theta_n \) is respectively:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\Theta_n])</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>992</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>16256</td>
<td>2</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

They gave a complete classification of exotic spheres in dimensions \(\geq 5 \), with two caveats:

(i) Their answer was given in terms of the stable homotopy groups of spheres, which remain a mystery to this day.

(ii) There was an ambiguous factor of two in dimensions congruent to 1 mod 4. The solution to that problem is the subject of this talk.
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Pontryagin’s approach to continuous maps $f: S^n+k \to S^k$ was
• Assume f is smooth. We know that any map f can be continuously deformed to a smooth one.
• Pick a regular value $y \in S^k$. Its inverse image will be a smooth n-manifold M in S^n+k.
• By studying such manifolds, Pontryagin was able to deduce things about maps between spheres.
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps $f: S^n+k \to S^k$ was
- Assume f is smooth.
 We know that any map f can be continuously deformed to a smooth one.
- Pick a regular value $y \in S^k$.
 Its inverse image will be a smooth n-manifold M in S^n+k.
- By studying such manifolds, Pontryagin was able to deduce things about maps between spheres.
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps $f : S^{n+k} \rightarrow S^k$ was

Pontryagin’s early work on homotopy groups of spheres

Background and history

Classifying exotic spheres

Pontryagin's early work

Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy

Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps \(f : S^{n+k} \to S^k \) was

- Assume \(f \) is smooth.
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps $f : S^{n+k} \to S^k$ was

- Assume f is smooth. We know that any map f can be continuously deformed to a smooth one.

Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps $f : S^{n+k} \to S^k$ was

- Assume f is smooth. We know that any map f can be continuously deformed to a smooth one.
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps \(f : S^{n+k} \to S^k \) was

- Assume \(f \) is smooth. We know that any map \(f \) can be continuously deformed to a smooth one.
- Pick a regular value \(y \in S^k \).
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps $f : S^{n+k} \to S^k$ was

- Assume f is smooth. We know that any map f can be continuously deformed to a smooth one.
- Pick a regular value $y \in S^k$. Its inverse image will be a smooth n-manifold M in S^{n+k}.
Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps $f : S^{n+k} \to S^k$ was

- Assume f is smooth. We know that any map f can be continuously deformed to a smooth one.
- Pick a regular value $y \in S^k$. Its inverse image will be a smooth n-manifold M in S^{n+k}.
- By studying such manifolds, Pontryagin was able to deduce things about maps between spheres.
Pontryagin’s early work (continued)

Let D^k be the closure of an open ball around a regular value $y \in S^k$.

\[M^n \times D^k \overset{f}{\longrightarrow} S^{n+k} \]

\[\downarrow \quad \downarrow \quad \downarrow \]

\[V^{n+k} \overset{f}{\longrightarrow} D^k \]

\[\downarrow \quad \downarrow \quad \downarrow \]

\[M^n \longrightarrow \{ y \} \]
Pontryagin’s early work (continued)

Let D^k be the closure of an open ball around a regular value $y \in S^k$. If it is sufficiently small, then $V^{n+k} = f^{-1}(D^k) \subset S^{n+k}$ is an $(n+k)$-manifold homeomorphic to $M \times D^k$.

\[
\begin{array}{c}
S^{n+k} \xrightarrow{f} S^k \\
\uparrow \quad \uparrow \\
V^{n+k} \xrightarrow{} D^k \\
\uparrow \quad \uparrow \\
M^n \xrightarrow{} \{y\}
\end{array}
\]
Pontryagin’s early work (continued)

Let D^k be the closure of an open ball around a regular value $y \in S^k$. If it is sufficiently small, then $V^{n+k} = f^{-1}(D^k) \subset S^{n+k}$ is an $(n + k)$-manifold homeomorphic to $M \times D^k$.

A local coordinate system around around the point $y \in S^k$ pulls back to one around M called a framing.
Pontryagin’s early work (continued)

\[M^n \times D^k \leftarrow V^{n+k} \rightarrow D^k \]

\[\uparrow \quad \uparrow \quad \uparrow \]

\[M^n \rightarrow \{y\} \]

\[S^{n+k} \leftarrow \rightarrow S^k \]

\[f \]

Let \(D^k \) be the closure of an open ball around a regular value \(y \in S^k \). If it is sufficiently small, then \(V^{n+k} = f^{-1}(D^k) \subset S^{n+k} \) is an \((n + k)\)-manifold homeomorphic to \(M \times D^k \).

A local coordinate system around around the point \(y \in S^k \) pulls back to one around \(M \) called a framing.

There is a way to reverse this procedure.
Pontryagin’s early work (continued)

Let \(D^k \) be the closure of an open ball around a regular value \(y \in S^k \). If it is sufficiently small, then \(V^{n+k} = f^{-1}(D^k) \subset S^{n+k} \) is an \((n+k)\)-manifold homeomorphic to \(M \times D^k \).

A local coordinate system around around the point \(y \in S^k \) pulls back to one around \(M \) called a framing.

There is a way to reverse this procedure. A framed manifold \(M^n \subset S^{n+k} \) determines a map \(f : S^{n+k} \rightarrow S^k \).
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.
To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps \(f_1, f_2 : S^{n+k} \to S^k \) are **homotopic** if there is a continuous map \(h : S^{n+k} \times [0, 1] \to S^k \) (called a **homotopy** between \(f_1 \) and \(f_2 \)) such that
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps \(f_1, f_2 : S^{n+k} \to S^k \) are **homotopic** if there is a continuous map \(h : S^{n+k} \times [0, 1] \to S^k \) (called a homotopy between \(f_1 \) and \(f_2 \)) such that

\[
h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).
\]
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps $f_1, f_2 : S^{n+k} \to S^k$ are homotopic if there is a continuous map $h : S^{n+k} \times [0, 1] \to S^k$ (called a homotopy between f_1 and f_2) such that

$$h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).$$

If $y \in S^k$ is a regular value of h, then $h^{-1}(y)$ is a framed $(n + 1)$-manifold $N \subset S^{n+k} \times [0, 1]$.
To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps $f_1, f_2 : S^{n+k} \to S^k$ are homotopic if there is a continuous map $h : S^{n+k} \times [0, 1] \to S^k$ (called a homotopy between f_1 and f_2) such that

$$h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).$$

If $y \in S^k$ is a regular value of h, then $h^{-1}(y)$ is a framed $(n+1)$-manifold $N \subset S^{n+k} \times [0, 1]$ whose boundary is the disjoint union of $M_1 = f_1^{-1}(y)$ and $M_2 = f_2^{-1}(y)$.
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps $f_1, f_2 : S^{n+k} \to S^k$ are homotopic if there is a continuous map $h : S^{n+k} \times [0, 1] \to S^k$ (called a homotopy between f_1 and f_2) such that

$$h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).$$

If $y \in S^k$ is a regular value of h, then $h^{-1}(y)$ is a framed $(n + 1)$-manifold $N \subset S^{n+k} \times [0, 1]$ whose boundary is the disjoint union of $M_1 = f_1^{-1}(y)$ and $M_2 = f_2^{-1}(y)$. This N is called a framed cobordism between M_1 and M_2.
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps $f_1, f_2 : S^{n+k} \to S^k$ are **homotopic** if there is a continuous map $h : S^{n+k} \times [0, 1] \to S^k$ (called a homotopy between f_1 and f_2) such that

$$h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).$$

If $y \in S^k$ is a regular value of h, then $h^{-1}(y)$ is a framed $(n+1)$-manifold $N \subset S^{n+k} \times [0, 1]$ whose boundary is the disjoint union of $M_1 = f_1^{-1}(y)$ and $M_2 = f_2^{-1}(y)$. This N is called a **framed cobordism** between M_1 and M_2. When it exists the two closed manifolds are said to be **framed cobordant**.
Pontryagin’s early work (continued)
Here is an example of a framed cobordism for $n = k = 1$.

Framed cobordism
Pontryagin’s early work (continued)

Let $\Omega_{n,k}^{fr}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}.

Pontryagin's construction leads to a homomorphism $\Omega_{n,k}^{fr} \to \pi_{n+k}(S^k)$. Pontryagin's Theorem (1936) states that the above homomorphism is an isomorphism in all cases. Both groups are known to be independent of k for $k > n$. We denote the resulting stable groups by simply Ω^{fr}_n and π_{S^n}.

The determination of the stable homotopy groups π_{S^n} is an ongoing problem in algebraic topology. Experience has shown that unfortunately its connection with framed cobordism is not very helpful. It is not used in the proof of our theorem.
Pontryagin’s early work (continued)

Let $\Omega_{n,k}^{fr}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}. Pontryagin’s construction leads to a homomorphism

Pontryagin's Theorem (1936)

The above homomorphism is an isomorphism in all cases. Both groups are known to be independent of k for $k > n$.

We denote the resulting stable groups by simply Ω_{n}^{fr} and π_{n+k}^{S}. The determination of the stable homotopy groups π_{n+k}^{S} is an ongoing problem in algebraic topology. Experience has shown that unfortunately its connection with framed cobordism is not very helpful. It is not used in the proof of our theorem.
Pontryagin’s early work (continued)

Let $\Omega_{n,k}^{fr}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}. Pontryagin’s construction leads to a homomorphism

$$\Omega_{n,k}^{fr} \to \pi_{n+k} S^k.$$
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds
The Arf-Kervaire invariant
The main theorem
Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence

1.10 Pontryagin's early work (continued)

Let $\Omega^{fr}_{n,k}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}. Pontryagin’s construction leads to a homomorphism

$$\Omega^{fr}_{n,k} \rightarrow \pi_{n+k} S^k.$$

Pontryagin's Theorem (1936)

The above homomorphism is an isomorphism in all cases.
Pontryagin’s early work (continued)

Let $\Omega_{n,k}^{fr}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}. Pontryagin’s construction leads to a homomorphism

$$\Omega_{n,k}^{fr} \to \pi_{n+k} S^k.$$

Pontryagin’s Theorem (1936)

The above homomorphism is an isomorphism in all cases.

Both groups are known to be independent of k for $k > n$.

Pontryagin’s early work (continued)

Let $\Omega_{n,k}^{fr}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}. Pontryagin’s construction leads to a homomorphism

$$\Omega_{n,k}^{fr} \rightarrow \pi_{n+k} S^k.$$

Pontryagin’s Theorem (1936)

The above homomorphism is an isomorphism in all cases.

Both groups are known to be independent of k for $k > n$. We denote the resulting stable groups by simply Ω_n^{fr} and π_n^S.

1.10 Pontryagin's early work (continued)
Pontryagin’s early work (continued)

Let $\Omega^\text{fr}_{n,k}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}. Pontryagin’s construction leads to a homomorphism

$$\Omega^\text{fr}_{n,k} \rightarrow \pi_{n+k}S^k.$$

Pontryagin’s Theorem (1936)

The above homomorphism is an isomorphism in all cases.

Both groups are known to be independent of k for $k > n$. We denote the resulting stable groups by simply Ω^fr_n and π^S_n.

The determination of the stable homotopy groups π^S_n is an ongoing problem in algebraic topology.
Pontryagin’s early work (continued)

Let $\Omega^{fr}_{n,k}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}. Pontryagin’s construction leads to a homomorphism

$$\Omega^{fr}_{n,k} \rightarrow \pi_{n+k} S^k.$$

Pontryagin’s Theorem (1936)

The above homomorphism is an isomorphism in all cases.

Both groups are known to be independent of k for $k > n$. We denote the resulting stable groups by simply Ω^{fr}_n and π^S_n.

The determination of the stable homotopy groups π^S_n is an ongoing problem in algebraic topology. Experience has shown that unfortunately its connection with framed cobordism is not very helpful.
Pontryagin’s early work (continued)

Let $\Omega_{n,k}^{fr}$ denote the cobordism group of framed n-manifolds in \mathbb{R}^{n+k}, or equivalently in S^{n+k}. Pontryagin’s construction leads to a homomorphism

$$\Omega_{n,k}^{fr} \to \pi_{n+k} S^k.$$

Pontryagin’s Theorem (1936)

The above homomorphism is an isomorphism in all cases.

Both groups are known to be independent of k for $k > n$. We denote the resulting stable groups by simply Ω_n^{fr} and π_n^S.

The determination of the stable homotopy groups π_n^S is an ongoing problem in algebraic topology. Experience has shown that unfortunately its connection with framed cobordism is not very helpful. It is not used in the proof of our theorem.
Exotic spheres as framed manifolds

Into the 60s again
Exotic spheres as framed manifolds

Following Kervaire-Milnor, let Θ_n denote the group of diffeomorphism classes of exotic n-spheres Σ^n.

Into the 60s again
Exotic spheres as framed manifolds

Following Kervaire-Milnor, let Θ_n denote the group of diffeomorphism classes of exotic n-spheres Σ^n. The group operation here is connected sum.

Into the 60s again
Exotic spheres as framed manifolds

Following Kervaire-Milnor, let Θ_n denote the group of diffeomorphism classes of exotic n-spheres Σ^n. The group operation here is connected sum.

Into the 60s again

Each Σ^n admits a framed embedding into some Euclidean space \mathbb{R}^{n+k}, but the framing is not unique.
Exotic spheres as framed manifolds

Following Kervaire-Milnor, let Θ_n denote the group of diffeomorphism classes of exotic n-spheres Σ^n. The group operation here is connected sum.

Each Σ^n admits a framed embedding into some Euclidean space \mathbb{R}^{n+k}, but the framing is not unique. Thus we do not have a homomorphism from Θ_n to π_n^S.

Into the 60s again
Exotic spheres as framed manifolds

Into the 60s again

Following Kervaire-Milnor, let Θ_n denote the group of diffeomorphism classes of exotic n-spheres Σ^n. The group operation here is connected sum.

Each Σ^n admits a framed embedding into some Euclidean space \mathbb{R}^{n+k}, but the framing is not unique. Thus we do not have a homomorphism from Θ_n to π_n^S, but we do get a map to a certain quotient.
Exotic spheres as framed manifolds (continued)

Two framings of an exotic sphere $\Sigma^n \subset S^{n+k}$ differ by a map to $\text{SO}(k)$, and this map does not depend on the differentiable structure on Σ^n. Varying the framing on the standard sphere S^n leads to a homomorphism $\pi_n \to \pi_{n+k}$ called the Hopf-Whitehead J-homomorphism. It is well understood by homotopy theorists.
Two framings of an exotic sphere $\Sigma^n \subset S^{n+k}$ differ by a map to the special orthogonal group $SO(k)$, and this map does not depend on the differentiable structure on Σ^n.
Exotic spheres as framed manifolds (continued)

Two framings of an exotic sphere $\Sigma^n \subset S^{n+k}$ differ by a map to the special orthogonal group $SO(k)$, and this map does not depend on the differentiable structure on Σ^n. Varying the framing on the standard sphere S^n leads to a homomorphism...
Exotic spheres as framed manifolds (continued)

Two framings of an exotic sphere $\Sigma^n \subset S^{n+k}$ differ by a map to the special orthogonal group $SO(k)$, and this map does not depend on the differentiable structure on Σ^n. Varying the framing on the standard sphere S^n leads to a homomorphism

$$\pi_n SO(k) \xrightarrow{J} \pi_{n+k} S^k$$

called the Hopf-Whitehead J-homomorphism.

Heinz Hopf 1894-1971

George Whitehead 1918-2004
Exotic spheres as framed manifolds (continued)

Two framings of an exotic sphere $\Sigma^n \subset S^{n+k}$ differ by a map to the special orthogonal group $SO(k)$, and this map does not depend on the differentiable structure on Σ^n. Varying the framing on the standard sphere S^n leads to a homomorphism

\[
\pi_n SO(k) \xrightarrow{J} \pi_{n+k} S^k
\]

called the \textit{Hopf-Whitehead J-homomorphism}. It is well understood by homotopy theorists.
Exotic spheres as framed manifolds (continued)

Thus we get a homomorphism

\[\Theta_n \xrightarrow{p} \pi_n S / \text{Im } J. \]
Exotic spheres as framed manifolds (continued)

Thus we get a homomorphism

\[\Theta_n \xrightarrow{p} \pi_n^S / \text{Im } J. \]

The bulk of the Kervaire-Milnor paper is devoted to studying its kernel and cokernel using surgery. The two questions are closely related.

• The map \(p \) is onto iff every framed \(n \)-manifold is cobordant to a sphere, possibly an exotic one.
• It is one-to-one iff every exotic \(n \)-sphere that bounds a framed manifold also bounds an \((n+1)\)-dimensional disk and is therefore diffeomorphic to the standard \(S_n \).

They denote the kernel of \(p \) by \(bP_n+1 \), the group of exotic \(n \)-spheres bounding parallelizable \((n+1)\)-manifolds.

Behrens called this group \(\Theta bP_n \).
Exotic spheres as framed manifolds (continued)

Thus we get a homomorphism

\[\Theta_n \xrightarrow{p} \pi_n S / \text{Im } J. \]

The bulk of the Kervaire-Milnor paper is devoted to studying its kernel and cokernel using surgery. The two questions are closely related.

- The map \(p \) is onto iff every framed \(n \)-manifold is cobordant to a sphere, possibly an exotic one.
Exotic spheres as framed manifolds (continued)

Thus we get a homomorphism

$$\Theta_n \xrightarrow{p} \pi_n^S / \text{Im } J.$$

The bulk of the Kervaire-Milnor paper is devoted to studying its kernel and cokernel using surgery. The two questions are closely related.

- The map p is onto iff every framed n-manifold is cobordant to a sphere, possibly an exotic one.
- It is one-to-one iff every exotic n-sphere that bounds a framed manifold also bounds an $(n + 1)$-dimensional disk and is therefore diffeomorphic to the standard S^n.
Thus we get a homomorphism

$$\Theta_n \xrightarrow{p} \pi_n^S/\text{Im } J.$$

The bulk of the Kervaire-Milnor paper is devoted to studying its kernel and cokernel using surgery. The two questions are closely related.

- The map p is onto iff every framed n-manifold is cobordant to a sphere, possibly an exotic one.
- It is one-to-one iff every exotic n-sphere that bounds a framed manifold also bounds an $(n+1)$-dimensional disk and is therefore diffeomorphic to the standard S^n.

They denote the kernel of p by bP_{n+1}, the group of exotic n-spheres bounding parallelizable $(n+1)$-manifolds.
Thus we get a homomorphism

$$
\Theta_n \xrightarrow{p} \pi_n^S / \text{Im } J.
$$

The bulk of the Kervaire-Milnor paper is devoted to studying its kernel and cokernel using surgery. The two questions are closely related.

- The map p is onto iff every framed n-manifold is cobordant to a sphere, possibly an exotic one.
- It is one-to-one iff every exotic n-sphere that bounds a framed manifold also bounds an $(n + 1)$-dimensional disk and is therefore diffeomorphic to the standard S^n.

They denote the kernel of p by bP_{n+1}, the group of exotic n-spheres bounding parallelizable $(n + 1)$-manifolds. Behrens called this group Θ_n^{bP}.
Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

\[0 \rightarrow bP_{n+1} \rightarrow \Theta_n \overset{p}{\rightarrow} \pi_n^S/\text{Im } J. \]
Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

\[0 \to bP_{n+1} \to \Theta_n \overset{p}{\to} \pi^n_{S}/\text{Im } J. \]

Kervaire-Milnor Theorem (1963)

- *The homomorphism* \(p \) *above is onto except possibly when* \(n = 4m + 2 \) *for* \(m \in \mathbb{Z} \), *and then the cokernel has order at most 2.*
Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

\[0 \longrightarrow bP_{n+1} \longrightarrow \Theta_n \xrightarrow{p} \pi_n^S / \text{Im } J. \]

Kervaire-Milnor Theorem (1963)

- The homomorphism \(p \) above is onto except possibly when \(n = 4m + 2 \) for \(m \in \mathbb{Z} \), and then the cokernel has order at most 2.
- Its kernel \(bP_{n+1} \) is trivial when \(n \) is even.
Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

\[
0 \rightarrow bP_{n+1} \rightarrow \Theta_n \xrightarrow{p} \pi_n^S / \text{Im } J.
\]

Kervaire-Milnor Theorem (1963)

- The homomorphism \(p \) above is onto except possibly when \(n = 4m + 2 \) for \(m \in \mathbb{Z} \), and then the cokernel has order at most 2.
- Its kernel \(bP_{n+1} \) is trivial when \(n \) is even.
- \(bP_{4m} \) is a certain cyclic group.
Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

\[
0 \rightarrow bP_{n+1} \rightarrow \Theta_n \xrightarrow{p} \pi_n^S / \text{Im } J.
\]

Kervaire-Milnor Theorem (1963)

- The homomorphism \(p \) above is onto except possibly when \(n = 4m + 2 \) for \(m \in \mathbb{Z} \), and then the cokernel has order at most 2.
- Its kernel \(bP_{n+1} \) is trivial when \(n \) is even.
- \(bP_{4m} \) is a certain cyclic group. Its order is related to the numerator of the \(m \)th Bernoulli number.

Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

\[0 \rightarrow bP_{n+1} \rightarrow \Theta_n \xrightarrow{p} \pi_n^S / \text{Im } J. \]

Kervaire-Milnor Theorem (1963)

- *The homomorphism* \(p \) *above is onto except possibly when \(n = 4m + 2 \) for \(m \in \mathbb{Z} \), and then the cokernel has order at most 2.*
- *Its kernel* \(bP_{n+1} \) *is trivial when* \(n \) *is even.*
- \(bP_{4m} \) *is a certain cyclic group. Its order is related to the numerator of the mth Bernoulli number.*
- *The order of* \(bP_{4m+2} \) *is at most 2.*
Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

\[0 \to bP_{n+1} \to \Theta_n \xrightarrow{p} \pi_n^S / \text{Im } J. \]

Kervaire-Milnor Theorem (1963)

- The homomorphism \(p \) above is onto except possibly when \(n = 4m + 2 \) for \(m \in \mathbb{Z} \), and then the cokernel has order at most 2.
- Its kernel \(bP_{n+1} \) is trivial when \(n \) is even.
- \(bP_{4m} \) is a certain cyclic group. Its order is related to the numerator of the \(m \)th Bernoulli number.
- The order of \(bP_{4m+2} \) is at most 2.
- \(bP_{4m+2} \) is trivial iff the cokernel of \(p \) in dimension \(4m + 2 \) is nontrivial.
Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

\[0 \rightarrow bP_{n+1} \rightarrow \Theta_n \xrightarrow{p} \pi_{n}^S / \text{Im } J. \]

Kervaire-Milnor Theorem (1963)

- The homomorphism \(p \) above is onto except possibly when \(n = 4m + 2 \) for \(m \in \mathbb{Z} \), and then the cokernel has order at most 2.
- Its kernel \(bP_{n+1} \) is trivial when \(n \) is even.
- \(bP_{4m} \) is a certain cyclic group. Its order is related to the numerator of the \(m \)th Bernoulli number.
- The order of \(bP_{4m+2} \) is at most 2.
- \(bP_{4m+2} \) is trivial iff the cokernel of \(p \) in dimension \(4m + 2 \) is nontrivial.

We now know the value of \(bP_{4m+2} \) in every case except \(m = 31 \).
In other words have a 4-term exact sequence

\[0 \rightarrow \Theta_{4m+2} \xrightarrow{p} \pi^{S}_{4m+2}/\text{Im } J \rightarrow \mathbb{Z}/2 \rightarrow bP_{4m+2} \rightarrow 0 \]
Exotic spheres as framed manifolds (continued)

In other words have a 4-term exact sequence

\[0 \rightarrow \Theta_{4m+2} \xrightarrow{p} \pi_{4m+2}^S / \text{Im } J \rightarrow \mathbb{Z}/2 \rightarrow bP_{4m+2} \rightarrow 0 \]

The early work of Pontryagin implies that \(bP_2 = 0 \) and \(bP_6 = 0 \).
Exotic spheres as framed manifolds (continued)

In other words have a 4-term exact sequence

\[0 \rightarrow \Theta_{4m+2} \xrightarrow{p} \pi^S_{4m+2}/\text{Im } J \rightarrow \mathbb{Z}/2 \rightarrow bP_{4m+2} \rightarrow 0 \]

The early work of Pontryagin implies that \(bP_2 = 0 \) and \(bP_6 = 0 \).

In 1960 Kervaire showed that \(bP_{10} = \mathbb{Z}/2 \).
Exotic spheres as framed manifolds (continued)

In other words have a 4-term exact sequence

$$0 \to \Theta_{4m+2} \xrightarrow{p} \pi_{4m+2}^S / \text{Im } J \to \mathbb{Z}/2 \to bP_{4m+2} \to 0$$

The early work of Pontryagin implies that $bP_2 = 0$ and $bP_6 = 0$.

In 1960 Kervaire showed that $bP_{10} = \mathbb{Z}/2$.

To say more about this we need to define the Kervaire invariant of a framed manifold.
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin’s early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence

The Arf invariant of a quadratic form in characteristic 2

Back to the 1940s

Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank 2^n with mod 2 reduction H. It is known that H has a basis of the form $\{a_i, b_j : 1 \leq i, j \leq n\}$ with $\lambda(a_i, a_i') = 0$, $\lambda(b_j, b_j') = 0$, and $\lambda(a_i, b_j) = \delta_{i, j}$.
The Arf invariant of a quadratic form in characteristic 2

Back to the 1940s

Cahit Arf 1910-1997

The Arf invariant of a quadratic form in characteristic 2

Cahit Arf 1910-1997

The Arf invariant of a quadratic form in characteristic 2

Back to the 1940s

Cahit Arf 1910-1997
Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank $2n$ with mod 2 reduction \overline{H}.

Cahit Arf 1910-1997
Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank $2n$ with mod 2 reduction \overline{H}. It is known that \overline{H} has a basis of the form $\{a_i, b_i : 1 \leq i \leq n\}$ with
The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank $2n$ with mod 2 reduction \overline{H}. It is known that \overline{H} has a basis of the form $\{a_i, b_i : 1 \leq i \leq n\}$ with

$$\lambda(a_i, a_{i'}) = 0 \quad \lambda(b_j, b_{j'}) = 0 \quad \text{and} \quad \lambda(a_i, b_j) = \delta_{i,j}.$$
In other words, \overline{H} has a basis for which the bilinear form’s matrix has the symplectic form

$$
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
0 & 1 \\
1 & 0 \\
\ddots & \ddots \\
0 & 1 \\
1 & 0
\end{bmatrix}.
$$
The Arf invariant of a quadratic form in characteristic 2 (continued)

A quadratic refinement of λ is a map $q : H \to \mathbb{Z}/2$ satisfying
A quadratic refinement of λ is a map $q : \overline{H} \rightarrow \mathbb{Z}/2$ satisfying

$$q(x + y) = q(x) + q(y) + \lambda(x, y)$$
A quadratic refinement of λ is a map $q : \overline{H} \to \mathbb{Z}/2$ satisfying

$$q(x + y) = q(x) + q(y) + \lambda(x, y)$$

Its Arf invariant is

$$\operatorname{Arf}(q) = \sum_{i=1}^{n} q(a_i)q(b_i) \in \mathbb{Z}/2.$$
A quadratic refinement of λ is a map $q : \overline{H} \to \mathbb{Z}/2$ satisfying

$$q(x + y) = q(x) + q(y) + \lambda(x, y)$$

Its Arf invariant is

$$\text{Arf}(q) = \sum_{i=1}^{n} q(a_i)q(b_i) \in \mathbb{Z}/2.$$

In 1941 Arf proved that this invariant (along with the number n) determines the isomorphism type of q.

The Arf invariant of a quadratic form in characteristic 2 (continued)
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin’s early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence

From my stamp collection
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence

From my stamp collection

Alan M. Turing, codebreaker and an Enigma Code Machine

ST HELENA
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy
Ingredients of the proof
The spectrum \(\Omega \)
How we construct \(\Omega \)
The slice spectral sequence

Money talks: Arf’s definition republished in 2009

Cahit Arf 1910-1997
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Into the 60s a third time
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\).

Into the 60s a third time
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension.

Into the 60s a third time
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Into the 60s a third time
The Kervaire invariant of a framed \((4m+2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Here is a simple example.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Here is a simple example. Let \(M = T^2\), the torus, be embedded in \(S^3\) with a framing.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Here is a simple example. Let \(M = T^2\), the torus, be embedded in \(S^3\) with a framing. We define the quadratic refinement

\[
q : H_1(T^2; \mathbb{Z}/2) \rightarrow \mathbb{Z}/2
\]

as follows.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Here is a simple example. Let \(M = T^2\), the torus, be embedded in \(S^3\) with a framing. We define the quadratic refinement

\[
q : H_1(T^2; \mathbb{Z}/2) \to \mathbb{Z}/2
\]

as follows. An element \(x \in H_1(T^2; \mathbb{Z}/2)\) can be represented by a closed curve, with a neighborhood \(V\) which is an embedded cylinder.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Here is a simple example. Let \(M = T^2\), the torus, be embedded in \(S^3\) with a framing. We define the quadratic refinement

\[
q : H_1(T^2; \mathbb{Z}/2) \to \mathbb{Z}/2
\]

as follows. An element \(x \in H_1(T^2; \mathbb{Z}/2)\) can be represented by a closed curve, with a neighborhood \(V\) which is an embedded cylinder. We define \(q(x)\) to be the number of its full twists modulo 2.
The Kervaire invariant of a framed $(4m+2)$-manifold (continued)

For $M = T^2 \subset S^3$ and $x \in H_1(T^2; \mathbb{Z}/2)$, $q(x)$ is the number of full twists in a cylinder V neighboring a curve representing x.

The Kervaire invariant of a framed $(4m + 2)$-manifold
(continued)

For $M = T^2 \subset S^3$ and $x \in H_1(T^2; \mathbb{Z}/2)$, $q(x)$ is the number of full twists in a cylinder V neighboring a curve representing x. This function is not additive!
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

For \(M = T^2 \subset S^3\) and \(x \in H_1(T^2; \mathbb{Z}/2)\), \(q(x)\) is the number of full twists in a cylinder \(V\) neighboring a curve representing \(x\). This function is not additive!
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

Again, let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\),
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

Again, let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\), and let \(H = H_{2m+1}(M; \mathbb{Z})\).
The Kervaire invariant of a framed $$(4m + 2)$$-manifold (continued)

Again, let $$M$$ be a $$2m$$-connected smooth closed framed manifold of dimension $$4m + 2$$, and let $$H = H_{2m+1}(M;\mathbb{Z})$$. Each $$x \in H$$ is represented by an embedding $$S^{2m+1} \hookrightarrow M$$.

1.25

The Kervaire invariant of a framed $$(4m + 2)$$-manifold (continued)

Again, let $$M$$ be a $$2m$$-connected smooth closed framed manifold of dimension $$4m + 2$$, and let $$H = H_{2m+1}(M;\mathbb{Z})$$. Each $$x \in H$$ is represented by an embedding $$S^{2m+1} \hookrightarrow M$$.

1.25
The Kervaire invariant of a framed \((4m + 2)\)-manifold
(continued)

Again, let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\), and let \(H = H_{2m+1}(M; \mathbb{Z})\). Each \(x \in H\) is represented by an embedding \(S^{2m+1} \hookrightarrow M\). \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Kervaire defined a quadratic refinement \(q\) on its mod 2 reduction \(H\) in terms of each sphere's normal bundle. The Kervaire invariant \(\Phi(M)\) is defined to be the Arf invariant of \(q\).

Recall the Kervaire-Milnor 4-term exact sequence

\[0 \to \Theta_{4m+2} \to \pi_{S^{4m+2}}/\text{Im} J \to \mathbb{Z}/2 \to bP_{4m+2} \to 0\]

Kervaire-Milnor Theorem (1963)

\[bP_{4m+2} = 0\] if there is a smooth framed \((4m + 2)\)-manifold \(M\) with \(\Phi(M)\) nontrivial.
The Kervaire invariant of a framed $(4m + 2)$-manifold (continued)

Again, let M be a $2m$-connected smooth closed framed manifold of dimension $4m + 2$, and let $H = H_{2m+1}(M; \mathbb{Z})$. Each $x \in H$ is represented by an embedding $S^{2m+1} \hookrightarrow M$. H has an antisymmetric bilinear form λ defined in terms of intersection numbers.

Kervaire defined a quadratic refinement q on its mod 2 reduction \overline{H} in terms of each sphere’s normal bundle.
The Kervaire invariant of a framed $(4m + 2)$-manifold (continued)

Again, let M be a $2m$-connected smooth closed framed manifold of dimension $4m + 2$, and let $H = H_{2m+1}(M; \mathbb{Z})$. Each $x \in H$ is represented by an embedding $S^{2m+1} \hookrightarrow M$. H has an antisymmetric bilinear form λ defined in terms of intersection numbers.

Kervaire defined a quadratic refinement q on its mod 2 reduction \overline{H} in terms of each sphere's normal bundle. The Kervaire invariant $\Phi(M)$ is defined to be the Arf invariant of q.

Kervaire-Milnor Theorem (1963)

$\overline{bP}_{4m+2} = 0$ iff there is a smooth framed $(4m + 2)$-manifold M with $\Phi(M)$ nontrivial.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

(continued)

Again, let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\), and let \(H = H_{2m+1}(M; \mathbb{Z})\). Each \(x \in H\) is represented by an embedding \(S^{2m+1} \hookrightarrow M\). \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Kervaire defined a quadratic refinement \(q\) on its mod 2 reduction \(\overline{H}\) in terms of each sphere’s normal bundle. The Kervaire invariant \(\Phi(M)\) is defined to be the Arf invariant of \(q\).

Recall the Kervaire-Milnor 4-term exact sequence

\[
0 \longrightarrow \Theta_{4m+2} \longrightarrow p \longrightarrow \pi_{4m+2}^S / \text{Im} J \longrightarrow \mathbb{Z}/2 \longrightarrow bP_{4m+2} \longrightarrow 0
\]
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

Again, let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\), and let \(H = H_{2m+1}(M; \mathbb{Z})\). Each \(x \in H\) is represented by an embedding \(S^{2m+1} \hookrightarrow M\). \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Kervaire defined a quadratic refinement \(q\) on its mod 2 reduction \(\overline{H}\) in terms of each sphere’s normal bundle. The Kervaire invariant \(\Phi(M)\) is defined to be the Arf invariant of \(q\).

Recall the Kervaire-Milnor 4-term exact sequence

\[
0 \rightarrow \Theta_{4m+2} \xrightarrow{p} \pi_{4m+2}^S / \text{Im } J \rightarrow \mathbb{Z}/2 \rightarrow bP_{4m+2} \rightarrow 0
\]

Kervaire-Milnor Theorem (1963)

\(bP_{4m+2} = 0\) iff there is a smooth framed \((4m + 2)\)-manifold \(M\) with \(\Phi(M)\) nontrivial.
The Kervaire invariant of a framed $(4m + 2)$-manifold (continued)

What can we say about $\Phi(M)$?
The Kervaire invariant of a framed $(4m + 2)$-manifold (continued)

What can we say about $\Phi(M)$?

For $m = 0$ there is a framing on the torus $S^1 \times S^1 \subset \mathbb{R}^4$ with nontrivial Kervaire invariant.
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

What can we say about \(\Phi(M)\)?

For \(m = 0\) there is a framing on the torus \(S^1 \times S^1 \subset \mathbb{R}^4\) with nontrivial Kervaire invariant.

Pontryagin (1930’s)

[Diagram of a framed torus]

For \(m = 0\) there is a framing on the torus \(S^1 \times S^1 \subset \mathbb{R}^4\) with nontrivial Kervaire invariant.
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

What can we say about \(\Phi(M)\)?

For \(m = 0\) there is a framing on the torus \(S^1 \times S^1 \subset \mathbb{R}^4\) with nontrivial Kervaire invariant.

Pontryagin used it in 1950 (after some false starts in the 30s) to show \(\pi_{k+2}(S^k) = \mathbb{Z}/2\) for all \(k \geq 2\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

What can we say about \(\Phi(M)\)?

For \(m = 0\) there is a framing on the torus \(S^1 \times S^1 \subset \mathbb{R}^4\) with nontrivial Kervaire invariant.

Pontryagin used it in 1950 (after some false starts in the 30s) to show \(\pi_{k+2}(S^k) = \mathbb{Z}/2\) for all \(k \geq 2\). There are similar framings of \(S^3 \times S^3\) and \(S^7 \times S^7\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

What can we say about \(\Phi(M)\)?

For \(m = 0\) there is a framing on the torus \(S^1 \times S^1 \subset \mathbb{R}^4\) with nontrivial Kervaire invariant.

Pontryagin (1930’s)

Pontryagin used it in 1950 (after some false starts in the 30s) to show \(\pi_{k+2}(S^k) = \mathbb{Z}/2\) for all \(k \geq 2\). There are similar framings of \(S^3 \times S^3\) and \(S^7 \times S^7\). This means that \(bP_2\), \(bP_6\) and \(bP_{14}\) are each trivial.
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

Kervaire (1960) showed it must vanish when \(m = 2\), so \(bP_{10} = \mathbb{Z}/2\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold
(continued)

More of what we can say about \(\Phi(M)\).

Kervaire (1960) showed it must vanish when \(m = 2\), so
\(bP_{10} = \mathbb{Z}/2\). This enabled him to construct the first example of
a topological manifold (of dimension 10) without a smooth
structure.
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

Kervaire (1960) showed it must vanish when \(m = 2\), so \(bP_{10} = \mathbb{Z}/2\). This enabled him to construct the first example of a topological manifold (of dimension 10) without a smooth structure.

\[X = N/\partial N \]
\(\text{(a triangulable manifold)}\)
The Kervaire invariant of a framed $(4m + 2)$-manifold (continued)

More of what we can say about $\Phi(M)$.

Kervaire (1960) showed it must vanish when $m = 2$, so $bP_{10} = \mathbb{Z}/2$. This enabled him to construct the first example of a topological manifold (of dimension 10) without a smooth structure.

This construction generalizes to higher m, but Kervaire’s proof that the boundary is exotic does not.
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

Ed Brown
Frank Peterson
1930-2000

Brown-Peterson (1966) showed that it vanishes for all positive even \(m\).
More of what we can say about $\Phi(M)$.

Brown-Peterson (1966) showed that it vanishes for all positive even m. This means $bP_{8\ell+2} = \mathbb{Z}/2$ for $\ell > 0$.

Ed Brown
1930-2000

Frank Peterson

Brown-Peterson (1966) showed that it vanishes for all positive even m. This means $bP_{8\ell+2} = \mathbb{Z}/2$ for $\ell > 0$.

Ed Brown
1930-2000

Frank Peterson

Brown-Peterson (1966) showed that it vanishes for all positive even m. This means $bP_{8\ell+2} = \mathbb{Z}/2$ for $\ell > 0$.

Ed Brown
1930-2000

Frank Peterson
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).
The Kervaire invariant of a framed \((4m+2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

- Browder (1969) showed that the Kervaire invariant of a smooth framed \((4m+2)\)-manifold can be nontrivial (and hence \(bP_{4m+2} = 0\)) only if \(m = 2^{j-1} - 1\) for some \(j > 0\).

Bill Browder
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

- Browder (1969) showed that the Kervaire invariant of a smooth framed \((4m + 2)\)-manifold can be nontrivial (and hence \(bP_{4m+2} = 0\)) only if \(m = 2^{j-1} - 1\) for some \(j > 0\). This happens iff the element \(h_j^2\) is a permanent cycle in the Adams spectral sequence.

Bill Browder

Bill Browder

Browder (1969) showed that the Kervaire invariant of a smooth framed \((4m + 2)\)-manifold can be nontrivial (and hence \(bP_{4m+2} = 0\)) only if \(m = 2^{j-1} - 1\) for some \(j > 0\). This happens iff the element \(h_j^2\) is a permanent cycle in the Adams spectral sequence.
More of what we can say about $\Phi(M)$.

Browder (1969) showed that the Kervaire invariant of a smooth framed $(4m+2)$-manifold can be nontrivial (and hence $bP_{4m+2} = 0$) only if $m = 2j^{-1} - 1$ for some $j > 0$. This happens iff the element h_j^2 is a permanent cycle in the Adams spectral sequence. The corresponding element in $\pi_{n+2j+1-2}(S^n)$ for large n is θ_j, the subject of our theorem.
More of what we can say about $\Phi(M)$.

Bill Browder

Browder (1969) showed that the Kervaire invariant of a smooth framed $(4m+2)$-manifold can be nontrivial (and hence $bP_{4m+2} = 0$) only if $m = 2^{j-1} - 1$ for some $j > 0$. This happens iff the element h_j^2 is a permanent cycle in the Adams spectral sequence. The corresponding element in $\pi_{n+2j+1-2}(S^n)$ for large n is θ_j, the subject of our theorem. This is the stable homotopy theoretic formulation of the problem.
More of what we can say about $\Phi(M)$.

- Browder (1969) showed that the Kervaire invariant of a smooth framed $(4m + 2)$-manifold can be nontrivial (and hence $bP_{4m+2} = 0$) only if $m = 2^{j-1} - 1$ for some $j > 0$. This happens iff the element h_j^2 is a permanent cycle in the Adams spectral sequence. The corresponding element in $\pi_{n+2j+1-2}(S^n)$ for large n is θ_j, the subject of our theorem. This is the stable homotopy-theoretic formulation of the problem.

- θ_j is known to exist for $1 \leq j \leq 5$, i.e., in dimensions 2, 6, 14, 30 and 62.
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

- Browder (1969) showed that the Kervaire invariant of a smooth framed \((4m + 2)\)-manifold can be nontrivial (and hence \(bP_{4m+2} = 0\)) only if \(m = 2^{j-1} - 1\) for some \(j > 0\). This happens iff the element \(h_j^2\) is a permanent cycle in the Adams spectral sequence. The corresponding element in \(\pi_{n+2j+1-2}(S^n)\) for large \(n\) is \(\theta_j\), the subject of our theorem. This is the stable homotopy theoretic formulation of the problem.

- \(\theta_j\) is known to exist for \(1 \leq j \leq 5\), i.e., in dimensions 2, 6, 14, 30 and 62. In other words, \(bP_2, bP_6, bP_{14}, bP_{30}\) and \(bP_{62}\) are all trivial.
And then ...
And then ... the problem went viral!

A wildly popular dance craze

Can you do the Arf Invariant?
Is it a jig or a reel?

Drawing by Carolyn Snaith 1981
London, Ontario
Speculations about θ_j after Browder’s theorem

In the decade following Browder’s theorem, many topologists tried without success to construct framed manifolds with nontrivial Kervaire invariant in all such dimensions, i.e., to show that $bP_{2j+1-2} = 0$ for all $j > 0$.
Speculations about θ_j after Browder’s theorem

In the decade following Browder’s theorem, many topologists tried without success to construct framed manifolds with nontrivial Kervaire invariant in all such dimensions, i.e., to show that $bP_{2j+1} - 2 = 0$ for all $j > 0$.

Some homotopy theorists, most notably Mahowald, speculated about what would happen if θ_j existed for all j.

Mark Mahowald
In the decade following Browder’s theorem, many topologists tried **without success** to construct framed manifolds with nontrivial Kervaire invariant in **all** such dimensions, i.e., to show that $bP_{2j+1} = 0$ for all $j > 0$.

Some homotopy theorists, most notably Mahowald, speculated about what would happen if θ_j existed for all j. He derived numerous consequences about homotopy groups of spheres.

![Mark Mahowald](image)
Speculations about θ_j after Browder’s theorem

In the decade following Browder’s theorem, many topologists tried without success to construct framed manifolds with nontrivial Kervaire invariant in all such dimensions, i.e., to show that $bP_{2j+1} - 2 = 0$ for all $j > 0$.

Some homotopy theorists, most notably Mahowald, speculated about what would happen if θ_j existed for all j. He derived numerous consequences about homotopy groups of spheres. The possible nonexistence of the θ_j for large j was known as the Doomsday Hypothesis.

Mark Mahowald
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history

Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem

Our strategy

Ingredients of the proof
The spectrum \(\Omega\)
How we construct \(\Omega\)
The slice spectral sequence

Mark Mahowald’s sailboat
Mark Mahowald’s sailboat
After Browder’ theorem (continued)

Vic Snaith and Bill Browder in 1981
Photo by Clarence Wilkerson
After Browder’ theorem (continued)

Vic Snaith and Bill Browder in 1981
Photo by Clarence Wilkerson

After 1980, the problem faded into the background because it was thought to be too hard.
After Browder’ theorem (continued)

Vic Snaith and Bill Browder in 1981
Photo by Clarence Wilkerson

After 1980, the problem faded into the background because it was thought to be too hard. Our proof is two giant steps away from anything that was attempted in the 70s.
After 1980, the problem faded into the background because it was thought to be too hard. Our proof is two giant steps away from anything that was attempted in the 70s. We now know that the world of homotopy theory is very different from what topologists had envisioned then.
After 1980, the problem faded into the background because it was thought to be too hard. Our proof is two giant steps away from anything that was attempted in the 70s. We now know that the world of homotopy theory is very different from what topologists had envisioned then.
Fast forward to 2009
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009,
Fast forward to 2009

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009, just before we proved our theorem.
Fast forward to 2009

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009, just before we proved our theorem.

“As ideas for progress on a particular mathematics problem atrophy it can disappear.”
Fast forward to 2009

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009, just before we proved our theorem.

“As ideas for progress on a particular mathematics problem atrophy it can disappear. Accordingly I wrote this book to stem the tide of oblivion.”
Snaith’s book (continued)

“For a brief period overnight we were convinced that we had the method to make all the sought after framed manifolds
“For a brief period overnight we were convinced that we had the method to make all the sought after framed manifolds - a feeling which must have been shared by many topologists working on this problem."
“For a brief period overnight we were convinced that we had the method to make all the sought after framed manifolds - a feeling which must have been shared by many topologists working on this problem. All in all, the temporary high of believing that one had the construction
Snaith’s book (continued)

“For a brief period overnight we were convinced that we had the method to make all the sought after framed manifolds - a feeling which must have been shared by many topologists working on this problem. All in all, the temporary high of believing that one had the construction was sufficient to maintain in me at least an enthusiastic spectator’s interest in the problem.”
“In the light of the above conjecture and the failure over fifty years to construct framed manifolds of Arf-Kervaire invariant one
“In the light of the above conjecture and the failure over fifty years to construct framed manifolds of Arf-Kervaire invariant one this might turn out to be a book about things which do not exist.
Snaith’s book (continued)

“In the light of the above conjecture and the failure over fifty years to construct framed manifolds of Arf-Kervaire invariant one this might turn out to be a book about things which do not exist. This [is] why the quotations which preface each chapter contain a preponderance
“In the light of the above conjecture and the failure over fifty years to construct framed manifolds of Arf-Kervaire invariant one this might turn out to be a book about things which do not exist. This [is] why the quotations which preface each chapter contain a preponderance of utterances from the pen of Lewis Carroll.”
Our main result

Our main theorem can be stated in three different but equivalent ways:
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that the Kervaire invariant \(\Phi(M^{4m+2}) \)

Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that the Kervaire invariant \(\Phi(M^{4m+2}) \) of a smooth \(2m \)-connected framed \((4m + 2)\)-manifold must vanish (and \(bP_{4m+2} = \mathbb{Z}/2 \)).
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that the Kervaire invariant $\Phi(M^{4m+2})$ of a smooth $2m$-connected framed $(4m + 2)$-manifold must vanish (and $bP_{4m+2} = \mathbb{Z}/2$) for all but 5 or 6 values of m.
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that the Kervaire invariant $\Phi(M^{4m+2})$ of a smooth $2m$-connected framed $(4m + 2)$-manifold must vanish (and $bP_{4m+2} = \mathbb{Z}/2$) for all but 5 or 6 values of m.

- **Stable homotopy theoretic formulation**: It says that certain long sought hypothetical maps between high dimensional spheres do not exist.

There were several unsuccessful attempts in the 1970s to prove the opposite of what we have proved, namely that $bP_{4m+2} = 0$ for all $j > 0$.
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that the Kervaire invariant \(\Phi(M^{4m+2}) \) of a smooth \(2m \)-connected framed \((4m + 2) \)-manifold must vanish (and \(bP_{4m+2} = \mathbb{Z}/2 \)) for all but 5 or 6 values of \(m \).

- **Stable homotopy theoretic formulation**: It says that certain long sought hypothetical maps between high dimensional spheres do not exist.

- **Unstable homotopy theoretic formulation**: It says something about the EHP sequence, which has to do with unstable homotopy groups of spheres.
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation:** It says that the Kervaire invariant $\phi(M^{4m+2})$ of a smooth $2m$-connected framed $(4m+2)$-manifold must vanish (and $bP_{4m+2} = \mathbb{Z}/2$) for all but 5 or 6 values of m.

- **Stable homotopy theoretic formulation:** It says that certain long sought hypothetical maps between high dimensional spheres do not exist.

- **Unstable homotopy theoretic formulation:** It says something about the EHP sequence, which has to do with unstable homotopy groups of spheres.

There were several unsuccessful attempts in the 1970s to prove the opposite of what we have proved, namely that $bP_{2j+1-2} = 0$ for all $j > 0$.
Our main result

Here is the stable homotopy theoretic formulation.
Our main result

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2^{j+1} - 2 + n}(S^n)$ for large n do not exist for $j \geq 7$.

The θ_j in the theorem is the name given to a hypothetical map between spheres represented by a framed manifold with nontrivial Kervaire invariant. It follows from Browder's theorem of 1969 that such things can exist only in dimensions that are 2 less than a power of 2.

Corollary

The Kervaire-Milnor group $bP_{2^{j+1} - 2 + n}$ is nontrivial for $j \geq 7$. It is known to be trivial for $1 \leq j \leq 5$. The case $j = 6$, i.e., bP_{126}, is still open.
Our main result

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements \(\theta_j \in \pi_{2j+1-2+n}(S^n) \) for large \(n \) do not exist for \(j \geq 7 \).

The \(\theta_j \) in the theorem is the name given to a hypothetical map between spheres represented by a framed manifold with nontrivial Kervaire invariant.
Our main result

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2j+1-2+n}(S^n)$ for large n do not exist for $j \geq 7$.

The θ_j in the theorem is the name given to a hypothetical map between spheres represented by a framed manifold with nontrivial Kervaire invariant. It follows from Browder’s theorem of 1969 that such things can exist only in dimensions that are 2 less than a power of 2.
Our main result

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2j+1-2+n}(S^n)$ *for large* n *do not exist for* $j \geq 7$.

The θ_j in the theorem is the name given to a hypothetical map between spheres represented by a framed manifold with nontrivial Kervaire invariant. It follows from Browder’s theorem of 1969 that such things can exist only in dimensions that are 2 less than a power of 2.

Corollary

The Kervaire-Milnor group bP_{2j+1-2} *is nontrivial for* $j \geq 7$.
Our main result

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2^{j+1}-2+n}(S^n)$ for large n do not exist for $j \geq 7$.

The θ_j in the theorem is the name given to a hypothetical map between spheres represented by a framed manifold with nontrivial Kervaire invariant. It follows from Browder’s theorem of 1969 that such things can exist only in dimensions that are 2 less than a power of 2.

Corollary

The Kervaire-Milnor group $bP_{2^{j+1}-2}$ is nontrivial for $j \geq 7$.

It is known to be trivial for $1 \leq j \leq 5$.
Our main result

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2^{j+1}-2^n}(S^n)$ for large n do not exist for $j \geq 7$.

The θ_j in the theorem is the name given to a hypothetical map between spheres represented by a framed manifold with nontrivial Kervaire invariant. It follows from Browder’s theorem of 1969 that such things can exist only in dimensions that are 2 less than a power of 2.

Corollary

The Kervaire-Milnor group $bP_{2^{j+1}-2}$ is nontrivial for $j \geq 7$.

It is known to be trivial for $1 \leq j \leq 5$. The case $j = 6$, i.e., bP_{126}, is still open.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h^j for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral sequence, for studying the stable homotopy groups of spheres. We look forward to learning more with it in the future. I will illustrate it at the end of the talk.
Questions raised by our theorem

Adams spectral sequence formulation.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the \(h_j^2 \) for \(j \geq 7 \) are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the \(\theta_j \) (assuming that they all exist) in the unstable homotopy groups of spheres.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. **We have no idea what their targets are.**

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral sequence, for studying the stable homotopy groups of spheres.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral sequence, for studying the stable homotopy groups of spheres. We look forward to learning more with it in the future.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral sequence, for studying the stable homotopy groups of spheres. We look forward to learning more with it in the future. I will illustrate it at the end of the talk.
Ingredients of the proof

Our proof has several ingredients.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of **stable homotopy theory**, which means we use spectra instead of topological spaces.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of **stable homotopy theory**, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension. While a space X has a homotopy group $\pi_n(X)$ for each positive integer n,

\[\pi_0(S) \text{ is an element of this group for } n = 2j + 1 - 2. \]
Ingredients of the proof

Our proof has several ingredients.

- We use methods of **stable homotopy theory**, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension. While a space X has a homotopy group $\pi_n(X)$ for each positive integer n, a spectrum X has an abelian homotopy group $\pi_n(X)$ **defined for every integer n**.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of **stable homotopy theory**, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension. While a space X has a homotopy group $\pi_n(X)$ for each positive integer n, a spectrum X has an abelian homotopy group $\pi_n(X)$ defined for every integer n.

For the sphere spectrum S^0, $\pi_n(S^0)$ (previously denoted by π_n^S) is the usual homotopy group $\pi_{n+k}(S^k)$ for $k > n + 1$.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of **stable homotopy theory**, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension. While a space X has a homotopy group $\pi_n(X)$ for each positive integer n, a spectrum X has an abelian homotopy group $\pi_n(X)$ defined for every integer n.

For the sphere spectrum S^0, $\pi_n(S^0)$ (previously denoted by π_n^S) is the usual homotopy group $\pi_{n+k}(S^k)$ for $k > n + 1$. The hypothetical θ_j is an element of this group for $n = 2^{i+1} - 2$.
Ingredients of the proof (continued)

More ingredients of our proof:
Ingredients of the proof (continued)

More ingredients of our proof:

- We use complex cobordism theory.
Ingredients of the proof (continued)

More ingredients of our proof:

- We use complex cobordism theory. This is a branch of algebraic topology having deep connections with algebraic geometry and number theory.
Ingredients of the proof (continued)

More ingredients of our proof:

- We use complex cobordism theory. This is a branch of algebraic topology having deep connections with algebraic geometry and number theory. It includes some highly developed computational techniques that began with work by Milnor, Novikov and Quillen in the 60s.
Ingredients of the proof (continued)

More ingredients of our proof:

- We use **complex cobordism theory**. This is a branch of algebraic topology having deep connections with algebraic geometry and number theory. It includes some highly developed computational techniques that began with work by Milnor, Novikov and Quillen in the 60s. A pivotal tool in the subject is the theory of formal group laws.

John Milnor

Sergei Novikov

Dan Quillen 1940–2011
Ingredients of the proof (continued)
More ingredients of our proof:

- We also make use of newer less familiar methods from equivariant stable homotopy theory.
Ingredients of the proof (continued)
More ingredients of our proof:

- We also make use of newer less familiar methods from equivariant stable homotopy theory. This means there is a finite group G (a cyclic 2-group) acting on all spaces in sight, and all maps are required to commute with these actions.
Ingredients of the proof (continued)

More ingredients of our proof:

- We also make use of newer less familiar methods from equivariant stable homotopy theory. This means there is a finite group G (a cyclic 2-group) acting on all spaces in sight, and all maps are required to commute with these actions. When we pass to spectra, we get homotopy groups indexed not just by the integers \mathbb{Z}, but by $RO(G)$, the real representation ring of G.
Ingredients of the proof (continued)
More ingredients of our proof:

- We also make use of newer less familiar methods from equivariant stable homotopy theory. This means there is a finite group G (a cyclic 2-group) acting on all spaces in sight, and all maps are required to commute with these actions. When we pass to spectra, we get homotopy groups indexed not just by the integers \mathbb{Z}, but by $RO(G)$, the real representation ring of G. Our calculations make use of this richer structure.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_\ast(\Omega)$.

(ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) Gap Theorem. $\pi_k(\Omega) = 0$ for $-4 < k < 0$. This property is our zinger. Its proof involves a new tool we call the slice spectral sequence, which I will illustrate at the end of the talk.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_* (\Omega)$.

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that $\pi_k (\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_k (\Omega) = 0$ for $-4 < k < 0$.
We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_\ast(\Omega)$.

(ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) Gap Theorem. $\pi_k(\Omega) = 0$ for $-4 < k < 0$. This property is our zinger.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_k(\Omega) = 0$ for $-4 < k < 0$. This property is our **zinger**. Its proof involves a new tool we call the slice spectral sequence,
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_k(\Omega) = 0$ for $-4 < k < 0$. This property is our zinger. Its proof involves a new tool we call the slice spectral sequence, which I will illustrate at the end of the talk.
The spectrum Ω (continued)

Here again are the properties of Ω
Here again are the properties of Ω

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254}(\Omega) = 0$. If $\theta_7 \in \pi_{254}(S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist. The argument for θ_j for larger j is similar, since $|\theta_j| = 2^{j+1} - 2 \equiv -2 \mod 256$ for $j \geq 7$.

A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds
The Arf-Kervaire invariant
The main theorem
Our strategy
Ingredients of the proof
The spectrum Ω

How we construct Ω
The slice spectral sequence
Here again are the properties of Ω

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

If θ_7 exists, its image in $\pi_{254}(\Omega)$ cannot be nontrivial, so it cannot exist.

The argument for θ_j for larger j is similar, since $|\theta_j| = 2^{j+1} - 2 \equiv -2 \mod 256$ for $j \geq 7$.

The spectrum Ω (continued)
The spectrum Ω (continued)

Here again are the properties of Ω

(i) Detection Theorem. If θ_j exists, it has nontrivial image in $\pi_* (\Omega)$.

(ii) Periodicity Theorem. $\pi_k (\Omega)$ depends only on the reduction of k modulo 256.

(iii) Gap Theorem. $\pi_{-2} (\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254} (\Omega) = 0$.

If $\theta_7 \in \pi_{254} (S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist.
Here again are the properties of Ω

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_* (\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k (\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2} (\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254} (\Omega) = 0$.

If $\theta_7 \in \pi_{254} (S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist. The argument for θ_j for larger j is similar, since $|\theta_j| = 2^{j+1} - 2 \equiv -2 \mod 256$ for $j \geq 7$.

How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$. To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The fixed point set of this action is the set of real points, known to topologists as MO, the unoriented cobordism spectrum. In this notation, U and O stand for the unitary and orthogonal groups.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The fixed point set of this action is the set of real points, known to topologists as MO, the unoriented cobordism spectrum.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The fixed point set of this action is the set of real points, known to topologists as MO, the unoriented cobordism spectrum. In this notation, U and O stand for the unitary and orthogonal groups.
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup.
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X.

How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication.
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a space, $Y = X^{\lvert G/H \rvert}$, the $\lvert G/H \rvert$-fold Cartesian power of X.

How we construct Ω (continued)
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a space, $Y = X^{\left|G/H\right|}$, the $\left|G/H\right|$-fold Cartesian power of X. A general element of G permutes these factors, each of which is invariant under the action of the subgroup H.

In particular we get a C_8-spectrum $MU(4)$ $\tilde{\Omega}$ which is not periodic, but it has a close relative $\tilde{\Omega}$ which is.
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a space, $Y = X^{\mid G/H \mid}$, the $\mid G/H \mid$-fold Cartesian power of X. A general element of G permutes these factors, each of which is invariant under the action of the subgroup H.

In particular we get a C_8-spectrum

$$MU_R^{(4)} = \text{Map}_{C_2}(C_8, MU_R).$$
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a space, $Y = X^{|G/H|}$, the $|G/H|$-fold Cartesian power of X. A general element of G permutes these factors, each of which is invariant under the action of the subgroup H.

In particular we get a C_8-spectrum

$$MU_R^{(4)} = \text{Map}_{C_2}(C_8, MU_R).$$

This spectrum is not periodic, but it has a close relative $\tilde{\Omega}$ which is.
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin’s early work
Exotic spheres as framed manifolds

The Arf-Kervaire invariant

The main theorem
Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω

The slice spectral sequence

A homotopy fixed point spectral sequence
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Classifying exotic spheres
Pontryagin's early work
Exotic spheres as framed manifolds
The Arf-Kervaire invariant
The main theorem
Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω

The corresponding slice spectral sequence