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1. What is elliptic cohomology?

Definition 1. For a ring R, an R-valued genus on a class of
closed manifolds is a function ϕ that assigns to each manifold M
an element ϕ(M) ∈ R such that

(i) ϕ(M1

∐
M2) = ϕ(M1) + ϕ(M2)

(ii) ϕ(M1 ×M2) = ϕ(M1)ϕ(M2)
(iii) ϕ(M) = 0 if M is a boundary.

Equivalently, ϕ is a homomorphism from the appropriate cobordism
ring Ω to R.

Examples of genera:
• The Hirzebruch signature is a Z-valued genus for smooth

oriented manifolds.
• The Â-genus is a Z-valued genus for Spin manifolds.
• The Euler characteristic and Todd genus are Z-valued gen-

era for complex manifolds.

Definition 2. A 1-dimensional formal group law over R is a
power series F (x, y) ∈ R[[x, y]] satisfying

(i) F (x, 0) = F (0, x) = x.
(ii) F (y, x) = F (x, y)
(iii) F (x, F (y, z)) = F (F (x, y), z).

Remarks:
• A commututative 1-dimensional analytic Lie group also

leads to such a power series, but here there is no conver-
gence requirement.

• An n-dimensional formal group law (consisting of n power
series in 2n variables) can be defined in a similar way.

Examples for formal group laws:
(i) F (x, y) = x+ y, the additive formal group law.
(ii) F (x, y) = x+ y + xy, the multiplicative formal group law.

Here 1 + F (x, y) = (1 + x)(1 + y), which makes the asso-
ciativity condition transparent.

(iii) F (x, y) = x+y
1+xy , the formal group law associated with the

hyperbolic tangent function via the addition formula.

tanh(x+ y) = F (tanh(x), tanh(y)).

A theorem of Quillen says that in the complex case (where
Ω = MU∗, the complex cobordism ring), ϕ is a equivalent to a
1-dimensional formal group law over R. For example, the formal
group law (iii) above corresponds to the signature of a complex
manifold.
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It is also known that the functor

X 7→MU∗(X)⊗ϕ R

is a cohomology theory if ϕ satisfies certain conditions spelled out
in Landweber’s Exact Functor Theorem.

Now suppose E is an elliptic curve defined over a ring R. It is a
1-dimensional algebraic group, and choosing a local paramater at
the identity leads to a formal group law Ê, the formal completion
of E. Thus we can apply the machinery above and get an R-valued
genus.

For example, the Jacobi quartic, defined by the equation

v2 = 1− 2δu2 + εu4,

is an elliptic curve over the ring

R = Z[1/2, δ, ε].

The resulting formal group law is the power series expansion of

F (x, y) =
x
√

1− 2δy2 + εy4 + y
√

1− 2δx2 + εx4

1− εx2y2
;

this calculation is originally due to Euler. The resulting genus is
known to satisfy Landweber’s conditions, and this leads to one
definition of elliptic cohomology.

A more general elliptic curve is defined by the Weierstarss equa-
tion

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Under the affine coordinate change

y 7→ y + r and x 7→ x+ sy + t

we get

a6 7→ a6 + a4 r + a3 t+ a2 r
2

+a1 r t+ t2 − r3

a4 7→ a4 + a3 s+ 2 a2 r

+a1(r s+ t) + 2 s t− 3 r2

a3 7→ a3 + a1 r + 2 t
a2 7→ a2 + a1 s− 3 r + s2

a1 7→ a1 + 2 s.

This can be used to define a Hopf algrebroid (A, Γ) with

A = Z[a1, a2, a3, a4, a6]
Γ = A[r, s, t]

and right unit ηR : A → Γ given by the formulas above. Its Ext
group is the E2-term of a spectral sequence converging to π∗(tmf).
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2. What does “chromatic” mean?

The stable homotopy category localized a prime p can be stud-
ied via a series of increasingly complicated Bousfield localization
functors Ln for n ≥ 0, which detect “vn-periodic” phenomena.
The follwoing diagram of functors and natural transformations is
known as the chromatic tower.

L0 L1
oo L2

oo L3
oo · · ·oo

• L0 is rationalization. Rational stable homotopy theory is
very well understood. It detects only the 0-stem in the
stable homotopy groups of spheres.

• L1 is localization with respect to K-theory. It detects the
image of J and the α family in the stable homotopy groups
of spheres. The Lichtenbaum-Quillen conjecture is a state-
ment about L1 of algebraic K-theory.

• For an odd prime p, L2 is equivalent to localization with
respect to elliptic cohomology as defined above. It detects
the β family in the stable homotopy groups of spheres.
Davis’ nonimmersion theorem for real projective spaces was
proved using related methods at the prime 2. The theory of
topological modular forms of Hopkins et al is a refinement
of elliptic cohomolgy.

• In general, Ln can be constructed by algebraic methods
related to BP -theory. For n > 2 there is no known com-
parable geometric definition of Ln. It detects higher Greek
letter families in the stable homotopy groups of spheres.
The nth Morava K-theory is closely related to it.

A key to understanding the algebraic underpinnings of the chro-
matic point of view is the following.

Definition 3. Let F be 1-dimensional formal group law over a
field k of characteristic p. For a positive integer m, the m series
is defined inductively by

[m]F (x) = F (x, [m− 1]F (x)),

where [1]F (x) = x. The p-series is either 0 or has the form

[p]F (x) = axpn

+ · · ·
for some nonzero a ∈ k. The height of F is the integer n. It is
defined to be ∞ when [p]F (x) = 0, which happens when F (x, y) =
x+ y.

Examples of m-series:
(i) For the additive formal group law, [m](x) = mx.
(ii) For the multiplicative formal group law,

[m](x) = (1 + x)m − 1.
(iii) For F (x, y) = x+y

1+xy , we have [m](tanh(x)) = tanh(mx).
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Examples of heights:
• The multiplicative formal group law (which is associated

with K-theory) has height 1 at every prime.
• The formal group law associated with the Hirzebruch sig-

nature has height 1 at every odd prime, and infinite height
at the prime 2.

• The formal group law associated with an elliptic curve is
known to have height at most 2. If the height is 1, the
curve is said to be ordinary; otherwise it is said to be su-
persingular.

• vn-periodic phenomena (the nth layer in the chromatic
tower) are related to formal group laws of height n.

3. What is a higher chromatic analog of ellip-
tic cohomology?

Question: How can we attach 1-dimensional formal group laws
of height > 2 to geometric objects (such as algebraic curves) and
use them get insight into cohomology theories that go deeper into
the chromatic tower?

Program:
• Let C be a curve of genus g over some ring R.
• Its Jacobian J(C) is an abelian variety of dimension g.
• J(C) has a formal completion Ĵ(C) which is a g-dimensional

formal group law.
• If Ĵ(C) has a 1-dimensional summand of height n, then by

Quillen’s theorem it gives us a genus associated with the
curve C.

Caveat: Note that a 1-dimensional summand of the formal
completion Ĵ(C) is not the same thing as 1-dimensional factor of
the Jacobian J(C). The latter would be an elliptic curve, whose
formal competion can have height at most 2. There is a theorem
that says if an abelian variety A has a 1-dimensional formal sum-
mand of height n for n > 2, then the dimension of A (and the genus
of the curve, if A is a Jacobian) is at least n.
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Theorem 4. For prime p and positive integer f , let C(p, f) be the
Artin-Schreier curve over Fp defined by the affine equation

ye = xp − x, where e = pf − 1.

(Assume that f > 1 when p = 2.) Then its Jacobian has a 1-
dimensional formal summand of height (p− 1)f .

Conjecture 5. Let C̃(p, f) be the curve over over Zp[u1, . . . , u(p−1)f−1]
defined by

yd = xp − x+
(p−1)f−2∑

i=0

ui+1x
p−1−[i/f ]ypf−1−pi−[i/f]f

.

Then its Jacobian has a formal 1-dimensional subgroup isomorphic
to the Lubin-Tate lifting of the formal group law of height (p−1)f .

Properties of C(p, f):
• Its genus is (p−1)(e−1)/2. (Thus it is zero in the excluded

case (p, f) = (2, 1).)
• It has an action by the group

G = Fp o µ(p−1)e

given by
(x, y) 7→ (ζex+ a, ζy)

for a ∈ Fp and ζ ∈ µ(p−1)e. This group is a maximal finite
subgroup of the (p− 1)fth Morava stabilizer group, and it
acts appropriately on the 1-dimensional formal summand.

• For f = 1 (and p > 2) the lifting conjecture was proved by
Gorbunov-Mahowald.

Examples of these curves:

• C(2, 2) and C(3, 1) are elliptic curves whose formal group
laws have height 2.

• C(2, 3) has genus 3 and a 1-dimensional formal summand
of height 3.

• C(2, 4) and C(3, 2) each has genus 7 and a 1-dimensional
formal summand of height 4.

Remarks:

• This result was known to and cited by Manin in 1963. Most
of what is needed for the proof can be found in Katz’s 1979
Bombay Colloquium paper and in Koblitz’ Hanoi notes.

• The original proof rests on the determination of the zeta
function of the curve by Davenport-Hasse in 1934, and
on some properties of Gauss sums proved by Stickelberger
in 1890. The method leads to complete determination of
Ĵ(C(p, f)).

• We have reproved the theorem using Honda’s theory of
commutative formal group laws developed in the early ’70s.
This proof does not rely on knowledge of the zeta function
and is thus a more promising approach to the lifting prob-
lem.
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4. Sketch of the Honda theoretic proof.

Notation:
• Let A be a torsion free local ring with maximal ideal m

and residue field of characteristic p with an automorphism
a 7→ aσ which reduces the Frobenius (or pth power) auto-
morphism modulo m.

• Let Aσ〈〈T 〉〉 be the ring of noncommutative power series
in T over A subject to the rule Ta = aσT .

• Let Md(A) denote the ring of ring of d × d-matrices over
A, and define Md(A)σ〈〈T 〉〉 in a similar way.

• Suppose we have a d-dimensional formal group law F over
the ring A. F is characterized by its logarithm f , which
is a vector of d power series in d variables over the field
A ⊗ Q. Given such an f , let fσi

be the vector of power
series obtained from f by applying σi to each coefficient.
Given a matrix H =

∑
i CiT

i in Md(A)σ〈〈T 〉〉, define

(H ∗ f)(x1, . . . , xd) =
∑

i

Cif
σi

(xpi

1 , . . . , x
pi

d ).

Definition 6. We say that H is a Honda matrix for F (or
for the vector f) and that F is of type H, if H ≡ pId modulo T
(Id is the d × d identity matrix) and (H ∗ f)(x) ≡ 0 modulo (p).
Two such matrices are said to be equivalent if they differ by unit
multiplication.

Examples of Honda matrices:
• For d = 1 and A = Zp, let H be the 1 × 1 matrix with

entry h = p− Tn for a positive integer n. Then

f(x) =
∑

i≥0

xpni

pi

and F is the formal group law for the Morava K-theory
K(n)∗.

• Let A = Zp[[u1, u2, . . . un−1]] for a positive integer m, and
let uσ

i = up
i . Let H be the 1× 1 matrix with entry

h = p− Tn −
∑

0<i<n

uiT
i.

Then f(x) is the logarithm for the Lubin-Tate lifting of the
formal group law above.

Theorem 7 (Honda, 1970). For A as above and m-adically com-
plete, the strict isomorphism classes of d-dimensional formal group
laws over A correspond bijectively to the equivalence classes of ma-
trices

H ∈Md(Zp)σ〈〈T 〉〉
congruent to pId modulo degree 1. H and f are related by the
formula

f(x) = (H−1 ∗ p)(x).
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Theorem 8 (Honda, 1973). Let C be a curve of genus g over A
with smooth reduction modulo m, and let

{ω1, . . . , ωg}
be a basis for the space of holomorphic 1-forms of C written as
power series in a local parameter y, and let

ψi =
∫ y

0

ωi.

Then if H is a Honda matrix for the vector (ψ1, . . . , ψg), it is also
one for Ĵ(C), the formal completion of the Jacobian J(C).

Note that ψ above is a vector of power series in one variable over
A ⊗ Q, while the logarithm of Ĵ(C) is a vector of power seires in
g variables. The theorem asserts that they have the same Honda
matrix.

Theorem 9 (Tate, 1966). The determinant of the Honda matrix
for the curve C of genus g above is a polynomial of the form

T 2g + · · ·+ pg.

Recall that our curve C(p, f) is defined by the affine equation

ye = xp − x where e = pf − 1.

A basis for the holomorphic 1-forms for C(p, f) is

{ωi,j : ei+ pj < (e− 1)(p− 1)− 1} ,
where

ωi,j =
xiyjdx
ye−1

.

We denote the integral of its expansion in terms of y by ψei+j+1,
which has a power series expansion of the form

yei+j+1
∑

k≥0

cei+j+1,ny
mk where m = (p− 1)e.
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Examples of Honda matrices of curves:
• For C(2, 3) (where g = 3 and m = 7), the integrals have

the form

ψ1 ∈ yQ[[y7]]
ψ2 ∈ y2Q[[y7]]
ψ3 ∈ y3Q[[y7]]

The orbits in Z/(7) under multiplication by 2 include

{1, 2, 4} and {3, 6, 5} .
The set of indices {1, 2, 3} has two elements in the first
orbit and one in the second. This implies that the Honda
matrix has the form

H =




h1,1(T 3) h1,2(T 3)T 2 0
h2,1(T 3)T h2,2(T 3) 0

0 0 h3,3(T 3)




where
hi,j(T 3) =

∑

k≥0

hi,j,kT
3k

with hi,i,0 = 2. Thus we have

detH = (h1,1(T 3)h2,2(T 3)− h2,1(T 3)Th1,2(T 3)T 2)h3,3(T 3)

≡ h2,1,0h
σ
1,2,0h3,3,1T

6 mod (2, T 7)

= T 6 + · · ·+ 8 by Theorem 9.

This means that h3,3,1 is a unit, which gives us a 1-dimensional
summand of F of height 3 as desired.

• For C(3, 2) (where g = 7 and m = 16), the set of indices is

{1, 2, 3, 4, 5, 9, 10} ,
and one of the orbits in Z/(16) under multiplication by 3
is

{15, 13, 7, 5} .
The fact that our index set contains a single element in
this orbit leads (by an argument similar to the above) to a
1-dimensional summand of height 4.
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