NAME (please print legibly): __
Your University ID Number: __
Circle your Instructor’s Name along with the Lecture Time:

Mike Gage (10 MWF) Carl Mueller (9 MWF)

• Calculators are NOT allowed on this exam, but you do not have to simplify numerical answers; for example $\pi \sqrt{5}$ or even $34g\sqrt{5}$ joules ($g = 9.8\, m/sec^2$) are acceptable answers.

• Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.

• Please put your final answers in the spaces provided.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Find the length of the curve

\[y = \int_0^x \sqrt{t^2 - 1} \, dt \]

for \(x \) between 1 and 4.

ANSWER: ________________________________

2. (10 points)

(a) Specify all of the values of \(p \) such that

\[\int_0^1 \frac{1}{x^p} \, dx < \infty \]

ANSWER: ________________________________

(b) Specify all of the values of \(p \) such that

\[\int_1^\infty \frac{1}{x^p} \, dx < \infty \]

ANSWER: ________________________________
3. (15 points)

(a) Which of the following integrals is larger? To get full credit, you must give a reason.

\[\int_0^1 \frac{1}{x^2} \, dx \quad \int_0^1 e^{x^2} \, dx \]

ANSWER:

(b) Determine whether

\[\int_0^1 \frac{e^{x^2}}{x^2} \, dx \]

is finite or infinite. To receive full credit, you must give a reason.

ANSWER:

3
4. (10 points)

Find the surface area obtained by rotating the following curve about the y-axis.

\[y = \frac{1}{3}(x^2 + 2)^{3/2} \quad 1 \leq x \leq 2 \]

ANSWER:

\[\]
5. (10 points)

Determine \(\frac{dy}{dx} \) for the parametric curve

\[
x = \cos t - \sin 3t \quad y = \sin t + \cos 2t.
\]

Express your answer as a function of \(t \).
6. (15 points)

(a) Sketch the region contained inside the two curves

\[r = 2 \quad \text{and} \quad r = 4 \cos \theta. \]

(b) Set-up, but do not evaluate, an integral to compute the area of the region in part (a).

ANSWER: __

6
7. (20 points) Match a parametric equation to each of the four graphs below by placing the number for the correct equation in the lettered blank.

A: ______________________ B: ______________________

C: ______________________ D: ______________________

1. $x = \cos(t)$
 $y = \cos(2t)$
 8. $x = t + \sin t$
 $y = \cos t$

2. $x = \cos(t)$
 $y = \sin(2t)$
 9. $x = t + \sin t$
 $y = \cos(t) + 1$

3. $x = \cos(t)$
 $y = \sin(3t)$
 10. $x = t + \sin t$
 $y = \cos(t) + t$

4. $x = \cos(t)$
 $y = \sin(4t)$
 11. $x = 3 \cos(t) + 2$
 $y = 2 \sin(t) - 1$

5. $x = t \cos(t)$
 $y = t \sin(t)$
 12. $x = 3 \cos(t) - 2$
 $y = 2 \sin(t) + 1$

6. $x = e^{t/10} \cos(t)$
 $y = e^{t/10} \sin(t)$
 13. $x = 2 \cos(t) + 3$
 $y = -\sin(t) + 2$

7. $x = e^{-t/10} \cos(t)$
 $y = e^{-t/10} \sin(t)$