Part A
1. (10 points)

A circular swimming pool has a diameter of 24 ft., the sides are 5 ft. high, and the depth of the water is 4 ft. How much work is required to pump all of the water out over the side? (Use the fact that water weighs 62.5 lb/ft\(^3\).)

Solution:

Let \(y \) be the vertical distance from the top of the pool. In this problem it ranges from 1 to 5. The work required to lift the layer of water at distance \(y \) over the top is \(W = F \cdot y \Delta y \), where \(\Delta y \) is the thickness of the layer. Then \(F = 62.5 \cdot 5 \cdot V \), where \(V \) is the volume of the layer, which is \(\pi \cdot 12^2 \cdot \Delta y \). Now the work required to pump all the water out is given by:

\[
W = \int_{1}^{5} \pi \cdot 12^2 \cdot 62.5 \cdot y \, dy \\
= \pi \cdot 12^2 \cdot 62.5 \cdot \frac{y^2}{2}\bigg|_{1}^{5} \\
= \pi \cdot 12^2 \cdot 62.5 \cdot \left(\frac{25}{2} - \frac{1}{2}\right) \\
= \pi \cdot 12^3 \cdot 62.5 \, \text{ft-lb} \\
= 108,000 \pi \, \text{ft-lb}
\]

2. (10 points)

Find the definite integral

\[
\int_{0}^{\frac{\pi}{2}} x \cos(2x) \, dx
\]

Solution: We use integration by parts with

\[
\begin{align*}
 u &= x & dv &= \cos(2x) \, dx \\
 du &= dx & v &= \frac{\sin(2x)}{2}
\end{align*}
\]
so

\[
\int_0^\pi x \cos(2x) \, dx = \left. \frac{x \sin(2x)}{2} \right|_0^\pi - \int_0^\pi \frac{\sin(2x)}{2} \, dx
\]

= \left. 0 - \frac{\cos(2x)}{4} \right|_0^\pi

= \frac{1}{2}
3. (10 points)

Solve this integral:

\[\int \frac{\sqrt{9 - x^2}}{x^2} \, dx \]

We use the substitution \(x = 3 \sin \theta \), so that \(dx = 3 \cos \theta d\theta \) and \(\sqrt{9 - x^2} = 3 \cos \theta \). Then

\[
\int \frac{\sqrt{9 - x^2}}{x^2} \, dx = \int \frac{3 \cos \theta}{9 \sin^2 \theta} \cdot 3 \cos \theta d\theta = \int \frac{\cos^2 \theta}{\sin^2 \theta} d\theta = \int \cot^2 \theta d\theta = \int (\csc^2 \theta - 1) d\theta = -\cot \theta - \theta + C
\]

Drawing a triangle, we see that \(-\cot \theta - \theta + C\) reduces to

\[-\frac{\sqrt{9 - x^2}}{x} - \arcsin(x/3) + C\]

4. (10 points)

Evaluate this integral:

\[\int \frac{1}{x^2 + x} \, dx \]

We use partial fractions:

\[
\frac{1}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}
\]

Adding the fractions on the right side of the equation and comparing numerators we obtain:

\[1 = A(x + 1) + Bx, \]

and it follows that \(A = 1 \) an \(B = -1 \). So the integral becomes

\[
\int \left(\frac{1}{x} - \frac{1}{x+1} \right) \, dx = (\ln |x| - \ln |x + 1|) + C
\]
5. (10 points)

(a) Does the series \(\sum_{n=1}^{\infty} \frac{\ln n}{n} \) converge or diverge? Why?

(b) Does the series \(\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4} \) converge or diverge? Why?

Solution (a): The function \(f(x) = \frac{\ln x}{x} \) is positive, continuous and decreasing (look at derivative!) for \(x > 1 \) Thus we can apply the integral test

\[
\int_{1}^{\infty} \frac{\ln x}{x} \, dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\ln x}{x} \, dx = \lim_{t \to \infty} \left[\frac{(\ln x)^2}{2} \right]_{1}^{t} = \lim_{t \to \infty} \frac{(\ln t)^2}{2} = \infty
\]

Since this improper integral is divergent, the series is also divergent.

Solution (b): The general term of the series is \(a_n = \frac{n^2}{5n^2 + 4} \). Then:

\[
\lim_{n \to \infty} \frac{n^2}{5n^2 + 4} = \lim_{n \to \infty} \frac{1}{5 + 4/n^2} = \frac{1}{5} \neq 0
\]

Thus, the series diverges by the Divergence Test.

6. (10 points) Find all \(x \) for which the following power series converges, i.e. find the interval of convergence:

\[
\sum_{n=1}^{\infty} \frac{-1^n}{n+1} (x + 1)^n
\]

Solution: We use the Ratio Test:

\[
\lim_{n \to \infty} \left| \frac{-1^{n+1}}{n+2} (x + 1)^{n+1} \right| = \frac{1}{n+2} \lim_{n \to \infty} |x + 1| \frac{n+1}{n+2}
\]

\[
= |x + 1| \lim_{n \to \infty} \frac{1 + 1/n}{1 + 2/n}
\]

\[
= |x + 1|
\]

Since the series converges for \(|x + 1| < 1\), the radius of convergence is 1. We still have to test the endpoints:

When \(x = 0 \), the series becomes

\[
\sum_{n=1}^{\infty} \frac{-1^n}{n+1}
\]
which converges by the Alternating Series Test. When $x = 2$, the series becomes

$$\sum_{n=1}^{\infty} \frac{-1^n}{n+1} \cdot (-2)^n$$

This is a divergent series. You can see this by the Divergence Test or by limit comparison to a harmonic test.

Therefore, the interval of convergence for this series is $(-2, 0]$.

Part B
7. (10 points)

The power series for e^{-x^2} is given by

$$e^{-x^2} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!}$$

$$= 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6} + \frac{x^8}{24} + \cdots$$

Use this to get the power series for the area under the bell curve,

$$f(x) = \int_{0}^{x} e^{-t^2} \, dt.$$

You can either use summation notation or write down the first 5 non-zero terms.

Solution: Integrating the given series term by term gives

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{n!(2n+1)}$$

$$= x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \frac{x^9}{216} + \cdots$$
8. (10 points)

(a) Find $T_3(x)$, the third degree Taylor polynomial for $f(x) = \sqrt{x}$ at $x = 4$.

(b) Use Taylor’s inequality to find the largest integer k such that the error when $T_3(x)$ is used as an approximation for $f(x)$ on the interval $4 \leq x \leq 5$ is less than 10^{-k}.

Solution (a): We should first compute four derivatives and their values at $a = 1$:

\[
\begin{align*}
 f(x) &= x^{1/2} \quad f(4) = 2 \\
 f'(x) &= \frac{1}{2}x^{-1/2} \quad f'(4) = \frac{1}{4} \\
 f''(x) &= -\frac{1}{4}x^{-3/2} \quad f''(4) = -\frac{1}{32} \\
 f'''(x) &= \frac{3}{8}x^{-5/2} \quad f'''(4) = \frac{3}{256} \\
 f^{(4)}(x) &= -\frac{15}{16}x^{-7/2} \quad f^{(4)}(4) = -\frac{15}{2024}
\end{align*}
\]

Thus

\[
T_3(x) = 2 + \frac{x - 4}{4} - \frac{(x - 4)^2}{32 \cdot 2!} + \frac{3(x - 4)^3}{256 \cdot 3!} - \frac{15(x - 4)^4}{512}
\]

Solution (b): Notice that $4 \leq x \leq 5$ means that $|x - 4| \leq 1$. Also, since $|f^{(4)}(x)| = \frac{15}{16x^{7/2}}$, we know that

\[
|f^{(4)}(x)| \leq \frac{15}{16 \cdot 4^{7/2}} = \frac{15}{1024},
\]

on the interval $4 \leq x \leq 5$. Thus, by Taylor’s Inequality, we have:

\[
|R_3(x)| \leq \frac{15}{1024 \cdot 4} \cdot |x - 1|^4
\]

\[
\leq \frac{15}{24 \cdot 1024}
\]

\[
< 10^{-3}
\]
9. (10 points) (a) Write the general formula for the Taylor series of a function \(f(x) \) at \(a \) (or “about \(a \)” or “centered at \(a \)”).

(b) Write the Taylor series of \(f(x) = e^{2x} \) at \(a = 1 \). You can either use summation notation or write down the first 5 non-zero terms.

Solution: (a) The general formula is

\[
\sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^n}{n!}
\]

(b) For \(f(x) = e^{2x} \), the \(n \)th derivative is \(f^{(n)}(x) = 2^n e^{2x} \), so \(f^{(n)}(1) = 2^n e^2 \) and the series is

\[
\sum_{n=0}^{\infty} f^{(n)}(1) \frac{(x-1)^n}{n!} = e^2 \sum_{n=0}^{\infty} \frac{2^n(x-1)^n}{n!}
\]

\[
= e^2 + 2e^2(x-1) + \frac{4e^2(x-1)^2}{2!} + \frac{8e^2(x-1)^3}{3!} + \frac{16e^2(x-1)^4}{4!} + \ldots
\]

\[
= e^2 + 2e^2(x-1) + 2e^2(x-1)^2 + \frac{4e^2(x-1)^3}{3} + \frac{2e^2(x-1)^4}{3} + \ldots
\]

10. (10 points) Consider the cycloid defined by the parametric equations

\[
x = 2(t - \sin t) \quad \text{and} \quad y = 2(1 - \cos t)
\]

for \(0 \leq t \leq 2\pi \).

(a) For which values of \(t \) is the tangent line vertical? Find the corresponding points.

(b) For which values of \(t \) is the tangent line horizontal? Find the corresponding points.

Solution: We have

\[
\frac{dx}{dt} = 2(1 - \cos t) \quad \text{and} \quad \frac{dy}{dt} = 2 \sin t
\]

(a) The tangent line is vertical when \(\frac{dx}{dt} = 0 \) and \(\frac{dy}{dt} \neq 0 \), i.e. when \(\cos t = 1 \), which means \(t = 0 \) or \(2\pi \) so \((x, y) = (0, 0)\) or \((4\pi, 0)\).

(b) It is horizontal when \(\frac{dy}{dt} = 0 \) and \(\frac{dx}{dt} \neq 0 \), i.e. when \(\sin t = 0 \) but \(\cos t \neq 1 \). This happens when \(t = \pi \) and \((x, y) = (2\pi, 4)\).
11. **(10 points)** Find the length of the cycloid of the previous problem for $0 \leq t \leq \pi$.

Hint: Use the half angle formula $\sin(\theta/2) = \sqrt{(1 - \cos \theta)/2}$.

Solution:

We have

$$
\left(\frac{dx}{dt} \right)^2 = (2(1 - \cos t))^2 = 4 - 8 \cos t + 4 \cos^2 t
$$

and

$$
\left(\frac{dy}{dt} \right)^2 = (2 \sin t)^2 = 4 \sin^2 y
$$

so

$$
\sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} = \sqrt{4 - 8 \cos t + 4 \cos^2 t + 4 \sin^2 t}
$$

$$
= \sqrt{8 - 8 \cos t}
$$

$$
= 4 \sqrt{(1 - \cos t)/2}
$$

$$
= 4 \sin(t/2).
$$

It follows that the arc length is

$$
L = 4 \int_0^\pi \sin(t/2) dt
$$

$$
= 8 \int_0^{\pi/2} \sin(u) du \quad \text{where } u = t/2 \text{ and } dt = 2 du
$$

$$
= 8.
$$
12. (10 points)

Find the area of the surface obtained rotating the semicircle \(y = \sqrt{25 - x^2}, 3 \leq x \leq 4, \) about the x-axis.

Solution: Let \(f(x) = \sqrt{25 - x^2}, \) so

\[
\begin{align*}
 f'(x) &= \frac{x}{\sqrt{25 - x^2}} \\
 1 + f'(x)^2 &= 1 + \frac{x^2}{25 - x^2} = \frac{25}{25 - x^2} \\
 \sqrt{1 + f'(x)^2} &= \frac{5}{\sqrt{25 - x^2}}
\end{align*}
\]

Then the surface area is

\[
S = \int_{3}^{4} 2\pi f(x)\sqrt{1 + f'(x)^2} \, dx
\]

\[
= \int_{3}^{4} 2\pi 25 - x^2 \frac{5}{\sqrt{25 - x^2}} dx
\]

\[
= 10\pi \int_{3}^{4} dx
\]

\[
= 10\pi.
\]

13. (10 points)

Find the area enclosed by the 8-leafed rose defined by \(r = \sin 4\theta \) for \(0 \leq \theta \leq 2\pi. \)

Solution: Using the area formula for polar curves, we get

\[
A = \frac{1}{2} \int_{0}^{2\pi} \sin^2 4\theta d\theta
\]

\[
= \frac{1}{2} \int_{0}^{2\pi} \frac{1 - \cos 8\theta}{2} d\theta
\]

\[
= \frac{1}{32} \int_{0}^{16\pi} \frac{1 - \cos u}{2} du \quad \text{where } u = 8\theta \text{ and } d\theta = du/8
\]

\[
= \frac{\pi}{2}.
\]