Let R be a commutative ring with 1. Then an ideal I in R is maximal \(\iff R/I \) is a field.

Prop 7.2.20 Let $K \triangleleft R$ be an ideal. Then

1) Given I be an ideal containing K, $I^* = I/K$ is an ideal in R/K

2) If J^* is an ideal in R/K, then there is an ideal $K \triangleleft J \triangleleft R$
so that $J^* = J/K$

3) If I and J are ideals containing K, then $I \subseteq J \implies I/K \subseteq J/K$

Proof of 3: Need to show I^* is closed under addition, subtraction, and multiplication by any element in R/K.

This follows from similar calculations in R.

2) We have a homomorphism $R \xrightarrow{\phi} R/K$ at $J = \phi^{-1}(J^*) = \{a \in R: \phi(a) \in J^*\}$

It is a subgroup because ϕ is a group.
homomorphism, given $a \in J$ and $b \in R$ we need to show $ab \in J$.

$\phi(ab) = \phi(a) \phi(b)$ and $\phi(a) \notin J*$

$\phi(ab) = R/K$

Since $J*$ is an ideal, $\phi(a) \phi(b) \in J*$

Hence $\phi(ab) \in J*$ so $ab \in J$.

(ii) \Rightarrow is clear. For \exists

Let $a \in I$ then $a + K \in J/K

This means

$a + K = b + K$ for some $b \in J$

i.e. $a = b + k$ for $k \in K \in J$
so $a \in J$. This means $I \subseteq J$.

QED

2.7.2 Let R be a commutative ring with 1. Then an ideal IR is maximal if R/I is a field.

Fact: A ring is a field if
it has only two ideals, \((0) = 0, R\).

Suppose \(R/I\) is a field, and let \(J \subset R\) for an ideal \(J\).

\(J/I\) is an ideal in \(R/I\) = field.
so either \(J/I = (0)\) \(\Rightarrow J = I\)
or \(J/I = (1)\) \(\Rightarrow J = R\)

\(R/I\)

Hence \(I\) is maximal by def.

Conversely, suppose \(I\) is maximal.
Let \(J\) be any ideal in \(R/I\).
Then there is an ideal J with $I \subseteq J \subseteq R$ that maps to J^\times. This means $J = I$ so $J^\times = J/I = (0)$ on $J = R$ so $J^\times = R/I$.

Hence our ideal $J^\times \subseteq R/I$ is either (0) on R/I, so R/I is a field. QED

Polynomial rings

$R = \text{your favorite ring}$

$R[x,J] = \text{the ring of polynomials}$
Let R be a commutative ring with unity.

Claim: If I is an ideal in R contained in J, then I is also contained in J.

Proof: Let $a \in I$. Since $I \subseteq J$, we have $a \in J$. Thus, $I \subseteq J$.

Therefore, I can be added with J and the sum is still contained in J.
c) If \(R \in \mathbb{N} \), so does \(R[x] \).

1) If \(R \) is a domain (no zero divisors)

then so is \(R[x] \).

Proof of 1):

Let \(0 \neq f(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots \)

with \(a_m \neq 0 \)

and \(0 \neq g(x) = b_n x^n + b_{n-1} x^{n-1} + \ldots \)

with \(b_n \neq 0 \).

Then \(f(x) g(x) = a_m b_n x^{m+n} + \ldots \).

and \(a_m b_n \neq 0 \) so \(f(x) g(x) \neq 0 \).

QED.
Note we can also define
\[R[x,y] = \text{ring of polynomials in } x \text{ and } y \]
\[= R[x] [y] \]
\[= \text{polynomials in } y \text{ whose coefficients are in } R[x]. \]

Def: A \underline{unit} in a ring \(R \) is a \underline{nonzero} element with a multiplicative inverse in \(R \).
The units form a group \mathbb{R}^* under multiplication.

$\mathbb{Z}^* / \{\pm 1\} \cong C_2$

Proof: Let D be a domain. Then $D[\mathbb{Z}]^* = D^*$, i.e., the only invertible polynomials over D are constants.

E.g., $2[\mathbb{Z}]^* = \{\pm 1\}$

Proof: If $f(x)$ has an inverse $f'(x)$, then $g(x)$ is
also a polynomial.

Each polynomial has a degree, i.e., the largest exponent and \(\deg(f \cdot g) = \deg(f) + \deg(g) \)

and \(\deg(f) \), \(\deg(g) \geq 0 \)

Then \(f \) and \(g \) must have degree 0, i.e., they are constants.

QED

Def. \(\mathbb{R}[x] \) = ring of power series in \(x \) with coeffs in \(\mathbb{R} \)
$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$

with $a_i \in \mathbb{R}$

Example \(\ln 2 \in [x] \)

\[
\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots
\]

\[
(1-x)(1+x+x^2+\cdots) = 1
\]

\[
2 \cdot [x] \subset \mathbb{Z} \cup \mathbb{Z}[x]/\mathbb{Z}
\]
Division algorithm.
Recall (from grade school) that
\[a, b > 0 \text{ positive integers} \]
there integers \(q \) and \(r \) with
\[0 \leq r < b \]
such that

Theorem 6.2.2 Division algorithm

\(F \) is a field. Let \(f(x), g(x) \in F[x] \)
and \(g(x) \neq 0 \). Then \(\exists ! q(x) \)
and \(r(x) \) with \(\deg r(x) < \deg g(x) \)
with \(f(x) = q(x)g(x) + r(x) \).
If \(\deg f(x) < \deg g(x) \) then
\[f(x) = 0 \quad \text{and} \quad r(x) = g(x) \]