Warning: In characteristic, \(f'(x) = 0 \) does not mean \(f(x) = \text{const.} \).

For example, \(f(x) = x^{1/p} + 1 \):

\[
f'(x) = p x^{1/p - 1} = 0
\]

If \(f(x) = g(x^p) \) then:

\[
f'(x) = g'(x^p) \cdot px^{p-1} = 0
\]

Proof of 12.1.4: From 10.4.6 we know that \(f(x) \) no repeated root.
if it has no root in common with $f'(x)$

Since

\[f(x) = (x-a)^2 g(x) \]

\[f'(x) = 2(x-a)g(x) + (x-a)^2 g'(x) \]

\[= (x-a)(2g(x) + (x-a)g'(x)) \]

\[\alpha \text{ is a root of both } f \text{ and } f' \]

\[\Rightarrow \text{ if } f'(x) = 0 \text{ then every root of } f(x) \text{ is also a root of } f'(x). \text{ Hence } f(x) \text{ has a repeated root if its root is not exact.} \]
If \(f'(x) \neq 0 \) and \(x \) is a root of both \(f \) and \(f' \), then \((x-a)\) divides both of them. But \(\deg f' < \deg f \), so \(f \neq f' \) and the irreducibility of \(f \) means \(\gcd(f, f') = 1 \). But they are both divisible by \((x-a) \). This is a contradiction.

Hence \(f \) and \(f' \) do not have a common root and \(f \) is separable. QED
Proof of 12.1.6

1) In char 0, \(f'(x) \neq 0 \Rightarrow f(x) \) is not constant. But \(f(x) \) is not constant, so \(f'(x) \neq 0 \) and it is separable by 12.1.4.

2) \(\Rightarrow \) Assume \(f(x) = g(x^p) \) for some \(g(x) \in F[x] \). This means \(f'(x) = 0 \), so \(f(x) \) is not separable.

\(\Leftarrow \) If \(f(x) \neq g(x^p) \) then
\[f(x) = a_m x^m + \cdots + a_n x^n + \cdots + a_0 \]
for some i not div by p, $a_i \neq 0$.

$$f'(x) = \cdots \cdot a_i x^{i-1} + \cdots$$

$\not\equiv 0 \pmod{p}$

so $f(x)$ is separable by $12.1.4$

QED

Cor. 12.1.7 Every field of characteristic 0 is perfect.

Cor. 12.1.8 Every finite field is perfect.

Proof: Let \bar{F} be a finite field of
characteristic p case $f(x)$
is an irreducible polynomial
and $f(x) = g(x^p)$. We will show
this means $f(x)$ can be factored
Let $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$
$f(x) = g(x^p) = a_n x^{np} + a_{n-1} x^{np-1} + \ldots + a_0$
Let $a_i^* = b_{i/n}$ (We know the Frobenius
map in F is onto, so $\exists! b_i$ with
$b_{i/n} = a_i^*$)
f(x) = g(x^p) = b_n x^{np} + b_{n-1} x^{np-1} + \ldots + b_0
\[(b_n x^n - b_m x^m + \ldots + b_0)^k\]

so \(f(x)\) is not irreducible. QED

Hence the only non-perfect fields are infinite and have char \(p > 0\).

Def 12.1.12

1) Let \(E\) be a field. An
\(\phi : E \rightarrow E\) is an **automorphism** of \(E\).

2) For \(F \subseteq E\) is a subfield,
an F-automorphism of E is an automorphism that fixes F.

Thm 12.1.13. Let E/F.

1) The set $\text{Aut}(E)$ of automorphisms of E is a group under composition.

2) The set $\text{Aut}_F(E)$ of F-automorphisms is a subgroup.

You can prove this.

Def 12.1.14. The kernels of α of E/F in $\text{Aut}_F(E)$.
Examples $d = \text{square}$

E/T | Q | R | $\frac{\mathbb{F}_p}{\mathbb{F}_p} = \mathbb{Z}/p\mathbb{Z}$

$\text{Gal}(E/F)$ | C_2 | C_2 | C_n

$\text{Gal}(\mathbb{F}_p^n/\mathbb{F}_p)$ is generated by the

Frobenius map $\phi : x \mapsto x^p$

$\phi^n : x \mapsto x^{p^n}$

Example for later $F = \mathbb{Q}$

$E = \mathbb{Q}(\sqrt[3]{4}) = \mathbb{Q}(e^{2\pi i/n})$

$\text{Gal}(E/F) = ?$
Example \(F = \mathbb{Q} \), \(E = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) \)

\[
\text{Gal}(E/F) = C_2 \times C_2 \] is the Galois group of \(E/F \) as \(E \) is a splitting field of \(f(x) = x^3 - 2
\)

<table>
<thead>
<tr>
<th>(\sqrt{2})</th>
<th>(\sqrt[3]{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\sqrt{2})</td>
<td>(-\sqrt[3]{3})</td>
</tr>
<tr>
<td>(-\sqrt[3]{3})</td>
<td>(-\sqrt{3})</td>
</tr>
</tbody>
</table>

\(f(x) = x^3 - 2 \) is irreducible in \(\mathbb{Q} \), and \(E \) is a splitting field of \(f(x) \). The Galois group \(\text{Gal}(E/F) \) permutes the three roots of \(f(x) \).
Prop 12.10.16 \(F \subseteq E \) \(\phi \in \text{Gal}(E/F) \)

Then \(\phi(f(\alpha)) = f(\phi(\alpha)) \)

for \(\alpha \in E \), \(f(x) \in F[x] \).

e.g. \(\phi(x^2-7) = \phi(x)^2 - 7 \).

Case \(\phi(\alpha) = 0 \) then \(f(\phi(\alpha)) = 0 \)

Hence the Galois permutes the roots of any polynomial \(f(x) \in F[x] \).
Proposition 12.1.19 Let $E = F(x)$ and $\phi \in \text{Aut}(E/F)$.

Then ϕ is determined by $\phi(x)$.

Let $E = F(x_1, x_2, \ldots, x_n)$. Then ϕ is determined by $\{ \phi(x_i) \}$.

These follow from

Lemma 12.1.18 Let E be a finite extension of F with F-basis $\{ v_1, v_2, \ldots, v_n \}$. Then ϕ is determined by $\{ \phi(v_i) \}$.
Proof of Con: \(E \) has an \(F \)-basis consisting of monomials in the di.

Hence Lemma applies!

First day example:

\[
W = \frac{-1 + \sqrt[3]{-3}}{2}
\]

\[
E = \mathbb{Q}(\sqrt[3]{3}, \omega)
\]

\(E \) has an \(F \) basis:

\[
\{ 1, \sqrt[3]{3}, \sqrt[3]{4}, \omega, \omega^2, \omega^3 \sqrt[3]{4} \}
\]
We want to prove

Theorem 12.1.24 Let \(f(x) \in F[x] \) be separable with splitting field \(E \).

Then \(|\text{Gal}(E/F)| = [E : F]|.

\text{e.g. } F = \mathbb{Q}, E = \mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(\alpha)

where \(\alpha \) is a root of \(f(x) = x^3 - 2 \).

Thus \(E \) is not the splitting field of \(f(x) \). \(\text{Gal}(E/F) = \mathbb{Z}/3 \) but \([E : F] = 3\).
To prove 12.1.24 we need

Lemma 12.1.23 Let \(p(x) \in F[x] \) be an irreducible factor of \(f(x) \) with \(\alpha \) and \(\beta \). Then \(\exists \gamma \in \text{Gal}(E/F) \) with \(\gamma(\alpha) = \beta \).