On this sheet F, E, L and K always denote fields. Further $F \subseteq E$ or equivalently E/F, etc. means that E is a finite field extension of F.

1. Let $p(x) \in F[x]$ be a non-constant polynomial of degree n. Show that there exists a field E with $F \subseteq E$ and $[E : F] \leq n!$ in which $p(x)$ has all its roots.

2. Let $F \subseteq E$ and let α and β in E be algebraic over F with the same minimal polynomial. Show that $F(\alpha) \cong F(\beta)$.

3. Let $p(x)$ and $g(x)$ be in $F[x]$ and let E be any extension field of F. Show that if $p(x)$ and $g(x)$ have a common factor $h(x)$ in $E[x]$ with degree $h(x) \geq 1$, then $p(x)$ and $g(x)$ have a common factor in $F[x]$ of degree ≥ 1.

4. Let p be a prime. Show that every irreducible polynomial in $\mathbb{Z}_p[x]$ divides $x^{pn} - x$ for some n.

5. Let K/F be a Galois extension with $\text{Gal}(K/F) = G$. Let $\alpha \in K$ and let $f(x) = \prod_{\sigma \in G} (x - \sigma(\alpha))$. Show
 (a) $f(x) \in F[x]$
 (b) $f(x)$ is a power of the minimal polynomial of α over F
 (c) $f(x)$ is the minimal polynomial of α over F if and only if $K = F(\alpha)$

6. Let K/F be a finite field extension. Show that K/F is a Galois extension if and only if $|\text{Gal}(K/F)| = [K : F]$.

7. Let K/F be a Galois extension with $\text{Gal}(K/F) = G$ and assume G is abelian. Show that for any intermediate field L, $F \subseteq L \subseteq K$, L/F is Galois.

8. Let K/F be a Galois extension with $\text{Gal}(K/F) = G$. Let $f(x) \in F[x]$ have a root $\alpha \in K$. Prove that $\sigma(\alpha)$ is also a root of $f(x)$ for any $\sigma \in G$.

9. Let $p(x) \in F[x]$ be a separable irreducible polynomial and let K be the splitting field of $p(x)$ over F. Assume $\text{Gal}(K/F)$ is an abelian group. Prove that $K = F(\theta)$ where θ is any root of $p(x)$ in K.

10. Let F_1 and F_2 be subfields of a field K such that $[K : F_1 \cap F_2] < \infty$. If K/F_1 and K/F_2 are Galois extensions, show that $K/(F_1 \cap F_2)$ is a Galois extension.

11. Let K/F be a Galois extension with $\text{Gal}(K/F) = G$. Let H_1 and H_2 be subgroups of G and let L_1 and L_2 be the corresponding intermediate fields. Show that the intermediate field corresponding to $H_1 \cap H_2$ is $F(L_1, L_2)$, i.e. the smallest intermediate field containing both L_1 and L_2.

12. Show that the only automorphism of \mathbb{Q} is the identity.

13. Let $F \subseteq E$ and let $\alpha, \beta \in E$ be two elements of E. Show that if $\alpha + \beta$ and $\alpha \beta$ are both algebraic over F, then α and β are both algebraic over F.

14. Let K/F be a Galois extension with $\text{Gal}(K/F)$ a cyclic group. Show that for any divisor d of $[K : F]$, there exists exactly one intermediate field L, $F \subseteq L \subseteq K$ with $[L : F] = d$.

15. Let F be a finite field with p^n elements where p is a prime. Show that if $\alpha \in F$ generates the cyclic group F^\times, then the degree of α over \mathbb{Z}_p is n.

16. Let K/F be a Galois extension with $\text{Gal}(K/F) = G$. If $\alpha \in K$, prove that $N(\alpha) = \prod_{\sigma \in G} \sigma(\alpha)$ and $\text{Tr}(\alpha) = \sum_{\sigma \in G} \sigma(\alpha)$ are always elements of F.