WW 14.1 Find MacLaurin Series for \(\ln(1-x^2) \). We know \(\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \). Replace \(x \) by \(-x^2\) and get \(\ln(1-x^2) = \sum (-1)^{n+1} (-x^2)^n = -x^2 + \frac{x^4}{2} - \frac{x^6}{3} + \ldots \).
What are the limits?

\[
\lim_{n \to \infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
\]

\[
\lim_{n \to \infty} c_n = \sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{\pi^3}{36}
\]

\[
\lim_{n \to \infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^5} = \frac{\pi^5}{450}
\]
Recall

Taylor series for \(f(x) \) cut at \(a \) is

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n
\]

You choose \(a \). For \(a = 0 \) this is the MacLaurin series.

The Taylor polynomial is

\[
T_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k
\]

The remainder is

\[
R_n(x) = f(x) - T_n(x) = \text{with Taylor remainder}
\]
Taylor's inequality

Suppose we know:

\[|f^{(n+1)}(x)| < M \quad \text{for} \quad |x-a| < d \]

Then:

\[|R_n(x)| < \frac{M |x-a|^{n+1}}{(n+1)!} \quad \text{for} \quad |x-a| < d \]

Example: Consider \(f(x) = e^x \) for

\[|x| < 0.1, \quad n = 3 \]
\[T_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \]

How close is this to \(e^x \)?

\[f^{(n)}(x) = e^x \]

\(f(0) = e = 2.718 \)

\(f(-1) = \frac{1}{e} = 0.368 \ldots \)

In this interval, \(0 < e^x < 2 \)

so we can take \(M = 2 \)
\[|R_3(x)| \leq \left| \frac{M(x)^4}{4!} \right| \quad \text{for } |x| < 1 \]

\[\leq \left| \frac{2 \times 10001}{24} \right| = \frac{100000833}{24} = 8.333 \times 10^{-6} \]

This means the difference between \(e^x \) and \(T_3(x) \) is smaller than \(10^{-6} \).

Test this for \(x = -1 \)
\[T_3(\eta) = 1 + \eta 1 + \frac{\eta(\eta - 1)}{2} + \frac{\eta(\eta - 1)(\eta - 2)}{6} \]

\[= 1.105166667 \]

\[C^{-1} = 1.105170918 \]

\[\text{difference} \approx 4.252 \times 10^{-6} \]

For \(\eta = -1 \)

\[T_3(-1) = 1 - 1 + \frac{0!}{2} - \frac{0!}{6} \]

\[= 1 - 0.483333318 \]
\[c^{-1} = 0.4837418 \]

difference = \(4.08 \times 10^{-6} \)

\[g(x) = x^m \quad x = x - \frac{x^3}{3!} \quad n = 4 \]
\[d = 1 \]

\[T_3(x) = x - \frac{x^3}{3!} \]

\[f^{(5)}(x) = \cos \]

\[|f^{(5)}(x)| \leq M \]

Estimate \(\sin x \) using Taylor's inequality.
\[R_n(x) < \left| \frac{M(x-a)^5}{5!} \right| = \frac{0.00001}{120} \]

\[= 8.33 \times 10^{-8} \]

\[x = n \]

\[T_n(\lambda) = n! - 0.001 \approx 0.9983333 \]

\[\sin(\lambda) = 0.998334166 \]

\[\text{diff} = 8.33 \times 10^{-8} \]