Goals:
(1) Learn to visualize graphs from polar equations
(2) How do parameters affect polar graphs?

Preface Try first to sketch the graphs by hand, then check them on a calculator or on xFunctions or with each other.

Problem 1.
What shapes occur for each of the following?
For $0 \leq \theta \leq 2\pi$
(1) $r = 1$
(2) $r = 2$
(3) $r = 1/3$
(4) $r = c$ for some constant $c > 0$
(5) $r = 0$
(6) Suppose that $\theta = \pi/4$ and let r vary.

Problem 2. For $0 \leq \theta$
(1) $r = \theta$
(2) $r = 2\theta$
(3) $r = -\theta$
(4) $r = a\theta$ for some constant a.
(5) What is true about successive intersections of this curve with the x axis?

Problem 3. For $0 \leq \theta \leq 2\pi$
(1) $r = \theta + 1$
(2) $r = \theta + \pi$
(3) $r = \theta + b$ for some constant b
(4) There are two different interpretations of each of these modifications – what are they?

Problem 4. What kind of figures are represented by $r = ae^{\theta+b}$
What is the interpretation of increasing a? what is the interpretation
of changing \(b \)? What can you say about successive crossings of the \(x \) axis?

Problem 5. Internet search (for after workshops) – what are the names of the figures in 3 and in 4? Which one is related to the nautilus shell?

Problem 6. For \(0 \leq \theta \leq 2\pi \)

(1) \(r = \sin \theta \)

(2) \(r = 2 \sin \theta \)

(3) \(r = a \sin \theta \) for some constant \(a > 0 \). What if \(a < 0 \)?

(4) \(r = 1 + \sin(\theta) \)

(5) \(r = 2 + \sin(\theta) \)

(6) \(r = 1/2 + \sin(\theta) \)

(7) \(r = a + b \sin(\theta) \)

(8) What happens if you \(\sin \theta \) by \(\cos \theta \)?

(9) What happens if you replace \(\theta \) by \(\theta + c \)? How is this related to the item above?

(10) Can you make any general statements about changing \(r = f(\theta) \) by \(r = f(\theta + c) \). Consider problem 3.

Problem 7. Consider the function \(r = \frac{\sin(\theta)}{n} + 1 \) for \(n > 1 \). What is the area of this region? What happens to the area as \(n \) goes to infinity?. Does this make sense visually?

Problem 8. For \(0 \leq \theta \leq 2\pi \)

(1) \(r = \sin(2\theta) \)

(2) \(r = \sin(4\theta) \)

(3) \(r = \sin(3\theta) \)

(4) \(r = \sin(5\theta) \)

(5) Describe \(r = \sin(n\theta) \) for integers \(n > 0 \).

(6) What new function would you use to obtain this last graph rotated by by an angle of \(\pi/6 \) radians? Is that clockwise or counter-clockwise?

Web reference http://mathworld.wolfram.com/topics/PolarCurves.html