A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Our main result
Pontryagin's early work
The Arf-Kervaire formulation
Questions raised by our theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence

An equivariant approach to the Riemann Hypothesis

Unni Namboodiri Lectures
University of Chicago

April 1, 2011

Mike Hill
University of Virginia
Mike Hopkins
Harvard University
Doug Ravenel
University of Rochester
Abstract: We start by extending the Riemann zeta function from CP^1 (the complex projective line, which is the same thing as the Riemann sphere) to CP^∞, the infinite dimensional complex projective space, via multiplication.
Abstract: We start by extending the Riemann zeta function from CP^1 (the complex projective line, which is the same thing as the Riemann sphere) to CP^∞, the infinite dimensional complex projective space, via multiplication. We can do this because CP^∞ is the infinite symmetric product on CP^1.
Abstract: We start by extending the Riemann zeta function from CP^1 (the complex projective line, which is the same thing as the Riemann sphere) to CP^∞, the infinite dimensional complex projective space, via multiplication. We can do this because CP^∞ is the infinite symmetric product on CP^1.

The object is to show that all nontrivial zeros have first coordinate on the critical line.
An equivariant approach to the Riemann Hypothesis

Abstract: We start by extending the Riemann zeta function from CP^1 (the complex projective line, which is the same thing as the Riemann sphere) to CP^∞, the infinite dimensional complex projective space, via multiplication. We can do this because CP^∞ is the infinite symmetric product on CP^1.

The object is to show that all nontrivial zeros have first coordinate on the critical line. The group C_2 acts by complex conjugation.
Abstract: We start by extending the Riemann zeta function from CP^1 (the complex projective line, which is the same thing as the Riemann sphere) to CP^∞, the infinite dimensional complex projective space, via multiplication. We can do this because CP^∞ is the infinite symmetric product on CP^1.

The object is to show that all nontrivial zeros have first coordinate on the critical line. The group C_2 acts by complex conjugation. Using the functional equation we can modify the zeta function to get a new function Λ that is symmetric about the critical line.
Abstract: We start by extending the Riemann zeta function from CP^1 (the complex projective line, which is the same thing as the Riemann sphere) to CP^∞, the infinite dimensional complex projective space, via multiplication. We can do this because CP^∞ is the infinite symmetric product on CP^1.

The object is to show that all nontrivial zeros have first coordinate on the critical line. The group C_2 acts by complex conjugation. Using the functional equation we can modify the zeta function to get a new function Λ that is symmetric about the critical line. This leads to an action of $G = C_2 \times C_2$ on CP^∞ for which modified zeta function is equivariant.
An equivariant approach to the Riemann Hypothesis (continued)

We can extend this function to the complex cobordism spectrum MU (which also gets a G-action in this way) by considering higher derivatives of Λ.
We can extend this function to the complex cobordism spectrum MU (which also gets a G-action in this way) by considering higher derivatives of Λ. A theorem of Bombieri states that a zero off the critical line leads to an essential map from CP^{2i+2^j-1} to the fixed point spectrum MU^G, where i and j depend on the moments of the zero in question.
An equivariant approach to the Riemann Hypothesis (continued)

We can extend this function to the complex cobordism spectrum MU (which also gets a G-action in this way) by considering higher derivatives of Λ. A theorem of Bombieri states that a zero off the critical line leads to an essential map from $CP^{2^i+2^j-1}$ to the fixed point spectrum MU^G, where i and j depend on the moments of the zero in question. Subsequent work has shown that we must have $i, j \geq 31$ (all lower cases have been excluded by machine computations done in the 90s) and that the map must factor through the top cell.
An equivariant approach to the Riemann Hypothesis (continued)

We can extend this function to the complex cobordism spectrum MU (which also gets a G-action in this way) by considering higher derivatives of Λ. A theorem of Bombieri states that a zero off the critical line leads to an essential map from $CP^{2^i+2^j-1}$ to the fixed point spectrum MU^G, where i and j depend on the moments of the zero in question. Subsequent work has shown that we must have $i, j \geq 31$ (all lower cases have been excluded by machine computations done in the 90s) and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant question except that the group involved is not cyclic.
An equivariant approach to the Riemann Hypothesis
(continued)

We can extend this function to the complex cobordism spectrum MU (which also gets a G-action in this way) by considering higher derivatives of Λ. A theorem of Bombieri states that a zero off the critical line leads to an essential map from CP^{2i+2^j-1} to the fixed point spectrum MU^G, where i and j depend on the moments of the zero in question. Subsequent work has shown that we must have $i, j \geq 31$ (all lower cases have been excluded by machine computations done in the 90s) and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant question except that the group involved is not cyclic. The Slice Theorem (to be explained below) still holds, but the slices themselves are more complicated because of the bigger group.
An equivariant approach to the Riemann Hypothesis (continued)

We can extend this function to the complex cobordism spectrum \(MU \) (which also gets a \(G \)-action in this way) by considering higher derivatives of \(\Lambda \). A theorem of Bombieri states that a zero off the critical line leads to an essential map from \(CP^{2^i+2^j-1} \) to the fixed point spectrum \(MU^G \), where \(i \) and \(j \) depend on the moments of the zero in question. Subsequent work has shown that we must have \(i, j \geq 31 \) (all lower cases have been excluded by machine computations done in the 90s) and that the map must factor through the top cell.

Hence the problem is very similar to the Kervaire invariant question except that the group involved is not cyclic. The Slice Theorem (to be explained below) still holds, but the slices themselves are more complicated because of the bigger group. Using the techniques we have developed in the cyclic case, there is a good chance we can do the necessary calculations here and arrive at a similar proof.
A solution to the Arf-Kervaire invariant problem
Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Our main result
Pontryagin’s early work
The Arf-Kervaire formulation
Questions raised by our theorem

Our strategy
Ingredients of the proof
The spectrum \(\Omega\)
How we construct \(\Omega\)
The slice spectral sequence
A solution to the Arf-Kervaire invariant problem I: History and background

Unni Namboodiri Lectures
University of Chicago

April 1, 2011
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history

Our main result
Pontryagin's early work
The Arf-Kervaire formulation
Questions raised by our theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence

Vic Snaith and Bill Browder in 1981
Photo by Clarence Wilkerson
A wildly popular dance craze

Can you do the Arf Invariant?

Is it a jig or a reel?

Drawing by Carolyn Snaith 1981
London, Ontario
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Our main result
Pontryagin's early work
The Arf-Kervaire formulation
Questions raised by our theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence

Mike Hill, myself and Mike Hopkins
Photo taken by Bill Browder
February 11, 2010
Our main result

Our main theorem can be stated in three different but equivalent ways:
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that a certain geometrically defined invariant $\Phi(M)$ (the Arf-Kervaire invariant, to be defined later) on certain manifolds M is always zero.

- **Stable homotopy theoretic formulation**: It says that certain long sought hypothetical maps between high dimensional spheres do not exist.

- **Unstable homotopy theoretic formulation**: It says something about the EHP sequence, which has to do with unstable homotopy groups of spheres.
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that a certain geometrically defined invariant \(\Phi(M) \) (the Arf-Kervaire invariant, to be defined later) on certain manifolds \(M \) is always zero.

- **Stable homotopy theoretic formulation**: It says that certain long sought hypothetical maps between high dimensional spheres do not exist.
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that a certain geometrically defined invariant $\Phi(M)$ (the Arf-Kervaire invariant, to be defined later) on certain manifolds M is always zero.

- **Stable homotopy theoretic formulation**: It says that certain long sought hypothetical maps between high dimensional spheres do not exist.

- **Unstable homotopy theoretic formulation**: It says something about the EHP sequence, which has to do with unstable homotopy groups of spheres.
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that a certain geometrically defined invariant $\Phi(M)$ (the Arf-Kervaire invariant, to be defined later) on certain manifolds M is always zero.

- **Stable homotopy theoretic formulation**: It says that certain long sought hypothetical maps between high dimensional spheres do not exist.

- **Unstable homotopy theoretic formulation**: It says something about the EHP sequence, which has to do with unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old.
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation:** It says that a certain geometrically defined invariant $\Phi(M)$ (the Arf-Kervaire invariant, to be defined later) on certain manifolds M is always zero.

- **Stable homotopy theoretic formulation:** It says that certain long sought hypothetical maps between high dimensional spheres do not exist.

- **Unstable homotopy theoretic formulation:** It says something about the EHP sequence, which has to do with unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old. There were several unsuccessful attempts to solve it in the 1970s.
Our main result

Our main theorem can be stated in three different but equivalent ways:

- **Manifold formulation**: It says that a certain geometrically defined invariant $\Phi(M)$ (the Arf-Kervaire invariant, to be defined later) on certain manifolds M is always zero.

- **Stable homotopy theoretic formulation**: It says that certain long sought hypothetical maps between high dimensional spheres do not exist.

- **Unstable homotopy theoretic formulation**: It says something about the EHP sequence, which has to do with unstable homotopy groups of spheres.

The problem solved by our theorem is nearly 50 years old. There were several unsuccessful attempts to solve it in the 1970s. They were all aimed at proving the opposite of what we have proved.
Snaith’s book

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009,
Snaith’s book

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009, just before we proved our theorem.
Snaith’s book

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009, just before we proved our theorem.

“As ideas for progress on a particular mathematics problem atrophy it can disappear.
Snaith’s book

Stable Homotopy Around the Arf-Kervaire Invariant, published in early 2009, just before we proved our theorem.

“As ideas for progress on a particular mathematics problem atrophy it can disappear. Accordingly I wrote this book to stem the tide of oblivion.”
“For a brief period overnight we were convinced that we had the method to make all the sought after framed manifolds.
“For a brief period overnight we were convinced that we had the method to make all the sought after framed manifolds- a feeling which must have been shared by many topologists working on this problem.
“For a brief period overnight we were convinced that we had the method to make all the sought after framed manifolds - a feeling which must have been shared by many topologists working on this problem. All in all, the temporary high of believing that one had the construction
“For a brief period overnight we were convinced that we had the method to make all the sought after framed manifolds - a feeling which must have been shared by many topologists working on this problem. All in all, the temporary high of believing that one had the construction was sufficient to maintain in me at least an enthusiastic spectator’s interest in the problem.”
“In the light of the above conjecture and the failure over fifty years to construct framed manifolds of Arf-Kervaire invariant one
“In the light of the above conjecture and the failure over fifty years to construct framed manifolds of Arf-Kervaire invariant one this might turn out to be a book about things which do not exist.
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history

Our main result
Pontryagin’s early work
The Arf-Kervaire formulation
Questions raised by our theorem

Our strategy
Ingredients of the proof
The spectrum \(\Omega \)
How we construct \(\Omega \)
The slice spectral sequence

Snaith’s book (continued)

“In the light of the above conjecture and the failure over fifty years to construct framed manifolds of Arf-Kervaire invariant one this might turn out to be a book about things which do not exist. This [is] why the quotations which preface each chapter contain a preponderance
Snaith’s book (continued)

“In the light of the above conjecture and the failure over fifty years to construct framed manifolds of Arf-Kervaire invariant one this might turn out to be a book about things which do not exist. This [is] why the quotations which preface each chapter contain a preponderance of utterances from the pen of Lewis Carroll.”
Our main result (continued)

Here is the stable homotopy theoretic formulation.
Our main result (continued)

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements \(\theta_j \in \pi_{2j+1-2+n}(S^n) \) *for large* \(n \) *do not exist for* \(j \geq 7 \).*
Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2^{j+1} - 2 + n}(S^n)$ for large n do not exist for $j \geq 7$.

The θ_j in the theorem is the name given to a hypothetical map between spheres for which the Arf-Kervaire invariant is nontrivial.
Here is the stable homotopy theoretic formulation.

Main Theorem

\[\text{The Arf-Kervaire elements } \theta_j \in \pi_{2j+1-2+n}(S^n) \text{ for large } n \text{ do not exist for } j \geq 7. \]

The \(\theta_j \) in the theorem is the name given to a hypothetical map between spheres for which the Arf-Kervaire invariant is nontrivial. It follows from Browder's theorem of 1969 that such things can exist only in dimensions that are 2 less than a power of 2.
Some homotopy theorists, most notably Mahowald, speculated about what would happen if θ_j existed for all j.

Mark Mahowald
Some homotopy theorists, most notably Mahowald, speculated about what would happen if θ_j existed for all j. He derived numerous consequences about homotopy groups of spheres.

Mark Mahowald
Some homotopy theorists, most notably Mahowald, speculated about what would happen if \(\theta_j \) existed for all \(j \). He derived numerous consequences about homotopy groups of spheres. The possible nonexistence of the \(\theta_j \) for large \(j \) was known as the Doomsday Hypothesis.
Some homotopy theorists, most notably Mahowald, speculated about what would happen if θ_j existed for all j. He derived numerous consequences about homotopy groups of spheres. The possible nonexistence of the θ_j for large j was known as the Doomsday Hypothesis.

After 1980, the problem faded into the background because it was thought to be too hard.
Some homotopy theorists, most notably Mahowald, speculated about what would happen if θ_j existed for all j. He derived numerous consequences about homotopy groups of spheres. The possible nonexistence of the θ_j for large j was known as the Doomsday Hypothesis.

After 1980, the problem faded into the background because it was thought to be too hard. Our proof is two giant steps away from anything that was attempted in the 70s.
Some homotopy theorists, most notably Mahowald, speculated about what would happen if θ_j existed for all j. He derived numerous consequences about homotopy groups of spheres. The possible nonexistence of the θ_j for large j was known as the **Doomsday Hypothesis**.

After 1980, the problem faded into the background because it was thought to be too hard. Our proof is two giant steps away from anything that was attempted in the 70s. We now know that the world of homotopy theory is very different from what they had envisioned then.
Pontryagin’s early work on homotopy groups of spheres

Lev Pontryagin 1908-1988

Pontryagin’s approach to maps $f : S^{n+k} \to S^n$ was

Pontryagin's early work on homotopy groups of spheres

Lev Pontryagin 1908-1988

Pontryagin’s approach to maps $f : S^{n+k} \to S^n$ was
Pontryagin’s early work on homotopy groups of spheres

Lev Pontryagin 1908-1988

Pontryagin’s approach to maps $f : S^{n+k} \to S^n$ was

- Assume f is smooth.
Pontryagin’s early work on homotopy groups of spheres

Lev Pontryagin 1908-1988

Pontryagin’s approach to maps $f : S^{n+k} \rightarrow S^n$ was

- Assume f is smooth. We know that any such map is can be continuously deformed to a smooth one.
Pontryagin’s early work on homotopy groups of spheres

Lev Pontryagin 1908-1988

Pontryagin’s approach to maps $f : S^{n+k} \to S^n$ was

- Assume f is smooth. We know that any such map is can be continuously deformed to a smooth one.
- Pick a regular value $y \in S^n$.
Pontryagin’s early work on homotopy groups of spheres

Lev Pontryagin 1908-1988

Pontryagin’s approach to maps $f : S^{n+k} \to S^n$ was

- Assume f is smooth. We know that any such map is can be continuously deformed to a smooth one.
- Pick a regular value $y \in S^n$. Its inverse image will be a smooth k-manifold M in S^{n+k}.
Pontryagin’s early work on homotopy groups of spheres

Lev Pontryagin 1908-1988

Pontryagin’s approach to maps \(f : S^{n+k} \to S^n \) was

- Assume \(f \) is smooth. We know that any such map is can be continuously deformed to a smooth one.
- Pick a regular value \(y \in S^n \). Its inverse image will be a smooth \(k \)-manifold \(M \) in \(S^{n+k} \).
- By studying such manifolds, Pontryagin was able to deduce things about maps between spheres.
Let D^n be the closure of an open ball around a regular value $y \in S^n$.
Pontryagin’s early work (continued)

Let D^n be the closure of an open ball around a regular value $y \in S^n$. If it is sufficiently small, then $V^{n+k} = f^{-1}(D^n) \subset S^{n+k}$ is an $(n+k)$-manifold homeomorphic to $M \times D^n$ with boundary homeomorphic to $M \times S^{n-1}$.
Pontryagin’s early work (continued)

Let D^n be the closure of an open ball around a regular value $y \in S^n$. If it is sufficiently small, then $V^{n+k} = f^{-1}(D^n) \subset S^{n+k}$ is an $(n+k)$-manifold homeomorphic to $M \times D^n$ with boundary homeomorphic to $M \times S^{n-1}$.

A local coordinate system around around the point $y \in S^n$ pulls back to one around M called a framing.
Let D^n be the closure of an open ball around a regular value $y \in S^n$. If it is sufficiently small, then $V^{n+k} = f^{-1}(D^n) \subset S^{n+k}$ is an $(n + k)$-manifold homeomorphic to $M \times D^n$ with boundary homeomorphic to $M \times S^{n-1}$.

A local coordinate system around the point $y \in S^n$ pulls back to one around M called a framing.

There is a way to reverse this procedure.
Pontryagin’s early work (continued)

Let D^n be the closure of an open ball around a regular value $y \in S^n$. If it is sufficiently small, then $V^{n+k} = f^{-1}(D^n) \subset S^{n+k}$ is an $(n + k)$-manifold homeomorphic to $M \times D^n$ with boundary homeomorphic to $M \times S^{n-1}$.

A local coordinate system around around the point $y \in S^n$ pulls back to one around M called a framing.

There is a way to reverse this procedure. A framed manifold $M^k \subset S^{n+k}$ determines a map $f : S^{n+k} \to S^n$.
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

To proceed further, we need to be more precise about what we mean by continuous deformation.
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps $f_1, f_2 : S^{n+k} \to S^n$ are **homotopic** if there is a continuous map $h : S^{n+k} \times [0, 1] \to S^n$ (called a **homotopy** between f_1 and f_2) such that
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps \(f_1, f_2 : S^{n+k} \rightarrow S^n \) are \textbf{homotopic} if there is a continuous map \(h : S^{n+k} \times [0, 1] \rightarrow S^n \) (called a \textbf{homotopy} between \(f_1 \) and \(f_2 \)) such that

\[
h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).
\]
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps \(f_1, f_2 : S^{n+k} \to S^n \) are homotopic if there is a continuous map \(h : S^{n+k} \times [0, 1] \to S^n \) (called a homotopy between \(f_1 \) and \(f_2 \)) such that

\[
h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).
\]

If \(y \in S^n \) is a regular value of \(h \), then \(h^{-1}(y) \) is a framed \((k+1)\)-manifold \(N \subset S^{n+k} \times [0, 1] \).
Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps \(f_1, f_2 : S^{n+k} \to S^n \) are **homotopic** if there is a continuous map \(h : S^{n+k} \times [0, 1] \to S^n \) (called a homotopy between \(f_1 \) and \(f_2 \)) such that

\[
h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).
\]

If \(y \in S^n \) is a regular value of \(h \), then \(h^{-1}(y) \) is a framed \((k + 1)\)-manifold \(N \subset S^{n+k} \times [0, 1] \) whose boundary is the disjoint union of \(M_1 = f_1^{-1}(y) \) and \(M_2 = f_2^{-1}(y) \).
To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps \(f_1, f_2 : S^{n+k} \to S^n \) are homotopic if there is a continuous map \(h : S^{n+k} \times [0, 1] \to S^n \) (called a homotopy between \(f_1 \) and \(f_2 \)) such that

\[
h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).
\]

If \(y \in S^n \) is a regular value of \(h \), then \(h^{-1}(y) \) is a framed \((k + 1)\)-manifold \(N \subset S^{n+k} \times [0, 1] \) whose boundary is the disjoint union of \(M_1 = f_1^{-1}(y) \) and \(M_2 = f_2^{-1}(y) \). This \(N \) is called a framed cobordism between \(M_1 \) and \(M_2 \).
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Our main result
Pontryagin’s early work
The Arf-Kervaire formulation
Questions raised by our theorem
Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω
The slice spectral sequence

To proceed further, we need to be more precise about what we mean by continuous deformation.

Two maps $f_1, f_2 : S^{n+k} \to S^n$ are \textbf{homotopic} if there is a continuous map $h : S^{n+k} \times [0, 1] \to S^n$ (called a homotopy between f_1 and f_2) such that

$$h(x, 0) = f_1(x) \quad \text{and} \quad h(x, 1) = f_2(x).$$

If $y \in S^n$ is a regular value of h, then $h^{-1}(y)$ is a framed $(k + 1)$-manifold $N \subset S^{n+k} \times [0, 1]$ whose boundary is the disjoint union of $M_1 = f_1^{-1}(y)$ and $M_2 = f_2^{-1}(y)$. This N is called a \textbf{framed cobordism} between M_1 and M_2. When it exists the two closed manifolds are said to be \textbf{framed cobordant}.
Pontryagin’s early work (continued)
Here is an example of a framed cobordism for $n = k = 1$.

\[\begin{array}{c}
\text{Pontryagin (1930's)} \\
M_1 \\
M_2 \\
N \\
\end{array} \]

\begin{align*}
\text{Framed cobordism}
\end{align*}
Pontryagin’s early work (continued)

\[\Omega_k := \{ \text{stably framed } k\text{-manifolds} \}/\text{cobordism} \]

Theorem: The above construction gives a bijection

\[\pi_{n+k}(S^n) \approx \Omega_k \]

where

\[\pi_{n+k}(S^n) := \{ \text{maps } S^{n+k} \to S^n \}/\text{homotopy} \]
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[k=0 \]
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[k=0 \]

Background and history

Our main result

Pontryagin’s early work

The Arf-Kervaire formulation

Questions raised by our theorem

Our strategy

Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence
Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=0
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[k=0 \]
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[\pi_n(S^n) = \mathbb{Z} \]

k=0
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[\pi_n(S^n) = \mathbb{Z} \]

(the degree)

\[k=0 \]

Pontryagin’s early work (continued)

Pontryagin (1930’s)

\(\pi_n(S^n) = \mathbb{Z}\) (the degree)

\(k=0\)

\(k=1\)
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[\pi_n(S^n) = \mathbb{Z} \]

(the degree)

\[\pi_{n+1}(S^n) = \mathbb{Z}/2 \]
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[k = 2 \]
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[k=2 \quad \text{genus } M = 0 \implies M \text{ is a boundary} \]

(since \(S^2 \) bounds a disk and \(\pi_2(\text{GL}_n(\mathbb{R}))=0 \))
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\[k=2 \quad \text{genus } M = 0 \quad \Rightarrow \quad M \text{ is a boundary} \]

(since \(S^2 \text{ bounds a disk and } \pi_2(\text{GL}_n(\mathbb{R})) = 0 \))

Suppose the genus of \(M \) is greater than 0.
Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2
Pontryagin’s early work (continued)
Pontryagin’s early work (continued)

Pontryagin (1930’s)

k=2

choose an embedded arc
Pontryagin’s early work (continued)

Pontryagin (1930’s)

1.34

Pontryagin (1930’s)

k=2

choose an embedded arc

cut the surface open and glue in disks
Pontryagin’s early work (continued)

Pontryagin (1930’s)

\(k=2 \)

framed surgery
Pontryagin’s early work (continued)

Pontryagin (1930’s)

Obstruction: \(\varphi : H_1(M; \mathbb{Z}/2) \rightarrow \mathbb{Z}/2 \)
Pontryagin’s early work (continued)

Pontryagin (1930’s)

Obstruction: \(\varphi : H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2 \)

Argument: Since the dimension of \(H_1(M; \mathbb{Z}/2) \) is even, there is always a non-zero element in the kernel of \(\varphi \), and so surgery can be performed.
Pontryagin’s early work (continued)

Pontryagin (1930’s)

Obstruction: \(\varphi : H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2 \)

Argument: Since the dimension of \(H_1(M; \mathbb{Z}/2) \) is even, there is always a non-zero element in the kernel of \(\varphi \), and so surgery can be performed.

Conclusion: \(\Omega_2 = \pi_{n+2}(S^n) = 0. \)
Pontryagin’s mistake for $k = 2$
Pontryagin’s mistake for $k = 2$

The map $\varphi : H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2$ is not a homomorphism!
Pontryagin’s mistake for \(k = 2 \)

The map \(\varphi : H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2 \) is not a homomorphism!
Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank $2n$ with mod 2 reduction \overline{H}.
The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank $2n$ with mod 2 reduction \overline{H}. It is known that \overline{H} has a basis of the form $\{a_i, b_i : 1 \leq i \leq n\}$ with...
The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank $2n$ with mod 2 reduction \overline{H}. It is known that \overline{H} has a basis of the form $\{a_i, b_i: 1 \leq i \leq n\}$ with

$$\lambda(a_i, a_i') = 0 \quad \lambda(b_j, b_j') = 0 \quad \text{and} \quad \lambda(a_i, b_j) = \delta_{i,j}.$$
The Arf invariant of a quadratic form in characteristic 2

Let λ be a nonsingular anti-symmetric bilinear form on a free abelian group H of rank $2n$ with mod 2 reduction \overline{H}. It is known that \overline{H} has a basis of the form $\{a_i, b_i: 1 \leq i \leq n\}$ with

$$\lambda(a_i, a_{i'}) = 0 \quad \lambda(b_j, b_{j'}) = 0 \quad \text{and} \quad \lambda(a_i, b_j) = \delta_{i,j}.$$

In other words, \overline{H} has a basis for which the bilinear form’s matrix has the symplectic form

$$
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 0 \\
\ddots & \ddots \\
0 & 1 \\
1 & 0
\end{bmatrix}.
$$
The Arf invariant of a quadratic form in characteristic 2
(continued)

A quadratic refinement of λ is a map $q : H \to \mathbb{Z}/2$ satisfying
A quadratic refinement of λ is a map $q : \overline{H} \to \mathbb{Z}/2$ satisfying

$$q(x + y) = q(x) + q(y) + \lambda(x, y)$$
The Arf invariant of a quadratic form in characteristic 2 (continued)

A quadratic refinement of λ is a map $q : \overline{H} \to \mathbb{Z}/2$ satisfying

$$q(x + y) = q(x) + q(y) + \lambda(x, y)$$

Its Arf invariant is

$$\text{Arf}(q) = \sum_{i=1}^{n} q(a_i)q(b_i) \in \mathbb{Z}/2.$$
The Arf invariant of a quadratic form in characteristic 2 (continued)

A quadratic refinement of λ is a map $q : \overline{H} \to \mathbb{Z}/2$ satisfying

$$q(x + y) = q(x) + q(y) + \lambda(x, y)$$

Its Arf invariant is

$$\text{Arf}(q) = \sum_{i=1}^{n} q(a_i)q(b_i) \in \mathbb{Z}/2.$$

In 1941 Arf proved that this invariant (along with the number n) determines the isomorphism type of q.
Money talks: Arf’s definition republished in 2009

Cahit Arf 1910-1997
The Kervaire invariant of a framed $(4m + 2)$-manifold

Let M be a $2m$-connected smooth closed framed manifold of dimension $4m + 2$.

Let M be a $2m$-connected smooth closed framed manifold of dimension $4m + 2$.

Let M be a $2m$-connected smooth closed framed manifold of dimension $4m + 2$.

The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Kervaire defined a quadratic refinement \(q\) on its mod 2 reduction in terms of each sphere’s normal bundle.

Michel Kervaire 1927-2007
The Kervaire invariant of a framed \((4m + 2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Kervaire defined a quadratic refinement \(q\) on its mod 2 reduction in terms of each sphere’s normal bundle. The Kervaire invariant \(\Phi(M)\) is defined to be the Arf invariant of \(q\).

Michel Kervaire 1927-2007
The Kervaire invariant of a framed \((4m+2)\)-manifold

Let \(M\) be a \(2m\)-connected smooth closed framed manifold of dimension \(4m + 2\). Let \(H = H_{2m+1}(M; \mathbb{Z})\), the homology group in the middle dimension. Each \(x \in H\) is represented by an embedding \(i_x : S^{2m+1} \hookrightarrow M\) with a stably trivialized normal bundle. \(H\) has an antisymmetric bilinear form \(\lambda\) defined in terms of intersection numbers.

Kervaire defined a quadratic refinement \(q\) on its mod 2 reduction in terms of each sphere’s normal bundle. The Kervaire invariant \(\Phi(M)\) is defined to be the Arf invariant of \(q\).

For \(m = 0\), Kervaire’s \(q\) coincides with Pontryagin’s \(\varphi\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

What can we say about \(\Phi(M)\)?
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

What can we say about \(\Phi(M)\)?

- For \(m = 0\) there is a framing on the torus \(S^1 \times S^1 \subset \mathbb{R}^4\) with nontrivial Kervaire invariant.
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

What can we say about \(\Phi(M)\)?

- For \(m = 0\) there is a framing on the torus \(S^1 \times S^1 \subset \mathbb{R}^4\) with nontrivial Kervaire invariant. Pontryagin used it in 1950 (after some false starts in the 30s) to show \(\pi_{n+2}(S^n) = \mathbb{Z}/2\) for all \(n \geq 2\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

What can we say about \(\Phi(M)\)?

- For \(m = 0\) there is a framing on the torus \(S^1 \times S^1 \subset \mathbb{R}^4\) with nontrivial Kervaire invariant. Pontryagin used it in 1950 (after some false starts in the 30s) to show \(\pi_{n+2}(S^n) = \mathbb{Z}/2\) for all \(n \geq 2\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

- Kervaire (1960) showed it must vanish when \(m = 2\).
The Kervaire invariant of a framed $(4m + 2)$-manifold (continued)

More of what we can say about $\Phi(M)$.

- Kervaire (1960) showed it must vanish when $m = 2$. This enabled him to construct the first example of a topological manifold (of dimension 10) without a smooth structure.
The Kervaire invariant of a framed \((4m + 2)\)-manifold
(continued)

More of what we can say about \(\Phi(M)\).

- Kervaire (1960) showed it must vanish when \(m = 2\). This enabled him to construct the first example of a topological manifold (of dimension 10) without a smooth structure.

![Topology circa 1960: Kervaire’s example](image)

\(X = N/\partial N\)

(a triangulable manifold)
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).
The Kervaire invariant of a framed \((4m+2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

\[\text{Brown-Peterson (1966) showed that it vanishes for all positive even } m. \]

Ed Brown 1930-2000

Frank Peterson
The Kervaire invariant of a framed \((4m + 2)\)-manifold
(continued)

More of what we can say about \(\Phi(M)\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold
(continued)

More of what we can say about \(\Phi(M)\).

- Browder (1969) showed that it can be nontrivial only if \(m = 2^{j-1} - 1\) for some positive integer \(j\).

Bill Browder
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

- Browder (1969) showed that it can be nontrivial only if \(m = 2^{j-1} - 1\) for some positive integer \(j\). This happens iff the element \(h_j^2\) is a permanent cycle in the Adams spectral sequence.

Bill Browder
The Kervaire invariant of a framed \((4m + 2)\)-manifold
(continued)

More of what we can say about \(\Phi(M)\).

- Bill Browder

Browder (1969) showed that it can be nontrivial only if \(m = 2^{j-1} - 1\) for some positive integer \(j\). This happens iff the element \(h_j^2\) is a permanent cycle in the Adams spectral sequence. The corresponding element in \(\pi_{n+2j+1-2}(S^n)\) for large \(n\) is \(\theta_j\), the subject of our theorem.
The Kervaire invariant of a framed \((4m + 2)\)-manifold

(continued)

More of what we can say about \(\Phi(M)\).

- Bill Browder

Browder (1969) showed that it can be nontrivial only if \(m = 2^{j-1} - 1\) for some positive integer \(j\). This happens iff the element \(h^{2j}_j\) is a permanent cycle in the Adams spectral sequence. The corresponding element in \(\pi_{n+2^{j+1}-2}(S^n)\) for large \(n\) is \(\theta_j\), the subject of our theorem. This is the stable homotopy theoretic formulation of the problem.
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history

Our main result
Pontryagin’s early work

The Arf-Kervaire formulation

Questions raised by our theorem

Our strategy
Ingredients of the proof
The spectrum \(\Omega \)
How we construct \(\Omega \)

The Kervaire invariant of a framed \((4m + 2)\)-manifold

(continued)

More of what we can say about \(\Phi(M) \).

- Browder (1969) showed that it can be nontrivial only if \(m = 2^{j-1} - 1 \) for some positive integer \(j \). This happens iff the element \(h_{2j}^2 \) is a permanent cycle in the Adams spectral sequence. The corresponding element in \(\pi_{n+2j+1-2}(S^n) \) for large \(n \) is \(\theta_j \), the subject of our theorem. This is the stable homotopy theoretic formulation of the problem.

- \(\theta_j \) is known to exist for \(1 \leq j \leq 5 \), i.e., in dimensions 2, 6, 14, 30 and 62.

Bill Browder

Bill Browder (1969) showed that it can be nontrivial only if \(m = 2^{j-1} - 1 \) for some positive integer \(j \). This happens iff the element \(h_{2j}^2 \) is a permanent cycle in the Adams spectral sequence. The corresponding element in \(\pi_{n+2j+1-2}(S^n) \) for large \(n \) is \(\theta_j \), the subject of our theorem. This is the stable homotopy theoretic formulation of the problem.

- \(\theta_j \) is known to exist for \(1 \leq j \leq 5 \), i.e., in dimensions 2, 6, 14, 30 and 62.
The Kervaire invariant of a framed $(4m + 2)$-manifold (continued)

More of what we can say about $\Phi(M)$.

- Bill Browder

Browder (1969) showed that it can be nontrivial only if $m = 2^{j-1} - 1$ for some positive integer j. This happens iff the element h_{2j}^2 is a permanent cycle in the Adams spectral sequence. The corresponding element in $\pi_{n+2^{j+1}-2}(S^n)$ for large n is θ_j, the subject of our theorem. This is the stable homotopy theoretic formulation of the problem.

- θ_j is known to exist for $1 \leq j \leq 5$, i.e., in dimensions 2, 6, 14, 30 and 62.

- In the decade following Browder’s theorem, many topologists tried without success to construct framed manifolds with nontrivial Kervaire invariant in all dimensions 2 less than a power of 2.
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

- Bill Browder

Browder (1969) showed that it can be nontrivial only if \(m = 2^{j-1} - 1\) for some positive integer \(j\). This happens iff the element \(h_j^2\) is a permanent cycle in the Adams spectral sequence. The corresponding element in \(\pi_{n+2^{j+1}}(S^n)\) for large \(n\) is \(\theta_j\), the subject of our theorem. This is the stable homotopy theoretic formulation of the problem.

- \(\theta_j\) is known to exist for \(1 \leq j \leq 5\), i.e., in dimensions 2, 6, 14, 30 and 62.

- In the decade following Browder’s theorem, many topologists tried without success to construct framed manifolds with nontrivial Kervaire invariant in all dimensions 2 less than a power of 2.

- Our theorem says \(\theta_j\) does not exist for \(j \geq 7\).
The Kervaire invariant of a framed \((4m + 2)\)-manifold (continued)

More of what we can say about \(\Phi(M)\).

- Bill Browder

Browder (1969) showed that it can be nontrivial only if \(m = 2^{j-1} - 1\) for some positive integer \(j\). This happens iff the element \(h^2_j\) is a permanent cycle in the Adams spectral sequence. The corresponding element in \(\pi_{n+2^{j+1}-2}(S^n)\) for large \(n\) is \(\theta_j\), the subject of our theorem. This is the stable homotopy theoretic formulation of the problem.

- \(\theta_j\) is known to exist for \(1 \leq j \leq 5\), i.e., in dimensions 2, 6, 14, 30 and 62.

- In the decade following Browder’s theorem, many topologists tried without success to construct framed manifolds with nontrivial Kervaire invariant in all dimensions 2 less than a power of 2.

- Our theorem says \(\theta_j\) does not exist for \(j \geq 7\). The case \(j = 6\) is still open.
Questions raised by our theorem

Adams spectral sequence formulation.
We now know that the h_2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials.
We have no idea what their targets are.

Unstable homotopy theoretic formulation.
In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres.
Since they do not exist, a substitute for his conjecture is needed.
We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral sequence, for studying the stable homotopy groups of spheres.
We look forward to learning more with it in the future.
We will illustrate it at the end of the talk.
Questions raised by our theorem

Adams spectral sequence formulation.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. **We have no idea what their targets are.**

Unstable homotopy theoretic formulation.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h^2_j for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral sequence, for studying the stable homotopy groups of spheres.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral sequence, for studying the stable homotopy groups of spheres. We look forward to learning more with it in the future.
Questions raised by our theorem

Adams spectral sequence formulation. We now know that the h_j^2 for $j \geq 7$ are not permanent cycles, so they have to support nontrivial differentials. **We have no idea what their targets are.**

Unstable homotopy theoretic formulation. In 1967 Mahowald published an elaborate conjecture about the role of the θ_j (assuming that they all exist) in the unstable homotopy groups of spheres. Since they do not exist, a substitute for his conjecture is needed. **We have no idea what it should be.**

Our method of proof offers a new tool, the **slice spectral sequence**, for studying the stable homotopy groups of spheres. We look forward to learning more with it in the future. **We will illustrate it at the end of the talk.**
Ingredients of the proof

Our proof has several ingredients.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of **stable homotopy theory**, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.

This means

\[\Sigma X \cong Y \]

\[X \cong \Omega \Sigma X \]

Fiber sequences and cofiber sequences are the same, up to weak equivalence.

While space \(X \) has a homotopy group \(\pi_k(X) \) for each positive integer \(k \), a spectrum \(X \) has an abelian homotopy group \(\pi_k(X) \) defined for every integer \(k \).

For the sphere spectrum \(S_0 \), \(\pi_k(S_0) \) is the usual homotopy group \(\pi_{n+k}(S_n) \) for \(n > k + 1 \).

The hypothetical \(\theta_j \) is an element of this group for \(k = 2j + 1 - 2 \).
Ingredients of the proof

Our proof has several ingredients.

- We use methods of **stable homotopy theory**, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.

This means

- Every spectrum X is equivalent to the suspension of another spectrum $Y = \Sigma^{-1} X$.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of **stable homotopy theory**, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.

This means

- Every spectrum X is equivalent to the suspension of another spectrum $Y = \Sigma^{-1}X$.
- X is equivalent to $\Omega \Sigma X$.

1.49
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.

This means

- Every spectrum X is equivalent to the suspension of another spectrum $Y = \Sigma^{-1}X$.
- X is equivalent to $\Omega \Sigma X$.
- Fiber sequences and cofiber sequences are the same, up to weak equivalence.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.

This means

- Every spectrum X is equivalent to the suspension of another spectrum $Y = \Sigma^{-1}X$.
- X is equivalent to $\Omega\Sigma X$.
- Fiber sequences and cofiber sequences are the same, up to weak equivalence.
- While space X has a homotopy group $\pi_k(X)$ for each positive integer k,

\[\theta_j \] is an element of this group for $k = 2^j + 1 - 2$.

Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.

This means

- Every spectrum X is equivalent to the suspension of another spectrum $Y = \Sigma^{-1}X$.
- X is equivalent to $\Omega \Sigma X$.
- Fiber sequences and cofiber sequences are the same, up to weak equivalence.
- While space X has a homotopy group $\pi_k(X)$ for each positive integer k, a spectrum X has an abelian homotopy group $\pi_k(X)$ defined for every integer k.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.

This means

- Every spectrum X is equivalent to the suspension of another spectrum $Y = \Sigma^{-1}X$.
- X is equivalent to $\Omega \Sigma X$.
- Fiber sequences and cofiber sequences are the same, up to weak equivalence.
- While space X has a homotopy group $\pi_k(X)$ for each positive integer k, a spectrum X has an abelian homotopy group $\pi_k(X)$ defined for every integer k.

For the sphere spectrum S^0, $\pi_k(S^0)$ is the usual homotopy group $\pi_{n+k}(S^n)$ for $n > k + 1$.
Ingredients of the proof

Our proof has several ingredients.

- We use methods of stable homotopy theory, which means we use spectra instead of topological spaces. Roughly speaking, spectra are to spaces as integers are to natural numbers. Instead of making addition formally invertible, we do the same for suspension.

This means

- Every spectrum X is equivalent to the suspension of another spectrum $Y = \Sigma^{-1} X$.
- X is equivalent to $\Omega \Sigma X$.
- Fiber sequences and cofiber sequences are the same, up to weak equivalence.
- While space X has a homotopy group $\pi_k(X)$ for each positive integer k, a spectrum X has an abelian homotopy group $\pi_k(X)$ defined for every integer k.

For the sphere spectrum S^0, $\pi_k(S^0)$ is the usual homotopy group $\pi_{n+k}(S^n)$ for $n > k + 1$. The hypothetical θ_j is an element of this group for $k = 2^{j+1} - 2$.
Ingredients of the proof (continued)

More ingredients of our proof:
Ingredients of the proof (continued)

More ingredients of our proof:

- We use complex cobordism theory.
Ingredients of the proof (continued)

More ingredients of our proof:

- We use complex cobordism theory. This is a branch of algebraic topology having deep connections with algebraic geometry and number theory.
Ingredients of the proof (continued)

More ingredients of our proof:

- We use complex cobordism theory. This is a branch of algebraic topology having deep connections with algebraic geometry and number theory. It includes some highly developed computational techniques that began with work by Milnor, Novikov and Quillen in the 60s.
Ingredients of the proof (continued)

More ingredients of our proof:

- We use complex cobordism theory. This is a branch of algebraic topology having deep connections with algebraic geometry and number theory. It includes some highly developed computational techniques that began with work by Milnor, Novikov and Quillen in the 60s. A pivotal tool in the subject is the theory of formal group laws.

John Milnor

Sergei Novikov

Dan Quillen
Ingredients of the proof (continued)
More ingredients of our proof:

- We also make use of newer less familiar methods from equivariant stable homotopy theory.
Ingredients of the proof (continued)

More ingredients of our proof:

- We also make use of newer less familiar methods from equivariant stable homotopy theory. This means there is a finite group G (a cyclic 2-group) acting on all spaces in sight, and all maps are required to commute with these actions.
Ingredients of the proof (continued)
More ingredients of our proof:

- We also make use of newer less familiar methods from equivariant stable homotopy theory. This means there is a finite group G (a cyclic 2-group) acting on all spaces in sight, and all maps are required to commute with these actions. When we pass to spectra, we get homotopy groups indexed not just by the integers \mathbb{Z}, but by $RO(G)$, the real representation ring of G.
Ingredients of the proof (continued)

More ingredients of our proof:

- We also make use of newer less familiar methods from equivariant stable homotopy theory. This means there is a finite group G (a cyclic 2-group) acting on all spaces in sight, and all maps are required to commute with these actions. When we pass to spectra, we get homotopy groups indexed not just by the integers \mathbb{Z}, but by $RO(G)$, the real representation ring of G. Our calculations make use of this richer structure.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_\ast(\Omega)$.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_\ast(\Omega)$.

(ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) Gap Theorem. $\pi_k(\Omega) = 0$ for $-4 < k < 0$.
The spectrum Ω

We will produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_k(\Omega) = 0$ for $-4 < k < 0$. This property is our zinger. Its proof involves a new tool we call the slice spectral sequence.
The spectrum \(\Omega \) (continued)

Here again are the properties of \(\Omega \):
Here again are the properties of Ω

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.
Here again are the properties of Ω

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

The spectrum Ω (continued)

Here again are the properties of Ω

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

If $\theta_7 \in \pi_{254}(S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist.
The spectrum Ω (continued)

Here again are the properties of Ω

(i) **Detection Theorem.** If θ_j exists, it has nontrivial image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.

(ii) and (iii) imply that $\pi_{254}(\Omega) = 0$.

If $\theta_7 \in \pi_{254}(S^0)$ exists, (i) implies it has a nontrivial image in this group, so it cannot exist. The argument for θ_j for larger j is similar, since $|\theta_j| = 2^{j+1} - 2 \equiv -2 \text{ mod } 256$ for $j \geq 7$.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The fixed point set of this action is the set of real points, known to topologists as MO, the unoriented cobordism spectrum.

In this notation, U and O stand for the unitary and orthogonal groups.
Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU.

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\widetilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation.
Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The fixed point set of this action is the set of real points, known to topologists as MO, the unoriented cobordism spectrum.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The fixed point set of this action is the set of real points, known to topologists as MO, the unoriented cobordism spectrum. In this notation, U and O stand for the unitary and orthogonal groups.
How we construct Ω (continued)

Some people who have studied MU as a C_2-spectrum:

- Peter Landweber
- Shoro Araki (1930–2005)
- Igor Kriz
- Po Hu
- Nitu Kitchloo
- Steve Wilson
How we construct Ω (continued)

Some people who have studied MU as a C_2-spectrum:

Peter Landweber
How we construct Ω (continued)

Some people who have studied MU as a C_2-spectrum:

Peter Landweber

Shoro Araki
1930–2005
How we construct Ω (continued)

Some people who have studied MU as a C_2-spectrum:

Peter Landweber

Igor Kriz and Po Hu

Shoro Araki
1930–2005
How we construct Ω (continued)

Some people who have studied MU as a C_2-spectrum:

Peter Landweber

Igor Kriz and Po Hu

Shoro Araki
1930–2005

Nitu Kitchloo

Steve Wilson
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup.
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X.

How we construct Ω (continued)
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication.
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a set, $Y = X^{G/H}$, the $|G/H|$-fold Cartesian power of X.

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a set, $Y = X^{G/H}$, the $|G/H|$-fold Cartesian power of X.

How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a set, $Y = X^{(G/H)}$, the $|G/H|$-fold Cartesian power of X. A general element of G permutes these factors, each of which is invariant under the action of the subgroup H.

In particular we get a C_8-spectrum $\tilde{\Omega}$ which is.
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a set, $Y = X^{[G/H]}$, the $|G/H|$-fold Cartesian power of X. A general element of G permutes these factors, each of which is invariant under the action of the subgroup H.

In particular we get a C_8-spectrum

$$MU^{(4)}_R = \text{Map}_{C_2}(C_8, MU_R).$$
How we construct Ω (continued)

To get a C_8-spectrum, we use the following general construction for getting from a space or spectrum X acted on by a group H to one acted on by a larger group G containing H as a subgroup. Let

$$Y = \text{Map}_H(G, X),$$

the space (or spectrum) of H-equivariant maps from G to X. Here the action of H on G is by left multiplication, and the resulting object has an action of G by left multiplication. As a set, $Y = X^{[G/H]}$, the $|G/H|$-fold Cartesian power of X. A general element of G permutes these factors, each of which is invariant under the action of the subgroup H.

In particular we get a C_8-spectrum

$$MU_R^{(4)} = \text{Map}_{C_2}(C_8, MU_R).$$

This spectrum is not periodic, but it has a close relative $\tilde{\Omega}$ which is.
A solution to the Arf-Kervaire invariant problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and history
Our main result
Pontryagin's early work
The Arf-Kervaire formulation
Questions raised by our theorem

Our strategy
Ingredients of the proof
The spectrum Ω
How we construct Ω

The slice spectral sequence

A homotopy fixed point spectral sequence
The corresponding slice spectral sequence