Main Theorem (12.5.18) Let F be a field of char 0, $f(x) \in F[x]$, E the splitting field for $f(x)$, $G = \text{Gal}(E/F)$. Then the equation $f(x) = 0$ is solvable by radicals $\iff G$ is solvable.

Proof \Rightarrow Being solvable by radicals means that E is contained in K which is a radical extension.
of F.

Note: a radical extension need not be Galois, e.g. $\mathbb{Q}(\sqrt[3]{2}) = E$ is not a Galois extension of \mathbb{Q}, since the Galois group is trivial. If we adjoin cube roots of unity to F and E to get fields F' and E', then E' is a Galois extension of F' with Galois group C_3.
We have
\[F \xrightarrow{\text{radical}} E \xrightarrow{\text{radical}} K \]
Then \(\text{Gal}(E/F) = \text{Gal}(L/E)/\text{Gal}(L/F) \)
in solvable. QED for \(\Rightarrow \)

\[\Rightarrow \] Assume \(G = \text{Gal}(E/F) \) is solvable
Let \(n = |G| \). Let \(F' \) and \(E' \) be the fields obtained from \(F \) and \(E \)
by adjoining all nth roots of unity.

By 12.5.8, G' is isomorphic to a subgroup of G, and therefore solvable.

$\text{Rad}(F'/F) = \text{Rad}(E'/F)/\text{Rad}(E'/F')$

5/3/11 says that if $N \triangleleft G$ and
both H and G/H are solvable, then G is solvable. Hence $Gal(E'/F)$ is solvable.

We have a chain of subgroups

$$\mathfrak{End}^s = G_m \leq G_{m-1} \leq G_{m-2} \leq \cdots \leq G_1 = G'$$

with G_{i+1} is normal in G_i with $G_i/G_{i+1} = \mathfrak{F}_p$ for p prime with $p \mid m$. Using FTGT we get a chain of fields

$$F_1 = F_0 \leq F_1 \leq E \leq \cdots \leq F_m = E'$$
where each extension is cyclic of prime degree. Since E' contains pth roots of unity, each of these extensions is a simple radical one. Hence E' is a radical extension of F. Hence E' is a radical extension of F containing E. This means $f(x) = 0$ is solvable by radicals (QED).
For (D) we need

Theorem 12.5.16: Given F, E and K as above, we can find L with the indicated properties.

This can be derived from

Lemma 12.5.14

If the hypothesis with K a simple radical extension of E, same conclusion.
3. Cyclotomic extensions

Let \(\mathbb{Q} \subset K_n \) be a field obtained by adjoining all \(n \)th roots of unity.

1) \([K_n : \mathbb{Q}] = \phi(n)\)

 \[k \leq n \quad \text{with} \quad d \mid n \quad \text{and} \quad \gcd(k, n) = 1 \]

2) \(K_n\) is splitting field for

 \[\Phi_n(x) = \prod_{0 \leq k < n} (x - \zeta_m^k) \quad \text{where} \quad \zeta_m = e^{2\pi i / n} \]
If \(n = p^i \) then, \(\Omega(n) = (p-1) p^{i-1} \)

and \(\Phi_n(x) = \frac{x^{p^i} - 1}{x^{p^i-1} - 1} = 1 + x^{p^i-1} + x^{2(p^i-1)} + \ldots + x^{(p-1)p^{i-1}} \)

3) \(\Omega(n) = \left(\frac{\mathbb{Z}}{n} \right)^x \) multi group of units in the ring \(\mathbb{Z}/n \)

with \(S_n \rightarrow S_n \)

4) \(K_n \) is a radical extension of \(Q \).
Side notes

a) A regular \(n \)-sided polygon is constructible if with \(R + C \leq \n \) is a power of \(2 \).

\[\Phi(17) = 16 = 2^4 \]
\[\Phi(7) = 6 \neq 2^i \]

A heptagon is not constructible.

b) (?) A regular \(n \)-gon is constructible if

\[\Phi(n) = 2^i \cdot 3^j \]
c) "Sneakers theorem" due to Kronecker.

Let E be an abelian extension of \mathbb{Q}. Then E is a subfield of some $\mathbb{Q}(\sqrt[n]{1})$.