Definitions you should know:

Group

- Abelian gp: structure thin abelian gp
- Finitely generated ab gp
- Normal subgp + quotient gp
- A_n = alternating
- S_n = symmetric gp
- D_{2n} = dihedral gp of order $2n$

(Also known as D_m)

Simple gp e.g. $\mathbb{Z}/p\mathbb{Z}$ for p prime

A_n for $n \geq 5$
Center of a group \(Z(G) \)

Commutator subgroup \([G,G] \)

Lagrange Theorem: If \(H \) is a subgroup of a finite group \(G \), then \(|H| \) (order of \(H \)) divides \(|G| \).

A G-set \(X \) is a set on which the group \(G \) acts, for each \(g \in G \) we get a map \(a(g) : X \to X \) such that \(a(gh) = a(g) \circ a(h) \), \(a(e) = \text{identity map on } X \). Each map \(a(g) \) is 1-1 and onto.
For \(g \in G \), \(X_g = \{ x \in X : a(g)(x) = x \} \)

= elements of \(X \) fixed by \(g \).

For \(H \subset G \), \(X_H = \{ x \in X : a(h)(x) = x \ \forall h \in H \} \)

= \(\bigcap_{h \in H} X_h \)

(also known as \(X^H \)).

For \(x \in X \)

\(C_x = \{ g \in G : a(g)(x) \} \subset G \)

= isotropy group of \(x \).
Stabilizers

To elements of X are in the same orbit if $a(g)(x) = x'$ for some $g \in G$.

When X is finite we can count orbits using Burnside's formula for G finite:

$$\# \text{ of orbits} = \frac{1}{|G|} \sum_{g \in G} |X_g|$$

Symmetry groups for geometric objects:

- Cube or octahedron $S_4 \times A_4$
- Tetrahedron A_4
Triangular prism
Dodecahedron or icosahedron
Know about conjugacy classes in A_n and S_n. This involves cycle decompositions of permutations.

Sylow Theorems

1) G is a finite group, p is a prime dividing $|G|$
2) $|G| = s p^n$ where $p \nmid s$.
3) G has a subgroup of order p^n
2) Any 2 such subgroups are congruent and hence isomorphic.

3) The # of such subgroups divides n and is $\equiv 1 \mod p$.

Thm 37.7 Let $|G| = pq$ where p and q are distinct primes with $p < q$.

\Rightarrow there is 1 subgroup of order q (hence it is normal).

\Rightarrow if $q \equiv 1 \mod p$ then there are either 1 or q subgroups of order q.

\Rightarrow if $q \not\equiv 1 \mod p$ then there is one.
The group of order p.

Con $q \neq 1$ mod p, $G \cong C_p$.

More definitions you should know:

- Ring
- Field
- Integral domain (every finite ID is a field)
- Ring of polynomials

Fermat's Little Theorem: For a prime p, $n^p \equiv n \mod p$ for any $n \in \mathbb{Z}$.
Reducible and irreducible polynomials.

Example: \[f(x) = x^4 + ax^3 + bx^2 + 1 \in \mathbb{Z}[x] \]

For which \(a \) and \(b \) is \(f(x) \) irreducible? If \(f(x) = \text{cubic} \circ \text{linear} \), then it has a zero \(n \). \(n \) must divide 1

\(m \) must be \(\pm 1 \)

\[f(1) = a + b + 2 \]

\[f(x) = (x-1)g(x) \quad \text{if} \; a + b = -2 \]

\[f(-1) = 2 - a + b \]

\[f(-1) = (x+1)g(x) \quad \text{if} \; a - b = 2 \]

If neither condition holds, then
$f(x)$ is either irreducible or a product of two quadratics

If $f(x) = (x^2 + (x+d))(x^2 + (x+f))$

$$= x^4 + (2x + d + f)x^3 + (d+f)(x^2 + (d+f)x + df)$$

$$= x^4 + (2x + d + f)x^3 + (d+f)x^2 + (d+f)x + df$$

$$= x^4 + ax^3 + bx^2 + cx + 1$$

Hence $df = 1$ so $a = b = \pm 1$

$0 = de + cf = \pm (e+c)$ so $e = -c$

$b = d+f + ec = \pm 2 - c^2$

$a = e+c = 0$

CONCLUSION
$b(x)$ is irreducible unless

\[a + b = -2 \]

or \[a - b = 2 \]

or \[a = 0 \] and \[b = \pm 2 - c^2 \]

Other definitions:

- ideal
- maximal
- prime
- principal

uniquer factorization domain
ring / maximal ideal = field
ring / prime ideal = integral domain

A domain D has a field of quotients F

$F = \text{set fractions with numerators } + \text{denominators}$
in \(\mathbb{D} \)

\[
\mathbb{D} = \mathbb{Z} \quad \mathbb{F} = \mathbb{Q}
\]

\[
\mathbb{D} = \mathbb{Z}[x] \quad \mathbb{F} = \text{rational functions}
\]

where \(p(x), q(x) \in \mathbb{Z}[x] \)
g(x) ≠ 0