HISPANOLA

150 miles

10 points
250 miles
20 points
320 miles
40 points
400 miles

MATH 162 10-9-09
How to measure the length of a curve

\[y = f(x) \quad a \leq x \leq b \]

Total length of line segments approximates the length of the curve.
\[\Delta s = \text{length of line} \]

\[\Delta s = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \Delta x \]

Want to take limit as \(\Delta x \to 0 \)

We get

\[s = \int_a^b \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \]

length of curve from \((a, f(a))\) to \((b, f(b))\)
$S = \int_a^b \sqrt{1 + (y')^2} \, dx$

This integral can be \textit{NASTY}

e.g. $y = x^3$, $y' = 3x^2$

$S = \int_a^b \sqrt{1 + 9x^4} \, dx$

This integral cannot be expressed in terms of \textit{familiar functions}.

Similar thing happens with an ellipse
Find the arc length of curve of radius $y = \sqrt{m^2 - x^2}$, $0 \leq x \leq m$

We know the length is

$$s = \int_0^m \frac{m \, dx}{\sqrt{m^2 - x^2}}$$

$$y' = \frac{1}{\sqrt{m^2 - x^2}}$$

$$1 + (y')^2 = 1 + \frac{x^2}{m^2 - x^2}$$

$$s = \int_0^m \frac{m \, dx}{\sqrt{m^2 - x^2}}$$
\[S = \int_0^m \frac{mdx}{\sqrt{m^2 - x^2}} \]
\[= \pi \int_0^{\pi/2} \frac{m \cos \theta \, d\theta}{\sqrt{m^2 - m^2 \sin^2 \theta}} \]
\[= m \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - \sin^2 \theta}} \]
\[= m \cdot \frac{\pi}{2} \text{ CORRECT} \]
Find the arc length of the parabola $y = x^2$ between $(0,0)$ and $(2,4)$.

- Blue line has length $2\sqrt{5} \approx 4.472$.
- Red lines have lengths $\sqrt{2} + \sqrt{10} \approx 4.576$.

$(0,0)$ $(2,4)$
\[y = x^2 \quad y' = 2x \quad 1 + y'^2 = 1 + 4x^2 \]

\[S = \int_0^2 \sqrt{1 + 4x^2} \, dx \]

\[= \int_0^\frac{\arctan 4}{2} \sec^3 \theta \, d\theta \]

\[x = \frac{\tan \theta}{2} \]

\[dx = \frac{\sec^2 \theta \, d\theta}{2} \]

\[\theta = \arctan 2x \]

\[\sqrt{1 + 4x^2} = \sec \theta \]
\[I = \int \sec^3 \theta \, d\theta \]

\[= \sec \theta \tan \theta - \int \sec \theta \sec^2 \theta \, d\theta \]

\[= \sec \theta \tan \theta - \int \sec \theta (\sec^2 \theta - 1) \, d\theta \]

\[= \sec \theta \tan \theta - \int \sec^3 \theta \, d\theta + \int \sec \theta \, d\theta \]

\[= \sec \theta \tan \theta - I + \ln |\sec \theta + \tan \theta| + C \]
\[2I = \sec \theta \tan \theta + \ln | \sec \theta + \tan \theta | + C \]
\[I = \frac{\sec \theta \tan \theta + \ln | \sec \theta + \tan \theta |}{2} + C \]
\[S = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec \theta \tan \theta \, d\theta \]
\[= \frac{\sec \theta \tan \theta + \ln | \sec \theta + \tan \theta |}{4} \bigg|_{0}^{\frac{\pi}{4}} \]
\[= \frac{4}{\sqrt{17}} + \ln \left(\frac{4 + \sqrt{17}}{4} \right) - 0 \]