A power series provides an important new way to define a function. (Polynomials and quotients of polynomials are the most basic ways to define functions.)

It turns out that most known functions can be defined using a power series. The Taylor series formula tells how to discover the power series which defines a function by calculating the higher derivatives of the function. If just the first few terms of this series are used, then this Taylor polynomial can be used to calculate the values of a function to a certain accuracy. The error can be estimated to insure that the accuracy is sufficient (e.g. at least 8 places of accuracy for most calculators).

While the basic facts about power series, there are some subtleties that take a while to absorb. This workshop is designed to help.

1. Domains and radius of convergence. In what ways are \(f(x) = \frac{1}{1-x} \) and \(g(x) = 1 + x + x^2 + x^3 \ldots \) the same function? Consider \(f(1/2) \) and \(g(1/2) \) and also \(f(2) \) and \(g(2) \). A function is a rule or procedure for producing a unique output from an input together with a set of allowable inputs (the domain). Two functions are equal if their domains are equal and the same inputs produce the same outputs.

2. The purpose of this question is to justify why a power series \(\sum c_n x^n \) converges on an open interval \(x \in (-R, R) \), which can be written as \(|x| < R \), and diverges on \(|x| > R \).

(a) Thinking of the ratio test, let \(a_n = c_n x^n \) and suppose \(|c_{n+1}/c_n| \rightarrow M \). What is the radius \(R \)?

(b) Now suppose that \(|x| > R \). What can you say about the size of the term \(|c_n x^n| \) for large values of \(n \)? Does this help to explain the convergence of the power series for \(|x| < R \)?
(c) For $|x| < R$, what can you say about the size of $c_n x^n$? Does this help to explain the convergence of the power series for $|x| < R$?

3. If you use the first 5 terms (up to x^4) to estimate $e^{-0.5}$ how accurate is the result? (There are two estimates of the accuracy that you can use in this case.) How accurately does this polynomial represent e^x on the range of x between -0.5 and 0.5? What’s the worse case?

4. If you use the first five terms on what range of x is the accuracy better than 10^{-5}?

5. How many terms do you need to use to ensure that the accuracy is better than 10^{-5} for all x between -0.5 and 0.5?

6. Calculate the Taylor series of $f(x) = x^2 e^x$. What’s the fastest technique for doing this? What is the easiest way to determine the 5th derivative of f at $x = 0$?

7. Determine the first 8 terms of the Taylor series for $g(x) = \frac{1}{(1+x)^2}$. What is the eighth derivative of $xg(x)$ at $x = 0$?