A solution to the Arf-Kervaire invariant problem III: The Gap Theorem

Unni Namboodiri Lectures
University of Chicago

April 5, 2011

Mike Hill
University of Virginia
Mike Hopkins
Harvard University
Doug Ravenel
University of Rochester
The main theorem

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2j+1-2+n}(S^n)$ for large n do not exist for $j \geq 7$.
The main theorem

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2^{j+1} - 2 + n}(S^n)$ for large n do not exist for $j \geq 7$.

To prove this we produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) Periodicity Theorem. It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) Gap Theorem. $\pi_{-2}(\Omega) = 0$. This property is our zinger. Its proof involves a new tool we call the slice spectral sequence and is the subject of this talk.
The main theorem

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2j+1-2+n}(S^n)$ *for large* n *do not exist for* $j \geq 7$.

To prove this we produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial.
The main theorem

Main Theorem

The Arf-Kervaire elements \(\theta_j \in \pi_{2j+1-2+n}(S^n) \) for large \(n \) do not exist for \(j \geq 7 \).

To prove this we produce a map \(S^0 \rightarrow \Omega \), where \(\Omega \) is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) Detection Theorem. It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each \(\theta_j \) is nontrivial. This means that if \(\theta_j \) exists, we will see its image in \(\pi_\ast(\Omega) \).
The main theorem

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2j+1-2+n}(S^n)$ for large n do not exist for $j \geq 7$.

To prove this we produce a map $S^0 \rightarrow \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_*(\Omega)$.

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.
The main theorem

Main Theorem

The Arf-Kervaire elements $\theta_j \in \pi_{2j+1-2+n}(S^n)$ for large n do not exist for $j \geq 7$.

To prove this we produce a map $S^0 \to \Omega$, where Ω is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each θ_j is nontrivial. This means that if θ_j exists, we will see its image in $\pi_\ast(\Omega)$.

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that $\pi_k(\Omega)$ depends only on the reduction of k modulo 256.

(iii) **Gap Theorem.** $\pi_{-2}(\Omega) = 0$.
The main theorem

Main Theorem

The Arf-Kervaire elements \(\theta_j \in \pi_{2j+1-2+n}(S^n) \) *for large* \(n \) *do not exist for* \(j \geq 7 \).

To prove this we produce a map \(S^0 \to \Omega \), where \(\Omega \) is a nonconnective spectrum (meaning that it has nontrivial homotopy groups in arbitrarily large negative dimensions) with the following properties.

(i) **Detection Theorem.** It has an Adams-Novikov spectral sequence (which is a device for calculating homotopy groups) in which the image of each \(\theta_j \) is nontrivial. This means that if \(\theta_j \) exists, we will see its image in \(\pi_\ast(\Omega) \).

(ii) **Periodicity Theorem.** It is 256-periodic, meaning that \(\pi_k(\Omega) \) depends only on the reduction of \(k \) modulo 256.

(iii) **Gap Theorem.** \(\pi_{-2}(\Omega) = 0 \). This property is our zinger. Its proof involves a new tool we call the slice spectral sequence and is the subject of this talk.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum $\mathcal{M}U$. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The notation MU_R (real complex cobordism) is used to denote MU regarded as a C_2-spectrum.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The notation MU_R (real complex cobordism) is used to denote MU regarded as a C_2-spectrum. MU is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, BU.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The notation MU_R (real complex cobordism) is used to denote MU regarded as a C_2-spectrum. MU is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, BU.

- MU has an action of the group C_2 via complex conjugation.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The notation MU_R (real complex cobordism) is used to denote MU regarded as a C_2-spectrum. MU is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, BU.

- MU has an action of the group C_2 via complex conjugation. The resulting C_2-spectrum is denoted by MU_R.
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The notation MU_R (real complex cobordism) is used to denote MU regarded as a C_2-spectrum.

MU is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, BU.

- MU has an action of the group C_2 via complex conjugation. The resulting C_2-spectrum is denoted by MU_R
- $H_\ast(MU; \mathbb{Z}) = \mathbb{Z}[b_i : i > 0]$ where $|b_i| = 2i$.

\mathbb{C}
How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of C_8 (the cyclic group of order 8) on an equivariant spectrum $\tilde{\Omega}$.

To construct it we start with the complex cobordism spectrum MU. It can be thought of as the set of complex points of an algebraic variety defined over the real numbers. This means that it has an action of C_2 defined by complex conjugation. The notation MU_R (real complex cobordism) is used to denote MU regarded as a C_2-spectrum.

MU is the Thom spectrum for the universal complex vector bundle, which is defined over the classifying space of the stable unitary group, BU.

- MU has an action of the group C_2 via complex conjugation. The resulting C_2-spectrum is denoted by MU_R.
- $H_\ast(MU; \mathbb{Z}) = \mathbb{Z}[b_i : i > 0]$ where $|b_i| = 2i$.
- $\pi_\ast(MU) = \mathbb{Z}[x_i : i > 0]$ where $|x_i| = 2i$. This is the complex cobordism ring.
How we construct \(\Omega \) (continued)

Given a spectrum \(X \) acted on by a group \(H \) of order \(h \) and a group \(G \) of order \(g \) containing \(H \), there are two formal ways to construct a \(G \)-spectrum from \(X \):

(i) The transfer. The spectrum \(\hat{Y} = \pi^+ \wedge H X \) underlain by \(\bigsqcup_{g/h} X \) has an action of \(G \) which permutes the wedge summands, each of which is invariant under \(H \). This is used to construct our slice cells \(\hat{S}^{(m \rho H)} = \pi^+ \wedge H S_{m \rho H} \).

(ii) The norm. The spectrum \(\mathcal{N}_G H X \) underlain by \(\bigsqcup_{g/h} X \) has an action of \(G \) which permutes the smash factors, each of which is invariant under \(H \). This was described in the last lecture.
How we construct Ω (continued)

Given a spectrum X acted on by a group H of order h and a group G of order g containing H, there are two formal ways to construct a G-spectrum from X:

(i) The transfer. The spectrum

$$Y = G_+ \wedge_H X$$

underlain by

$$\bigvee_{g/h} X$$

has an action of G which permutes the wedge summands, each of which is invariant under H.
How we construct \(\Omega \) (continued)

Given a spectrum \(X \) acted on by a group \(H \) of order \(h \) and a group \(G \) of order \(g \) containing \(H \), there are two formal ways to construct a \(G \)-spectrum from \(X \):

(i) **The transfer.** The spectrum

\[
Y = G_+ \wedge_H X \quad \text{underlain by} \quad \bigvee_{g/h} X
\]

has an action of \(G \) which permutes the wedge summands, each of which is invariant under \(H \). This is used to construct our slice cells

\[
\hat{S}(m_{\rho_H}) = G_+ \wedge_H S^{m_{\rho_H}}.
\]
How we construct Ω (continued)

Given a spectrum X acted on by a group H of order h and a group G of order g containing H, there are two formal ways to construct a G-spectrum from X:

(i) The transfer. The spectrum

$$Y = G_+ \wedge_H X$$

underlain by

$$\bigvee_{g/h} X$$

has an action of G which permutes the wedge summands, each of which is invariant under H. This is used to construct our slice cells

$$\hat{S}(m_{\rho_H}) = G_+ \wedge_H S^{m_{\rho_H}}.$$

(ii) The norm. The spectrum

$$N^G_H X$$

underlain by

$$\bigwedge_{g/h} X$$

has an action of G which permutes the smash factors, each of which is invariant under H.

This was described in the last lecture.
How we construct Ω (continued)

Given a spectrum X acted on by a group H of order h and a group G of order g containing H, there are two formal ways to construct a G-spectrum from X:

(i) **The transfer.** The spectrum

$$Y = G_+ \wedge_H X \quad \text{underlain by} \quad \bigvee_{g/h} X$$

has an action of G which permutes the wedge summands, each of which is invariant under H. This is used to construct our slice cells

$$\hat{S}(m_{\rho_H}) = G_+ \wedge_H S^{m_{\rho_H}}.$$

(ii) **The norm.** The spectrum

$$N^G_H X \quad \text{underlain by} \quad \bigwedge_{g/h} X$$

has an action of G which permutes the smash factors, each of which is invariant under H. This was described in the last lecture.
How we construct Ω (continued)

In particular for $G = C_8$ and $H = C_2$ we get a G-spectrum

$$MU^{(4)}_R = N^G_H MU_R.$$
How we construct Ω (continued)

In particular for $G = C_8$ and $H = C_2$ we get a G-spectrum

$$MU_R^{(4)} = N^G_H MU_R.$$

It has homotopy groups $\pi_*^G MU_R^{(4)}$ indexed by the representation ring $RO(G)$.

Let ρ_G denote the regular representation of G. We form a G-spectrum $\tilde{\Omega}$ by inverting a certain element $D \in \pi_{19}^G MU_R^{(4)}$. Our spectrum Ω is its fixed point set, $\Omega = \tilde{\Omega}^G$.

\textbf{MU}
- Basic properties
- Refining homotopy
- Proof of Gap Theorem
How we construct Ω (continued)

In particular for $G = C_8$ and $H = C_2$ we get a G-spectrum

$$MU_R^{(4)} = N^G_H MU_R.$$

It has homotopy groups $\pi_*^G MU_R^{(4)}$ indexed by the representation ring $RO(G)$.

Let ρ_G denote the regular representation of G.

How we construct Ω (continued)

In particular for $G = C_8$ and $H = C_2$ we get a G-spectrum

$$MU_R^{(4)} = N^G_H MU_R.$$

It has homotopy groups $\pi_*^G MU_R^{(4)}$ indexed by the representation ring $RO(G)$.

Let ρ_G denote the regular representation of G. We form a G-spectrum $\tilde{\Omega}$ by inverting a certain element

$$D \in \pi_{19} \rho_G MU_R^{(4)}.$$
How we construct Ω (continued)

In particular for $G = C_8$ and $H = C_2$ we get a G-spectrum

$$MU_R^{(4)} = N^G_H MU_R.$$

It has homotopy groups $\pi^G_* MU_R^{(4)}$ indexed by the representation ring $RO(G)$.

Let ρ_G denote the regular representation of G. We form a G-spectrum $\tilde{\Omega}$ by inverting a certain element

$$D \in \pi_{19}\rho_G MU_R^{(4)}.$$

Our spectrum Ω is its fixed point set,

$$\Omega = \tilde{\Omega}^G.$$
The slice filtration on $\mathcal{N}_H^G \mathbb{M}U_R$

We want to study

$$\mathbb{M}U_R^{(2^n)} = \mathcal{N}_H^G \mathbb{M}U_R$$

where $H = C_2$ and $G = C_{2n+1}$.
The slice filtration on $N^G_H MU_R$

We want to study

$$MU_R^{(2^n)} = N^G_H MU_R$$

where $H = C_2$ and $G = C_{2^{n+1}}$.

The homotopy of the underlying spectrum is

$$\pi^* u MU_R^{(2^n)} Z[\gamma^j r_i : i > 0, 0 \leq j < 2^n]$$

where $|r_i| = 2i$.

The slice filtration on $N^G_H MU_R$

We want to study

$$MU_R^{(2^n)} = N^G_H MU_R$$

where $H = C_2$ and $G = C_{2^n+1}$.

The homotopy of the underlying spectrum is

$$\pi_*^{u} MU_R^{(2^n)} \mathbb{Z}[\gamma^j r_i : i > 0, 0 \leq j < 2^n]$$

where $|r_i| = 2i$.

It has a slice filtration and we need to identify the slices.
The slice filtration on $N^G_H MU_R$

We want to study

$$MU_R^{(2^n)} = N^G_H MU_R$$ where $H = C_2$ and $G = C_{2^{n+1}}$.

The homotopy of the underlying spectrum is

$$\pi^u_* MU_R^{(2^n)} \mathbb{Z}[\gamma^j r_i : i > 0, 0 \leq j < 2^n]$$ where $|r_i| = 2i$.

It has a slice filtration and we need to identify the slices. The following notion is helpful.
The slice filtration on $N^G_H MU_R$

We want to study

$$MU_R^{(2^n)} = N^G_H MU_R$$

where $H = C_2$ and $G = C_{2^{n+1}}$.

The homotopy of the underlying spectrum is

$$\pi^u_* MU_R^{(2^n)} \mathbb{Z}[\gamma^j r_i : i > 0, 0 \leq j < 2^n]$$

where $|r_i| = 2i$.

It has a slice filtration and we need to identify the slices. The following notion is helpful.

Definition

Suppose X is a G-spectrum such that its underlying homotopy group $\pi^u_k(X)$ is free abelian.
The slice filtration on $N^G_H MU_R$

We want to study

$$MU_R^{(2^n)} = N^G_H MU_R$$

where $H = C_2$ and $G = C_{2n+1}$.

The homotopy of the underlying spectrum is

$$\pi_*^u MU_R^{(2^n)} \mathbb{Z}[\gamma^j r_i : i > 0, 0 \leq j < 2^n]$$

where $|r_i| = 2i$.

It has a slice filtration and we need to identify the slices. The following notion is helpful.

Definition

Suppose X is a G-spectrum such that its underlying homotopy group $\pi^u_k(X)$ is free abelian. A refinement of $\pi^u_k(X)$ is an equivariant map

$$c : \hat{W} \to X$$

in which \hat{W} is a wedge of slice cells of dimension k whose underlying spheres represent a basis of $\pi^u_k(X)$.

The refinement of $\pi^u_*(MU^{(4)}_{\mathbb{R}})$

Recall that $\pi_*(MU) = \pi^u_*(MU_{\mathbb{R}})$ is concentrated in even dimensions and is free abelian.
The refinement of $\pi_\ast^u(MU_R^{(4)})$

Recall that $\pi_\ast(MU) = \pi_\ast^u(MU_R)$ is concentrated in even dimensions and is free abelian. $\pi_{2k}^u(MU_R)$ is refined by an map from a wedge of copies of $\hat{S}(k\rho_2)$.

\[\pi_\ast^u(MU_R^{(4)}) \]
The refinement of $\pi^u_*(MU^{(4)}_R)$

Recall that $\pi_*(MU) = \pi^u_*(MU_R)$ is concentrated in even dimensions and is free abelian. $\pi^u_{2k}(MU_R)$ is refined by an map from a wedge of copies of $\hat{S}(k\rho_2)$.

$\pi^u_*(MU^{(4)}_R)$ is a polynomial algebra with 4 generators in every positive even dimension.
The refinement of $\pi^u_\ast (MU_R^{(4)})$

Recall that $\pi_\ast (MU) = \pi_\ast^u (MU_R)$ is concentrated in even dimensions and is free abelian. $\pi^u_{2k}(MU_R)$ is refined by an map from a wedge of copies of $\widetilde{S}(k\rho_2)$.

$\pi^u_\ast (MU_R^{(4)})$ is a polynomial algebra with 4 generators in every positive even dimension. We will denote the generators in dimension $2i$ by $r_i(j)$ for $1 \leq j \leq 4$.

The refinement of $\pi_*^{u}(MU_R^{(4)})$

Recall that $\pi_*(MU) = \pi_*^{u}(MU_R)$ is concentrated in even dimensions and is free abelian. $\pi_2^{u}(MU_R)$ is refined by an map from a wedge of copies of $\tilde{S}(k\rho_2)$.

$\pi_*^{u}(MU_R^{(4)})$ is a polynomial algebra with 4 generators in every positive even dimension. We will denote the generators in dimension $2i$ by $r_i(j)$ for $1 \leq j \leq 4$. The action of a generator $\gamma \in G = C_8$ is given by
The refinement of $\pi^u_*(MU^{(4)}_R)$

Recall that $\pi_*(MU) = \pi^u_*(MU_R)$ is concentrated in even dimensions and is free abelian. $\pi^u_{2k}(MU_R)$ is refined by an map from a wedge of copies of $\tilde{S}(k\rho_2)$.

$\pi^u_*(MU^{(4)}_R)$ is a polynomial algebra with 4 generators in every positive even dimension. We will denote the generators in dimension $2i$ by $r_i(j)$ for $1 \leq j \leq 4$. The action of a generator $\gamma \in G = C_8$ is given by

$$(-1)^j \quad r_i(1) \rightarrow r_i(2) \rightarrow r_i(3) \rightarrow r_i(4)$$
The refinement of $\pi_*^U(MU_R^{(4)})$ (continued)

\[r_i(1) \xrightarrow{(-1)^i} r_i(2) \xrightarrow{} r_i(3) \rightarrow r_i(4) \]
The refinement of $\pi^u_\ast(MU_R^{(4)})$ (continued)

We will explain how $\pi^u_\ast(MU_R^{(4)})$ can be refined.

$$(-1)^i$$

$$r_i(1) \longrightarrow r_i(2) \longrightarrow r_i(3) \longrightarrow r_i(4)$$
The refinement of \(\pi^u_\ast(MU_R^{(4)}) \) (continued)

We will explain how \(\pi^u_\ast(MU_R^{(4)}) \) can be refined.

\(\pi^u_2(MU_R^{(4)}) \) has 4 generators \(r_1(j) \) that are permuted up to sign by \(G \).
The refinement of $\pi_*(MU^{(4)}_R)$ (continued)

We will explain how $\pi_*(MU^{(4)}_R)$ can be refined.

$\pi_2(MU^{(4)}_R)$ has 4 generators $r_1(j)$ that are permuted up to sign by G. It is refined by an equivariant map

$$\hat{W}_1 = \hat{S}(\rho_2) = C_{8+} \wedge C_2 S^{\rho_2} \to MU^{(4)}_R.$$
The refinement of $\pi_*^u(MU^4_R)$ (continued)

We will explain how $\pi_*^u(MU^4_R)$ can be refined.

$\pi_*^u(MU^4_R)$ has 4 generators $r_1(j)$ that are permuted up to sign by G. It is refined by an equivariant map

$$\hat{W}_1 = \hat{S}(\rho_2) = C_{8+} \wedge C_2 S^{\rho_2} \to MU^4_R.$$

Note that the slice cell $\hat{S}(\rho_2)$ is underlain by a wedge of 4 copies of S^2.
The refinement of $\pi_*^U(MU_\mathbb{R}^{(4)})$ (continued)

\[
(-1)^i
\]

\[r_i(1) \rightarrow r_i(2) \rightarrow r_i(3) \rightarrow r_i(4)\]
The refinement of $\pi_*^U(MU_R^{(4)})$ (continued)

In $\pi_*^U(MU_R^{(4)})$ there are 14 monomials that fall into 4 orbits (up to sign) under the action of G, each corresponding to a map from a $\hat{S}(m\rho_h)$.
The refinement of $\pi_*^{U}(MU_R^{(4)})$ (continued)

\[
\begin{array}{c}
\begin{array}{cccc}
r_i(1) & \rightarrow & r_i(2) & \rightarrow \quad r_i(3) & \rightarrow \quad r_i(4)
\end{array}
\end{array}
\]

$(-1)^i$

In $\pi_*^{U}(MU_R^{(4)})$ there are 14 monomials that fall into 4 orbits (up to sign) under the action of G, each corresponding to a map from a $\hat{S}(m\rho_h)$.

$\hat{S}(2\rho_2) = C_{8+} \wedge C_2 \ S^{2\rho_2} \iff \{ r_1(1)^2, r_1(2)^2, r_1(3)^2, r_1(4)^2 \}$

Note that the slice cells $\hat{S}(2\rho_2)$ and $\hat{S}(\rho_4)$ are underlain by wedges of 4 and 2 copies of S^4 respectively.
The refinement of $\pi_{\ast}^{U}(MU_{R}^{(4)})$ (continued)

In $\pi_{4}^{U}(MU_{R}^{(4)})$ there are 14 monomials that fall into 4 orbits (up to sign) under the action of G, each corresponding to a map from a $\hat{S}(m\rho h)$.

\[\hat{S}(2\rho_{2}) = C_{8+} \wedge C_{2} \ S^{2\rho_{2}} \longleftrightarrow \{ r_{1}(1)^{2}, r_{1}(2)^{2}, r_{1}(3)^{2}, r_{1}(4)^{2} \} \]

\[\hat{S}(2\rho_{2}) \longleftrightarrow \{ r_{1}(1)r_{1}(2), r_{1}(2)r_{1}(3), r_{1}(3)r_{1}(4), r_{1}(4)r_{1}(1) \} \]
The refinement of $\pi_*^{U}(MU_R^{(4)})$ (continued)

$$(-1)^i$$

$$r_i(1) \xrightarrow{(-1)^i} r_i(2) \xrightarrow{} r_i(3) \xrightarrow{} r_i(4)$$

In $\pi_4^{U}(MU_R^{(4)})$ there are 14 monomials that fall into 4 orbits (up to sign) under the action of G, each corresponding to a map from a $\hat{S}(m\rho_h)$.

$$\hat{S}(2\rho_2) = C_{8+} \wedge C_2 \ S^{2\rho_2} \iff \{ r_1(1)^2, r_1(2)^2, r_1(3)^2, r_1(4)^2 \}$$

$$\hat{S}(2\rho_2) \iff \{ r_1(1)r_1(2), r_1(2)r_1(3),$$

$$\quad \ r_1(3)r_1(4), r_1(4)r_1(1) \}$$

$$\hat{S}(2\rho_2) \iff \{ r_2(1), r_2(2), r_2(3), r_2(4) \}$$

Note that the slice cells $\hat{S}(2\rho_2)$ and $\hat{S}(\rho_4)$ are underlain by wedges of 4 and 2 copies of S^4 respectively.
The refinement of $\pi_*^{U}(MU_R^{(4)})$ (continued)

In $\pi_*^{U}(MU_R^{(4)})$ there are 14 monomials that fall into 4 orbits (up to sign) under the action of G, each corresponding to a map from a $\hat{S}(m\rho h)$.

$$\hat{S}(2\rho_2) = C_{8+} \wedge_{C_2} S^{2\rho_2} \iff \{r_1(1)^2, r_1(2)^2, r_1(3)^2, r_1(4)^2\}$$

$$\hat{S}(2\rho_2) \iff \{r_1(1)r_1(2), r_1(2)r_1(3), r_1(3)r_1(4), r_1(4)r_1(1)\}$$

$$\hat{S}(2\rho_2) \iff \{r_2(1), r_2(2), r_2(3), r_2(4)\}$$

$$\hat{S}(\rho_4) = C_{8+} \wedge_{C_4} S^{\rho_4} \iff \{r_1(1)r_1(3), r_1(2)r_1(4)\}$$
The refinement of $\pi_*^{MU}(MU_R^{(4)})$ (continued)

$$r_i(1) \rightarrow r_i(2) \rightarrow r_i(3) \rightarrow r_i(4)$$

(-1)^j

In $\pi_*^{MU}(MU_R^{(4)})$ there are 14 monomials that fall into 4 orbits (up to sign) under the action of G, each corresponding to a map from a $\hat{S}(m\rho_h)$.

$\hat{S}(2\rho_2) = C_{8+} \wedge C_2 S^{2\rho_2} \leftrightarrow \{r_1(1)^2, r_1(2)^2, r_1(3)^2, r_1(4)^2\}$

$\hat{S}(2\rho_2) \leftrightarrow \{r_1(1)r_1(2), r_1(2)r_1(3), r_1(3)r_1(4), r_1(4)r_1(1)\}$

$\hat{S}(2\rho_2) \leftrightarrow \{r_2(1), r_2(2), r_2(3), r_2(4)\}$

$\hat{S}(\rho_4) = C_{8+} \wedge C_4 S^{\rho_4} \leftrightarrow \{r_1(1)r_1(3), r_1(2)r_1(4)\}$

Note that the slice cells $\hat{S}(2\rho_2)$ and $\hat{S}(\rho_4)$ are underlain by wedges of 4 and 2 copies of S^4 respectively.
The refinement of $\pi_*(MU_R^{(4)})$ (continued)

\[(-1)^j \]

\[r_i(1) \to r_i(2) \to r_i(3) \to r_i(4) \]
The refinement of $\pi_*^u(MU_R^{(4)})$ (continued)

It follows that $\pi_*^u(MU_R^{(4)})$ is refined by an equivariant map from

$$\hat{W}_2 = \hat{S}(2\rho_2) \lor \hat{S}(2\rho_2) \lor \hat{S}(2\rho_2) \lor \hat{S}(\rho_4).$$
The refinement of $\pi_*^{u}(MU_R^{(4)})$ (continued)

It follows that $\pi_4^{u}(MU_R^{(4)})$ is refined by an equivariant map from

$$\hat{W}_2 = \hat{S}(2\rho_2) \vee \hat{S}(2\rho_2) \vee \hat{S}(2\rho_2) \vee \hat{S}(\rho_4).$$

A similar analysis can be made in any even dimension and for any cyclic 2-group G. G always permutes monomials up to sign.
The refinement of $\pi_u^*(MU^{(4)}_R)$ (continued)

It follows that $\pi_u^4(MU^{(4)}_R)$ is refined by an equivariant map from

$$\widetilde{W}_2 = \tilde{S}(2\rho_2) \vee \tilde{S}(2\rho_2) \vee \tilde{S}(2\rho_2) \vee \tilde{S}(\rho_4).$$

A similar analysis can be made in any even dimension and for any cyclic 2-group G. G always permutes monomials up to sign. In $\pi_u^*(MU^{(4)}_R)$ the first case of a singleton orbit occurs in dimension 8, namely

$$\tilde{S}(\rho_8) \iff \{r_1(1)r_1(2)r_1(3)r_1(4)\}.$$
The refinement of $\pi_*^{u}(MU_R^{(4)})$ (continued)

$$(-1)^j \quad r_i(1) \xrightarrow{} r_i(2) \xrightarrow{} r_i(3) \xrightarrow{} r_i(4)$$

It follows that $\pi_4^{u}(MU_R^{(4)})$ is refined by an equivariant map from

$$\hat{W}_2 = \hat{S}(2\rho_2) \lor \hat{S}(2\rho_2) \lor \hat{S}(2\rho_2) \lor \hat{S}(\rho_4).$$

A similar analysis can be made in any even dimension and for any cyclic 2-group G. G always permutes monomials up to sign. In $\pi_*^{u}(MU_R^{(4)})$ the first case of a singleton orbit occurs in dimension 8, namely

$$\hat{S}(\rho_8) \leftrightarrow \{r_1(1)r_1(2)r_1(3)r_1(4)\}.$$

Note that the free slice cell $\hat{S}(m\rho_1)$ never occurs as a wedge summand of \hat{W}_m.
The refinement of $\pi_*^{u}(MU_R^{(4)})$ (continued)

$$(-1)^j \\ r_i(1) \rightarrow r_i(2) \rightarrow r_i(3) \rightarrow r_i(4)$$

It follows that $\pi_*^{u}(MU_R^{(4)})$ is refined by an equivariant map from

$$\hat{W}_2 = \hat{S}(2\rho_2) \vee \hat{S}(2\rho_2) \vee \hat{S}(2\rho_2) \vee \hat{S}(\rho_4).$$

A similar analysis can be made in any even dimension and for any cyclic 2-group G. G always permutes monomials up to sign. In $\pi_*^{u}(MU_R^{(4)})$ the first case of a singleton orbit occurs in dimension 8, namely

$$\hat{S}(\rho_8) \leftrightarrow \{r_1(1)r_1(2)r_1(3)r_1(4)\}.$$

Note that the free slice cell $\hat{S}(m\rho_1)$ never occurs as a wedge summand of \hat{W}_m.

A large portion of our paper is devoted to proving that the slice spectral sequence has the desired properties.
The slice spectral sequence (continued)

Slice Theorem

In the slice tower for $\text{MU}_R^{(g/2)}$, every odd slice is contractible.
Slice Theorem

In the slice tower for $MU^{(g/2)}_R$, every odd slice is contractible, and the $2m$th slice is $\hat{W}_m \wedge H\mathbb{Z}$, where \hat{W}_m is the wedge of slice cells indicated above and $H\mathbb{Z}$ is the integer Eilenberg-Mac Lane spectrum.
<table>
<thead>
<tr>
<th>Slice Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the slice tower for $MU_R^{(g/2)}$, every odd slice is contractible, and the 2mth slice is $\hat{W}_m \wedge H\mathbb{Z}$, where \hat{W}_m is the wedge of slice cells indicated above and $H\mathbb{Z}$ is the integer Eilenberg-Mac Lane spectrum. \hat{W}_m never has any free summands.*</td>
</tr>
</tbody>
</table>
The slice spectral sequence (continued)

Slice Theorem

In the slice tower for \(MU_R^{(g/2)} \), every odd slice is contractible, and the 2mth slice is \(\hat{W}_m \wedge H\mathbb{Z} \), where \(\hat{W}_m \) is the wedge of slice cells indicated above and \(H\mathbb{Z} \) is the integer Eilenberg-Mac Lane spectrum. \(\hat{W}_m \) never has any free summands.

This result is the technical heart of our proof.
The slice spectral sequence (continued)

Slice Theorem

In the slice tower for $MU^{(g/2)}_R$, every odd slice is contractible, and the 2mth slice is $\hat{W}_m \wedge H\mathbb{Z}$, where \hat{W}_m is the wedge of slice cells indicated above and $H\mathbb{Z}$ is the integer Eilenberg-Mac Lane spectrum. \hat{W}_m never has any free summands.

This result is the technical heart of our proof.

Thus we need to find the groups

$$\pi^G_\ast(\hat{S}(m\rho h) \wedge H\mathbb{Z}) = \pi^H_\ast(S^{m\rho h} \wedge H\mathbb{Z}) = \pi_\ast((S^{m\rho h} \wedge H\mathbb{Z})^H).$$
The slice spectral sequence (continued)

Slice Theorem

In the slice tower for $\text{MU}_R^{(g/2)}$, every odd slice is contractible, and the $2m$th slice is $\hat{W}_m \wedge \mathbb{H}$, where \hat{W}_m is the wedge of slice cells indicated above and \mathbb{H} is the integer Eilenberg-Mac Lane spectrum. \hat{W}_m never has any free summands.

This result is the technical heart of our proof.

Thus we need to find the groups

$$\pi_*^G(\hat{S}(m\rho_h) \wedge \mathbb{H}) = \pi_*^H(S^{m\rho_h} \wedge \mathbb{H}) = \pi_*((S^{m\rho_h} \wedge \mathbb{H})^H).$$

We need this for all nontrivial subgroups H and all integers m because we construct the spectrum $\hat{\Omega}$ by inverting a certain element in $\pi^G_{19\rho_8}(\text{MU}_R^{(4)})$. Here is what we will learn.
Computing $\pi^G_\ast(W(m\rho h) \wedge HZ)$

Vanishing Theorem

- For $m \geq 0$, $\pi^H_k(S^{m\rho h} \wedge HZ) = 0$ unless $m \leq k \leq hm$.
Computing $\pi^G_*(W(m\rho h) \wedge H\mathbb{Z})$

Vanishing Theorem

- For $m \geq 0$, $\pi^H_k(S^{m\rho h} \wedge H\mathbb{Z}) = 0$ unless $m \leq k \leq hm$.
- For $m < 0$ and $h > 1$, $\pi^H_k(S^{m\rho h} \wedge H\mathbb{Z}) = 0$ unless $hm \leq k \leq m - 2$.
Computing $\pi_*^G(W(m\rho h) \wedge HZ)$

Vanishing Theorem

- For $m \geq 0$, $\pi^H_k(S^{m\rho h} \wedge HZ) = 0$ unless $m \leq k \leq hm$.
- For $m < 0$ and $h > 1$, $\pi^H_k(S^{m\rho h} \wedge HZ) = 0$ unless $hm \leq k \leq m - 2$. The upper bound can be improved to $m - 3$ except in the case $(h, m) = (2, -2)$.
Computing $\pi_*^G(W(m\rho h) \wedge HZ)$

Vanishing Theorem

- For $m \geq 0$, $\pi^H_k(S^{m\rho h} \wedge HZ) = 0$ unless $m \leq k \leq hm$.
- For $m < 0$ and $h > 1$, $\pi^H_k(S^{m\rho h} \wedge HZ) = 0$ unless $hm \leq k \leq m - 2$. The upper bound can be improved to $m - 3$ except in the case $(h, m) = (2, -2)$ when $\pi^H_{-4}(S^{-2\rho 2} \wedge HZ) = \mathbb{Z}$.
Computing $\pi_*^G(W(m\rho h) \wedge H\mathbb{Z})$

Vanishing Theorem

- For $m \geq 0$, $\pi^H_k(S^{m\rho h} \wedge H\mathbb{Z}) = 0$ unless $m \leq k \leq hm$.
- For $m < 0$ and $h > 1$, $\pi^H_k(S^{m\rho h} \wedge H\mathbb{Z}) = 0$ unless $hm \leq k \leq m - 2$. The upper bound can be improved to $m - 3$ except in the case $(h, m) = (2, -2)$ when $\pi^H_{-4}(S^{-2\rho 2} \wedge H\mathbb{Z}) = \mathbb{Z}$.

Gap Corollary

For $h > 1$ and all integers m, $\pi^H_k(S^{m\rho h} \wedge H\mathbb{Z}) = 0$ for $-4 < k < 0$.

For $m \geq 0$, $\pi^H_k(S^{m\rho h} \wedge H\mathbb{Z}) = 0$ unless $m \leq k \leq hm$.

For $m < 0$ and $h > 1$, $\pi^H_k(S^{m\rho h} \wedge H\mathbb{Z}) = 0$ unless $hm \leq k \leq m - 2$. The upper bound can be improved to $m - 3$ except in the case $(h, m) = (2, -2)$ when $\pi^H_{-4}(S^{-2\rho 2} \wedge H\mathbb{Z}) = \mathbb{Z}$.

For $h > 1$ and all integers m, $\pi^H_k(S^{m\rho h} \wedge H\mathbb{Z}) = 0$ for $-4 < k < 0$.

Given the Slice Theorem, this means a similar statement must hold for $\pi^C\mathbb{Z}_*(\tilde{\Omega}) = \pi^\ast_\mathbb{Z}(\Omega)$, which gives the Gap Theorem.
Computing $\pi^G_*(W(m_{\rho h}) \land H\mathbb{Z})$

Vanishing Theorem

- For $m \geq 0$, $\pi^H_k(S^{m_{\rho h}} \land H\mathbb{Z}) = 0$ unless $m \leq k \leq hm$.
- For $m < 0$ and $h > 1$, $\pi^H_k(S^{m_{\rho h}} \land H\mathbb{Z}) = 0$ unless $hm \leq k \leq m - 2$. The upper bound can be improved to $m - 3$ except in the case $(h, m) = (2, -2)$ when $\pi^H_{-4}(S^{-2\rho_2} \land H\mathbb{Z}) = \mathbb{Z}$.

Gap Corollary

For $h > 1$ and all integers m, $\pi^H_k(S^{m_{\rho h}} \land H\mathbb{Z}) = 0$ for $-4 < k < 0$.

Given the Slice Theorem, this means a similar statement must hold for $\pi^C_8(\tilde{\Omega}) = \pi_*(\Omega)$, which gives the Gap Theorem.
Computing $\pi_*^G(W(m\rho h) \wedge H\mathbb{Z})$ (continued)

Here again is a picture showing $\pi_*^{C_8}(S^{m\rho_8} \wedge H\mathbb{Z})$ for small m.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{picture.png}
\end{figure}
Computing $\pi_*^G(W(m \rho h) \wedge HZ)$ (continued)

Here again is a picture showing $\pi_*^C(S^{m \rho 8} \wedge HZ)$ for small m.
The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.
The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex \(C(m\rho g)_* \) for \(S^{m\rho g} \), where \(m \geq 0 \). In it the cells are permuted by the action of \(G \).
The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex $C(m\rho g)_* \text{ for } S^{m\rho g}$, where $m \geq 0$. In it the cells are permuted by the action of G. It is a complex of $\mathbb{Z}[G]$-modules and is uniquely determined by fixed point data of $S^{m\rho g}$.
The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex \(C(mρg)_\ast \) for \(S^{mρg} \), where \(m \geq 0 \). In it the cells are permuted by the action of \(G \). It is a complex of \(\mathbb{Z}[G] \)-modules and is uniquely determined by fixed point data of \(S^{mρg} \).

For \(H \subset G \) we have

\[
(S^{mρg})^H = S^{mg/h}
\]
The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex $C(mρg)_*$ for $S^{mρg}$, where $m \geq 0$. In it the cells are permuted by the action of G. It is a complex of $\mathbb{Z}[G]$-modules and is uniquely determined by fixed point data of $S^{mρg}$.

For $H \subset G$ we have

$$(S^{mρg})^H = S^{mg/h}$$

This means that $S^{mρg}$ is a G-CW-complex with
The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex $C(m_{\rho g})_*$ for $S^{m_{\rho g}}$, where $m \geq 0$. In it the cells are permuted by the action of G. It is a complex of $\mathbb{Z}[G]$-modules and is uniquely determined by fixed point data of $S^{m_{\rho g}}$.

For $H \subset G$ we have

$$(S^{m_{\rho g}})^H = S^{mg/h}$$

This means that $S^{m_{\rho g}}$ is a G-CW-complex with

- one cell in dimension m,

The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex $C(m_{\rho g})_*$ for $S^{m_{\rho g}}$, where $m \geq 0$. In it the cells are permuted by the action of G. It is a complex of $\mathbb{Z}[G]$-modules and is uniquely determined by fixed point data of $S^{m_{\rho g}}$.

For $H \subset G$ we have

$$\left(S^{m_{\rho g}} \right)^H = S^{mg/h}$$

This means that $S^{m_{\rho g}}$ is a G-CW-complex with

- one cell in dimension m,
- two cells in each dimension from $m + 1$ to $2m$,
The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex $C(m_{\rho g})_*$ for $S^{m_{\rho g}}$, where $m \geq 0$. In it the cells are permuted by the action of G. It is a complex of $\mathbb{Z}[G]$-modules and is uniquely determined by fixed point data of $S^{m_{\rho g}}$.

For $H \subset G$ we have

$$(S^{m_{\rho g}})^H = S^{m g / h}$$

This means that $S^{m_{\rho g}}$ is a G-CW-complex with

- one cell in dimension m,
- two cells in each dimension from $m + 1$ to $2m$,
- four cells in each dimension from $2m + 1$ to $4m$,
The proof of the Gap Theorem

The proofs of the Vanishing Theorem and Gap Corollary are surprisingly easy.

We begin by constructing an equivariant cellular chain complex $C(m\rho g)_*$ for $S^{m\rho g}$, where $m \geq 0$. In it the cells are permuted by the action of G. It is a complex of $\mathbb{Z}[G]$-modules and is uniquely determined by fixed point data of $S^{m\rho g}$.

For $H \subset G$ we have

$$(S^{m\rho g})^H = S^{mg/h}$$

This means that $S^{m\rho g}$ is a G-CW-complex with

- one cell in dimension m,
- two cells in each dimension from $m + 1$ to $2m$,
- four cells in each dimension from $2m + 1$ to $4m$,

and so on.
The proof of the Gap Theorem (continued)

In other words,

\[
C(m \rho g)_k = \begin{cases}
0 & \text{unless } m \leq k \leq gm \\
& \text{otherwise}
\end{cases}
\]
The proof of the Gap Theorem (continued)

In other words,

\[
C(m\rho g)_k = \begin{cases}
0 & \text{unless } m \leq k \leq gm \\
\mathbb{Z} & \text{for } k = m
\end{cases}
\]
The proof of the Gap Theorem (continued)

In other words,

\[
C(m \rho g)_k = \begin{cases}
0 & \text{unless } m \leq k \leq gm \\
\mathbb{Z} & \text{for } k = m \\
\mathbb{Z}[G/G'] & \text{for } m < k \leq 2m \text{ and } g \geq 2
\end{cases}
\]
The proof of the Gap Theorem (continued)

In other words,

\[C(m \rho g)_k = \begin{cases}
0 & \text{unless } m \leq k \leq gm \\
\mathbb{Z} & \text{for } k = m \\
\mathbb{Z}[G/G'] & \text{for } m < k \leq 2m \text{ and } g \geq 2 \\
\mathbb{Z}[G/G''] & \text{for } 2m < k \leq 4m \text{ and } g \geq 4 \\
\vdots &
\end{cases} \]

where \(G' \) and \(G'' \) are the subgroups of indices 2 and 4.
The proof of the Gap Theorem (continued)

In other words,

\[C(m\rho g)_k = \begin{cases}
0 & \text{unless } m \leq k \leq gm \\
\mathbb{Z} & \text{for } k = m \\
\mathbb{Z}[G/G'] & \text{for } m < k \leq 2m \text{ and } g \geq 2 \\
\mathbb{Z}[G/G''] & \text{for } 2m < k \leq 4m \text{ and } g \geq 4 \\
\vdots &
\end{cases} \]

where G' and G'' are the subgroups of indices 2 and 4. Each of these is a cyclic $\mathbb{Z}[G]$-module.
The proof of the Gap Theorem (continued)

In other words,

\[
C(m\rho g)_k = \begin{cases}
0 & \text{unless } m \leq k \leq gm \\
\mathbb{Z} & \text{for } k = m \\
\mathbb{Z}[G/G'] & \text{for } m < k \leq 2m \text{ and } g \geq 2 \\
\mathbb{Z}[G/G''] & \text{for } 2m < k \leq 4m \text{ and } g \geq 4 \\
& \vdots
\end{cases}
\]

where \(G' \) and \(G'' \) are the subgroups of indices 2 and 4. Each of these is a cyclic \(\mathbb{Z}[G] \)-module. The boundary operator is uniquely determined by the fact that \(H_*(C(m\rho g)) = H_*(S^{gm}) \).
The proof of the Gap Theorem (continued)

In other words,

\[
C(m_\rho g)_k = \begin{cases}
0 & \text{unless } m \leq k \leq gm \\
\mathbb{Z} & \text{for } k = m \\
\mathbb{Z}[G/G'] & \text{for } m < k \leq 2m \text{ and } g \geq 2 \\
\mathbb{Z}[G/G''] & \text{for } 2m < k \leq 4m \text{ and } g \geq 4 \\
\vdots
\end{cases}
\]

where G' and G'' are the subgroups of indices 2 and 4. Each of these is a cyclic $\mathbb{Z}[G]$-module. The boundary operator is uniquely determined by the fact that $H_*(C(m_\rho g)) = H_*(S^{gm})$.

Then we have

\[
\pi_*^G(S^{m_\rho g} \wedge H\mathbb{Z}) = H_*(\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, C(m_\rho g))) = H_*(C(m_\rho g)^G).
\]
The proof of the Gap Theorem (continued)

In other words,

\[C(m_{\rho g})_k = \begin{cases}
0 & \text{unless } m \leq k \leq gm \\
\mathbb{Z} & \text{for } k = m \\
\mathbb{Z}[G/G'] & \text{for } m < k \leq 2m \text{ and } g \geq 2 \\
\mathbb{Z}[G/G''] & \text{for } 2m < k \leq 4m \text{ and } g \geq 4 \\
\vdots & \end{cases} \]

where \(G' \) and \(G'' \) are the subgroups of indices 2 and 4. Each of these is a cyclic \(\mathbb{Z}[G] \)-module. The boundary operator is uniquely determined by the fact that \(H_*(C(m_{\rho g})) = H_*(S^{gm}) \).

Then we have

\[\pi_*^G(S^{m_{\rho g}} \wedge H\mathbb{Z}) = H_*(\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, C(m_{\rho g}))) = H_*(C(m_{\rho g})^G). \]

These groups are nontrivial only for \(m \leq k \leq gm \), which gives the Vanishing Theorem for \(m \geq 0 \).
The proof of the Gap Theorem (continued)

We will look at the bottom three groups in the complex \(\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, C(m\rho g)_*) \).
We will look at the bottom three groups in the complex $\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, C(m_{\rho g})_*)$. Since $C(m_{\rho g})_k$ is a cyclic $\mathbb{Z}[G]$-module, the Hom group is always \mathbb{Z}.
The proof of the Gap Theorem (continued)

We will look at the bottom three groups in the complex $\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, C(m_{\rho g})_*)$. Since $C(m_{\rho g})_k$ is a cyclic $\mathbb{Z}[G]$-module, the Hom group is always \mathbb{Z}.

For $m > 1$ our chain complex $C(m_{\rho g})$ has the form

$$
\begin{align*}
0 \leftarrow \mathbb{Z} \leftarrow \mathbb{Z}[C_2] \leftarrow \mathbb{Z}[C_2] \leftarrow \cdots
\end{align*}
$$
The proof of the Gap Theorem (continued)

We will look at the bottom three groups in the complex \(\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, C(m\rho_g)_*) \). Since \(C(m\rho_g)_k \) is a cyclic \(\mathbb{Z}[G] \)-module, the Hom group is always \(\mathbb{Z} \).

For \(m > 1 \) our chain complex \(C(m\rho_g) \) has the form

\[
\begin{array}{cccc}
C(m\rho_g)_m & C(m\rho_g)_{m+1} & C(m\rho_g)_{m+2} \\
\downarrow & \downarrow 1-\gamma & \downarrow 1+\gamma \\
0 & \mathbb{Z} & \mathbb{Z}[C_2]
\end{array}
\]

Applying \(\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, \cdot) \) (taking fixed points) to this gives (in dimensions \(\leq 2m \) for \(m > 4 \))

\[
\begin{array}{cccc}
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\
2 & 0 & 2 & 0 \\
m & m+1 & m+2 & m+3 & m+4
\end{array}
\]
Again, $\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, C(m\rho g))$ in low dimensions is

\[
\begin{array}{cccccc}
\mathbb{Z} & \overset{2}{\leftarrow} & \mathbb{Z} & \overset{0}{\leftarrow} & \mathbb{Z} & \overset{2}{\leftarrow} & \mathbb{Z} & \overset{0}{\leftarrow} & \mathbb{Z} & \overset{2}{\leftarrow} & \mathbb{Z} & \leftarrow \cdots \\
m & m + 1 & m + 2 & m + 3 & m + 4
\end{array}
\]

It follows that for $m \leq k < 2m$,

$$
\pi_{G,k}(S_{m\rho g} \wedge H\mathbb{Z}) = \begin{cases}
\mathbb{Z}/2 & \text{if } k \equiv m \mod 2 \\
0 & \text{otherwise}
\end{cases}
$$
The proof of the Gap Theorem (continued)

Again, $\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, C(m\rho_g))$ in low dimensions is

$$\mathbb{Z} \leftarrow \mathbb{Z} \leftarrow 0 \leftarrow \mathbb{Z} \leftarrow 0 \leftarrow \mathbb{Z} \leftarrow \ldots$$

$$m \quad m + 1 \quad m + 2 \quad m + 3 \quad m + 4$$

It follows that for $m \leq k < 2m$,

$$\pi_k^G(S^{m\rho_g} \wedge H\mathbb{Z}) = \begin{cases} \mathbb{Z}/2 & k \equiv m \mod 2 \\ 0 & \text{otherwise.} \end{cases}$$
The proof of the Gap Theorem (continued)

We can study the groups $\pi_*^G(S^{mpg} \wedge HZ)$ for $m < 0$ in two different ways, topologically and algebraically.
The proof of the Gap Theorem (continued)

We can study the groups $\pi_*^G(S^{m\rho g} \wedge H\mathbb{Z})$ for $m < 0$ in two different ways, topologically and algebraically.

For the topological approach, it is the same as the graded group

$$[S^{-m\rho g}, H\mathbb{Z}]_*^G$$

where $m < 0$.

The proof of the Gap Theorem (continued)

We can study the groups $\pi_*^G(S^{m \rho g} \wedge HZ)$ for $m < 0$ in two different ways, topologically and algebraically.

For the topological approach, it is the same as the graded group

$$[S^{-m \rho g}, HZ]^G_*$$

where $m < 0$.

Since G acts trivially on the target HZ, equivariant maps to it are the same as ordinary maps from the orbit space $S^{-m \rho g}/G$.
The proof of the Gap Theorem (continued)

We can study the groups $\pi^G_\ast(S^{m\rho g} \wedge H\mathbb{Z})$ for $m < 0$ in two different ways, topologically and algebraically.

For the topological approach, it is the same as the graded group

$$[S^{-m\rho g}, H\mathbb{Z}]^G_\ast$$

where $m < 0$.

Since G acts trivially on the target $H\mathbb{Z}$, equivariant maps to it are the same as ordinary maps from the orbit space $S^{-m\rho g} / G$.

For simplicity, assume that $G = C_2$.
The proof of the Gap Theorem (continued)

We can study the groups $\pi_*(S^{m \rho g} \wedge HZ)$ for $m < 0$ in two different ways, topologically and algebraically.

For the topological approach, it is the same as the graded group

$$[S^{-m \rho g}, HZ]^G_*$$

where $m < 0$.

Since G acts trivially on the target HZ, equivariant maps to it are the same as ordinary maps from the orbit space $S^{-m \rho g}/G$.

For simplicity, assume that $G = C_2$. Then the orbit space is $\Sigma^{-m+1} \mathbb{RP}^{-m-1}$, and we are computing its ordinary reduced cohomology with integer coefficients.
The proof of the Gap Theorem (continued)

We can study the groups $\pi^G_\ast(S^{m\rho g} \wedge HZ)$ for $m < 0$ in two different ways, topologically and algebraically.

For the topological approach, it is the same as the graded group

$$[S^{-m\rho g}, HZ]^*_G$$

where $m < 0$.

Since G acts trivially on the target HZ, equivariant maps to it are the same as ordinary maps from the orbit space $S^{-m\rho g}/G$.

For simplicity, assume that $G = C_2$. Then the orbit space is $\Sigma^{-m+1}RP^{-m-1}$, and we are computing its ordinary reduced cohomology with integer coefficients. We have

$$\pi^G_{-k}(S^{m\rho g} \wedge HZ)$$

$$= \overline{H}^k(\Sigma^{-m+1}RP^{-m-1}; Z)$$
The proof of the Gap Theorem (continued)

We can study the groups $\pi^G_\ast(S^{m\rho g} \wedge H\mathbb{Z})$ for $m < 0$ in two different ways, topologically and algebraically.

For the topological approach, it is the same as the graded group

$$[S^{-m\rho g}, H\mathbb{Z}]^G_*$$

where $m < 0$.

Since G acts trivially on the target $H\mathbb{Z}$, equivariant maps to it are the same as ordinary maps from the orbit space $S^{-m\rho g} / G$.

For simplicity, assume that $G = C_2$. Then the orbit space is $\Sigma^{−m+1} \mathbb{R}P^{-m-1}$, and we are computing its ordinary reduced cohomology with integer coefficients. We have

$$\pi^G_{-k}(S^{m\rho g} \wedge H\mathbb{Z})$$

$$= \overline{H}^k(\Sigma^{-m+1} \mathbb{R}P^{-m-1} ; \mathbb{Z})$$

$$= 0 \left\{ \begin{array}{l} \text{unless } k = −m + 2 \text{ when } m = −2 \\ \text{unless } −m + 3 \leq k \leq −2m \text{ when } m \leq −3. \end{array} \right.$$
The proof of the Gap Theorem (continued)

We can study the groups $\pi_\ast^G(S^{m\rho g} \wedge H\mathbb{Z})$ for $m < 0$ in two different ways, topologically and algebraically.

For the topological approach, it is the same as the graded group

$$[S^{-m\rho g}, H\mathbb{Z}]_\ast^G$$

where $m < 0$.

Since G acts trivially on the target $H\mathbb{Z}$, equivariant maps to it are the same as ordinary maps from the orbit space $S^{-m\rho g} / G$.

For simplicity, assume that $G = C_2$. Then the orbit space is $\Sigma^{-m+1}\mathbb{R}P^{-m-1}$, and we are computing its ordinary reduced cohomology with integer coefficients. We have

$$\pi_{-k}^G(S^{m\rho g} \wedge H\mathbb{Z})$$

$$= H^k(\Sigma^{-m+1}\mathbb{R}P^{-m-1}; \mathbb{Z})$$

$$= 0 \left\{ \begin{array}{ll}
\text{unless } k = -m + 2 \text{ when } m = -2 \\
\text{unless } -m + 3 \leq k \leq -2m \text{ when } m \leq -3.
\end{array} \right.$$

The increased lower bound is responsible for the gap.
The proof of the Gap Theorem (continued)

Alternatively, $S^{m \rho g}$ (with $m < 0$) is the equivariant Spanier-Whitehead dual of $S^{-m \rho g}$.
The proof of the Gap Theorem (continued)

Alternatively, \(S^{m\rho g} \) (with \(m < 0 \)) is the equivariant Spanier-Whitehead dual of \(S^{-m\rho g} \). This means that

\[
\pi_*^G(S^{m\rho g} \wedge H\mathbb{Z}) = H^*(\text{Hom}_{\mathbb{Z}[G]}(C(-m\rho g), \mathbb{Z})).
\]
The proof of the Gap Theorem (continued)

Alternatively, $S^{m \rho g}$ (with $m < 0$) is the equivariant Spanier-Whitehead dual of $S^{-m \rho g}$. This means that

$$\pi^G_\ast(S^{m \rho g} \wedge H\mathbb{Z}) = H^\ast(\text{Hom}_{\mathbb{Z}[G]}(C(-m \rho g), \mathbb{Z})).$$

Applying the functor $\text{Hom}_{\mathbb{Z}[G]}(\cdot, \mathbb{Z})$ to our chain complex $C(-m \rho g)$

$$\mathbb{Z} \xleftarrow{\epsilon} \mathbb{Z}[C_2] \xleftarrow{1-\gamma} \mathbb{Z}[C_2] \xleftarrow{1+\gamma} \mathbb{Z}[C_2 \text{ or } C_4] \xleftarrow{1-\gamma} \ldots$$

$-m \quad -m + 1 \quad -m + 2 \quad -m + 3$
The proof of the Gap Theorem (continued)

Alternatively, $S^{m \rho g}$ (with $m < 0$) is the equivariant Spanier-Whitehead dual of $S^{-m \rho g}$. This means that

$$
\pi_*^G(S^{m \rho g} \wedge H\mathbb{Z}) = H^*(\text{Hom}_{\mathbb{Z}[G]}(C(-m \rho g), \mathbb{Z})).
$$

Applying the functor $\text{Hom}_{\mathbb{Z}[G]}(\cdot, \mathbb{Z})$ to our chain complex $C(-m \rho g)$

\[
\begin{align*}
\mathbb{Z} & \xleftarrow{\epsilon} \mathbb{Z}[C_2] & \xleftarrow{1-\gamma} \mathbb{Z}[C_2] & \xleftarrow{1+\gamma} \mathbb{Z}[C_2 \text{ or } C_4] & \xleftarrow{1-\gamma} \cdots \\
-m & \quad -m+1 & \quad -m+2 & \quad -m+3
\end{align*}
\]

gives a negative dimensional chain complex beginning with

\[
\begin{align*}
\mathbb{Z} & \overset{1}{\rightarrow} \mathbb{Z} & \overset{0}{\rightarrow} \mathbb{Z} & \overset{2}{\rightarrow} \mathbb{Z} & \overset{0}{\rightarrow} \mathbb{Z} & \cdots \\
m & \quad m-1 & \quad m-2 & \quad m-3 & \quad m-4
\end{align*}
\]
The proof of the Gap Theorem (continued)

Here is a diagram showing both functors in the case $m \leq -4$.

![Diagram showing functors in the case $m \leq -4$.]
The proof of the Gap Theorem (continued)

Here is a diagram showing both functors in the case $m \leq -4$.

$\begin{array}{cccccc}
-m & -m+1 & -m+2 & -m+3 & -m+4 \\
\mathbb{Z} & \mathbb{Z}[C_2] & \mathbb{Z}[C_2] & \mathbb{Z}[C_2] & \mathbb{Z}[C_2] & \cdots \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \cdots \\
\end{array}$

Note the difference in behavior of the map $\epsilon: \mathbb{Z}[C_2] \to \mathbb{Z}$ under the functors $\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, \cdot)$ and $\text{Hom}_{\mathbb{Z}[G]}(\cdot, \mathbb{Z})$. They convert it to maps of degrees 2 and 1 respectively. This difference is responsible for the gap.
The proof of the Gap Theorem (continued)

Here is a diagram showing both functors in the case $m \leq -4$.

$$
\begin{array}{ccccccc}
-m & -m + 1 & -m + 2 & -m + 3 & -m + 4 \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \ldots \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \ldots \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \ldots \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \ldots \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \ldots \\
\end{array}
$$

Note the difference in behavior of the map $\epsilon : \mathbb{Z}[C_2] \to \mathbb{Z}$ under the functors $\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, \cdot)$ and $\text{Hom}_{\mathbb{Z}[G]}(\cdot, \mathbb{Z})$.
The proof of the Gap Theorem (continued)

Here is a diagram showing both functors in the case \(m \leq -4 \).

\[
\begin{array}{ccccccc}
-m & -m+1 & -m+2 & -m+3 & -m+4 \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \cdots \\
\mathbb{Z} & \mathbb{Z}[C_2] & \mathbb{Z}[C_2] & \mathbb{Z}[C_2] & \mathbb{Z}[C_2] & \cdots \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \cdots \\
\end{array}
\]

Note the difference in behavior of the map \(\epsilon : \mathbb{Z}[C_2] \to \mathbb{Z} \) under the functors \(\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, \cdot) \) and \(\text{Hom}_{\mathbb{Z}[G]}(\cdot, \mathbb{Z}) \). They convert it to maps of degrees 2 and 1 respectively.
The proof of the Gap Theorem (continued)

Here is a diagram showing both functors in the case $m \leq -4$.

\[
\begin{array}{cccccc}
-m & -m + 1 & -m + 2 & -m + 3 & -m + 4 \\
Z & Z & Z & Z & Z & \cdots \\
& 2 & 0 & 2 & 0 & \\
\end{array}
\]

\[
\begin{array}{cccccc}
n & n - 1 & n - 2 & n - 3 & n - 4 \\
Z & Z & Z & Z & Z & \cdots \\
& 1 & 0 & 2 & 0 & \\
\end{array}
\]

Note the difference in behavior of the map $\epsilon : \mathbb{Z}[C_2] \rightarrow \mathbb{Z}$ under the functors $\text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, \cdot)$ and $\text{Hom}_{\mathbb{Z}[G]}(\cdot, \mathbb{Z})$. They convert it to maps of degrees 2 and 1 respectively. This difference is responsible for the gap.
A homotopy fixed point spectral sequence

Our strategy
The main theorem
How we construct Ω

MU
Basic properties
Refining homotopy

Proof of Gap Theorem
The corresponding slice spectral sequence