Theorem 1. Let E be a Galois extension of a field F, and let $G = \text{Gal}(E/G)$. For any intermediate field K with $F \subseteq K \subseteq E$, let $\chi(K) = \text{Gal}(E/K)$. Then

1. χ is a one-to-one map from the set of all intermediate fields K to the set of all subgroups of G.

2. $K = E^{\text{Gal}(E/K)}$, so E is a Galois extension of every intermediate field K.

3. $\chi(E^H) = H$ for all $H \leq G$, so χ is onto.

4. $[E : K] = |\text{Gal}(E/K)|$.

5. $[K : F]$ is the index of $\text{Gal}(E/K)$ in G.

6. K is a Galois extension of F if and only if $\text{Gal}(E/K)$ is a normal subgroup of G, in which case

$$\text{Gal}(K/F) \cong G/\text{Gal}(E/K).$$

7. For any two intermediate fields K_1 and K_2, we have $K_1 \subseteq K_2$ if and only if $\chi(K_1) \supseteq \chi(K_2)$, so the lattice of subgroups $H \leq G$ is the lattice of intermediate fields $F \subseteq K \subseteq E$.