1. (20 points) You are painting cubic blocks and you have \(n \) colors to choose from for each of the 6 faces. How many distinguishable blocks can be made in this way? How big does \(n \) have to be in order to get at least 100 distinguishable blocks?

2. (20 points) Determine the number of subgroups of order 3 in
 a. \(C_{27} \times C_{27} \)
 b. \(C_9 \times C_9 \times C_9 \)
 c. \(C_3 \times C_3 \times C_3 \times C_3 \)

3. (20 points) Describe a nonabelian group of order 57. \textit{Hint:} Consider the group of \(2 \times 2 \) matrices (under multiplication) of integers modulo 19 of the form
 \[
 \begin{bmatrix}
 a & b \\
 0 & 1
 \end{bmatrix}
 \]
 with \(a \neq 0 \).

4. (20 points) Let \(X \) be the set of ordered triples \((i, j, k)\) where \(i \) and \(j \) are integers ranging from 1 to 4. Let the symmetric group \(S_4 \) act on this set by permuting the integers in the usual way. Describe the orbits of this \(S_4 \)-set. You do not need Burnside’s formula for this.

5. (20 points) How many Sylow 3-subgroups can a finite group \(G \) have if its order is
 (a) 21
 (b) 39
 (c) 51
 (d) 90