Math 236H
Final exam
May 4, 2010

Be sure to write your name on your bluebook. Use a separate page (or pages) for each problem. Show all of your work.

1. (10 points) Let \(f(x) = x^4 + 7x^2 + rx + 1 \in \mathbb{Z}[x] \). For which integers \(r \) is \(f(x) \) irreducible? Prove your answer.

2. (10 points) Prove that in a finite \(G \)-set \(X \), if \(g \) and \(g' \) are conjugate elements in \(G \), then their fixed point sets \(X_g \) and \(X_{g'} \) have the same cardinality.

3. (15 points) You are painting blocks that are shaped like regular tetrahedra. Each block has four triangular faces. You have \(n \) colors to choose from for each of the 4 faces. Use Burnside’s formula to determine the number of distinguishable blocks that can be made in this way. How big does \(n \) have to be in order to get 50 distinguishable blocks?

4. (15 points) Prove that every finite integral domain \(D \) is a field.

5. (15 points) Recall that the third Sylow theorem says that if \(|G| = ps \) where \(p \) is prime and does not divide \(s \), then the number \(k_p \) of subgroups of order \(p \) divides \(s \) and is congruent to 1 modulo \(p \). Use it to prove that every group \(G \) of order 665 = 5 \cdot 7 \cdot 19 is cyclic.

6. (10 points) Find the largest integer \(m \) which divides \(n^{13} - n \) for all integers \(n \).

7. (15 points) Let \(G \) be \(C_{30} \) (the cyclic group of order 30) and let \(a \) be a generator (so \(G = \langle a \rangle \)) and let \(e \in G \) be the identity element.

(a) list all elements of \(G \) of order 30.
(b) list all elements of \(G \) of order 10.
(c) list all elements of \(G \) of order 6.
(d) list all elements of \(G \) of order 5.
(e) list all elements of \(G \) of order 4.
(f) list all other elements of \(G \).

8. (10 points) Let \(G \) be a finite group with a subgroup \(H \) such that \(|G| = 2|H| \).

(a) Prove that if \(a \in G \) is not in \(H \), then \(a^2 \in H \). (Hint: it suffices to show that \(a^2H \neq aH \).)
(b) Prove that if \(a \) is not in \(H \), then the order \(a \) is even. (Hint: Show that \(a^n \) is not in \(H \) for any odd integer \(n \).)

9. (10 points) Find all primes \(p \) such that \(x + 5 \) is a factor of \(f(x) = x^4 + x^2 + 1 \) in \(\mathbb{Z}/p[x] \).
10. (15 POINTS) Prove that the symmetric group S_4 is generated by the three transpositions (12), (13) and (14).

11. (15 POINTS) Let $p = 2s + 1$ be an odd prime bigger than 3 (so $s > 1$), and let

$$f(x) = \frac{x(x^s + 3p - 1)(x^s + 1)}{3p}.$$

Prove that $f(x)$ is an integer whenever x is.

12. (15 POINTS) List the even permutations of order 2 in S_4 and say how many there are in S_5 and S_6.

13. (10 POINTS) Prove that the intersection of two normal subgroups of G is a normal subgroup.

14. (10 POINTS) Determine the number of elements of order 4 in

 a. $C_8 \times C_8$

 b. $C_4 \times C_4 \times C_4$

15. (10 POINTS) Prove that if n is an odd integer, then $n^2 \equiv 1$ modulo 8 and $n^4 \equiv 1$ modulo 16.