Thm 8.4.7 \(f \in \mathbb{F}[x] \) has degree 2 or 3 then \(f \) is reducible \(\iff \) it has a zero.

Pf. One of the factors must have degree 1 \(\Box \).

Thm 9.4.11 (Rational roots theorem)

Let \(f(x) = \sum_{i=0}^{n} c_i x^i \in \mathbb{Z}[x] \)

\[= c_n x^n + c_{n-1} x^{n-1} + \ldots + c_0 \]
Suppose \(a \in \mathbb{Q} \) is a zero of \(f \) let \(a = n/s \) with \(n, s \in \mathbb{Z} \)
and \(\gcd(n, s) = 1 \)

Then \(m \mid c_0 \) and \(s \mid c_n \).

Example: \(f(x) = 2x^3 + x^2 - 1 \). If \(f \) can be
factored \(\mathbb{Q} \), let \(a = n/s \) be a zero
\(m \mid 1 \) \(\Rightarrow \) \(m = \pm 1 \)
\(s \mid 2 \) \(\Rightarrow \) \(s = \pm 1 \) or \(\pm 2 \)

\(a = \pm 1 \) or \(\pm 1/2 \) \(f(a) \neq 0 \) in each case

Hence \(f \) is irreducible
Proof: \(f(a) = C_m \left(\frac{a}{2} \right)^n + C_{m-1} \left(\frac{a}{2} \right)^{n-1} + \ldots + C_0 = 0 \)

Multiply by \(2^n \) and get

\[C_m M^n + C_{m-1} M^{n-1} S + \ldots + C_1 M S^{n-1} + C_0 S^n = 0 \]

\[C_m M^n + S(\text{even}) = 0 \]

Hence \(C_m \) is divisible by \(S \).

\[C_0 S^n + S(\text{even}) = 0 \]

So \(C_0 \) is divisible by \(M \).

Q.E.D.
Def 8.4.14 Let $f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$

The content of f is

$$c = \gcd(a_n, a_{n-1}, \ldots, a_0)$$

$f(x)$ is primitive if its content is 1.

Ramesh Lemma 8.4.15 If f and g

are primitive, so is fg.

Proof Suppose fg is not primitive.

Let p be a prime dividing all
The coefficients of fg

We have a ring homomorphism

$$\mathbb{Z}[x] \rightarrow \mathbb{Z}/p\mathbb{Z}[x] = \text{domain}$$

$$\begin{array}{c}
\mathbb{Z} \\
\mathbb{Z}/p\mathbb{Z} \\
0
\end{array}$$

$$\begin{array}{c}
l \\
g \\
fg
\end{array}$$

Since $\mathbb{Z}/p\mathbb{Z}[x]$ is a domain, $\bar{f} \cdot \bar{g}$ is 0. So one of them has coefficients divisible by p. But both are primitive. CONTRADICTION. Q.E.D.
Theorem 3.4.16 \(f \in \mathbb{Z}[x] \) factors over \(\mathbb{Q} \) if and only if it factors over \(\mathbb{Z} \).

Example \(f(x) = 6x^4 + 4x^2 - 3x - 2 \)

\[
= (3x^2 + 1)(4x^2 - 2)
= (3x^2 + 2)(2x^2 - 1)
\]

Proof Let \(f(x) = g(x)h(x) \in \mathbb{Q}[x] \)

where \(\deg f = n \), \(\deg h = s > 0 \)

\(\deg g = m > 0 \), \(m + s = n \)

We will show that \(g(x) \) and \(h(x) \in \mathbb{Z}[x] \) with the same degrees and \(g, h \in \mathbb{Z} \).
We can assume WLOG that \(f \) is primitive.

Let \(a = \text{LCM} \left(\text{denominators of } f \right) \) be the coefficients of \(g \).

Let \(b = \text{LCM} \left(\text{denominators of } h \right) \).

This means \(a \cdot g \in \mathbb{Z}[x] \) and \(b \cdot h \in \mathbb{Z}[x] \).

Let \(c = \text{content of } a \cdot g \), so

\[a \cdot g = c \cdot g, \] where \(g \in \mathbb{Z}[x] \) is primitive.

and \(b \cdot h = d \cdot h \), where \(h \in \mathbb{Z}[x] \) is primitive.
The content of abf is $a b$

By Gauss’ lemma, g_1, h_1 is primitive, so its content is 1 and content of cq, dh, is $c d$

$abf = c d g_1, h_1$

so $ab = c d$

$f = g_1, h_1$ \quad QED$

Example: $f(x) = x^4 - 5x^2 + 6x + 1$

The only possible zeroes are ± 1

$f(\pm 1) \neq 0$
If f is reducible, then
\[
f = (x^2 + ax + b)(x^2 + cx + d)
\]
\[
= x^4 + (a+c)x^3 + (ac+d+b)x^2 + (ad+bc)x + bd
\]
so $a + c = 0$, $b = d = \pm 1$
\[
ac + b + d = -5 \implies bc + ad = \pm(a + c) = 0
\]
so $bc + ad = 0$
\[
bc + ad = b^2 \implies \text{CONTRADICTION}
\]
$f(x)$ is irreducible.
Theorem 6.4.19 Eisenstein's criterion

Let \(f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x] \)

It is irreducible if

1) \(p \nmid a_n \)
2) \(p \mid a_i \) for \(i < n \)
3) \(p^2 \nmid a_0 \)

Example: \(x^2 + 2px + p^2 = (x + p)^2 \) satisfies 1) and 2) but not 3)
Proof: Suppose
\[\phi(x) = (b_n x^n + \cdots + b_0) (c_0 x^0 + \cdots + c) \]
with \(b_n, c_i \in \mathbb{Z} ; n, i \neq 0 ; n + i = n \).

Let \(b_0 = a_0 \) be divisible by \(\phi \) but not by \(\phi^2 \).

So \(\phi \) divides \(b_0 = c_0 \). But not both.

Suppose \(\phi \) is divisible by \(\phi \).

Let \(m \) be the smallest integer with \(\phi \mid b_m \).

Let \(a_m = b_m c_0 + b_{m-1} c_1 + \cdots + b_0 c_m \).
b_i is div by p for $i < m$
but b_m and c_0 are not div by p.

Hence a_m is not div by p.

CONTRADICTION

QED

Example: Let $f(x) = \frac{x^p - 1}{x - 1}$

$p = \text{prime}$

$f(x)$ is the pth cyclotomic polynomial.

$f(x+1) = \frac{(x+1)^p - 1}{(x+1) - 1} = \sum_{i=0}^{p} (i) \frac{x^i}{x}$
\[\sum_{i=1}^{p} (\frac{1}{i}) x^{i-1} = x^{p-1} + p x^{p-2} + \frac{(p)}{2} x^{p-3} + \ldots + p \]

\[= \text{Eisenstein polynomial} \]

so \(f(x) \) is irreducible.

Theorem 8.4.24 Let \(f \in \mathbb{Z}[x] \)

and let \(\bar{f} \in \mathbb{Z}/p[\bar{x}] \) be its mod \(p \) reduction. Assume \(\bar{f} \) and \(f \) have the same degree. If \(\bar{f} \)

is irreducible over \(\mathbb{Z}/p \), then
If \(f \) is irreducible over \(\mathbb{Q} \), then
\[
\overline{f} = \overline{g} \overline{h}
\]
and
\[
\overline{f} = \overline{g} \overline{h} \quad \text{i.e. } \overline{f} \text{ is reducible over } \mathbb{Z}/p.
\]

QED

Example: \(f = 3x^4 - 6x^3 + 10x^2 - 5x + 9 \)

\(p = 2 \)
\[
\overline{f} = x^4 + x + 1
\]
\(\overline{f}(0) = 1 \)
\(\overline{f}(1) = 1 \)

\(\overline{f} \) has no zeros
Can also show it cannot be
f can be factored as
\[f = (x^3 + ax + b)(x^2 + cx + d) \]

\[\implies \text{CONTRADICTION} \]

Hence \(f \) is irreducible.

So \(f \) is irreducible.