Field Extensions

If \(p(x) \in F[x] \) is irreducible, then \(F[x]/(p(x)) \) is a field.

Examples

1. \(F = \mathbb{R} \), then the only irreducible polynomials are quadratic, e.g. \(x^2 + 1 \)

2. \(C = \mathbb{R}[x]/(x^2 + 1) \)

3. \(F = \mathbb{Q} \). There are many irreducible polynomials and hence many field extensions.
Prop 10.2.2 Let $F \leq E$ be fields with $x \in E$.

In E let

$F[x] = \{ f(x) : f(x) \in F[x] \}$ = subring of E

$F(x) = \left\{ \frac{f(x)}{g(x)} : f(x), g(x) \in F[x], g(x) \neq 0 \right\}$

= subfield of E. Then

1) $F[x]$ is a subring of E containing F and x

2) $F(x)$ is the smallest such subring

3) $F(x)$ is a subfield of E containing F and x

4) $F(x)$ is the smallest such subfield.

Proof 1) and 3) are obvious
2) We need to show that any subring of E containing both F and J also contains $F[x]$. Since $x \in R$, so is $x^n \in R$, so any element of $F[x]$ is in R.

4) Similar argument. (Q.E.D.)

Qd: If $F \leq E$ are fields, we say E is an extension (or field extension) of F. $F \leq F(x) \leq E$, $F(x)$ in the extension obtained by adjoining x.
FLT: There is no solution to
\[x^n + y^n = z^n \quad \text{for} \quad n > 2, \quad x, y, z \geq 0 \text{integers} \]

It suffices to prove it for each odd prime \(p \) and \(n = 4 \).

Suppose \(x^6 + y^6 = z^6 \) for \(x, y, z > 0 \)
\[(x^2)^3 + (y^2)^3 = (z^2)^3 \]

1847 Kummer proved FLT for many primes, e.g., all \(p < 100 \) except \(p = 37, 59, 67 \).
Theorem 10.2.5 (Kronecker)

Let \(F \) be a field and \(p(x) \in F[x] \) be nonconstant. Then there is an extension \(E \) of \(F \) and \(\alpha \in E \) s.t. \(p(\alpha) = 0 \).

Proof: Suppose \(p(x) \) is irreducible. Let \(E = F[x] / (p(x)) \) with \(\alpha = x \). Then \(p(\alpha) = 0 \). If \(p(x) \) is not irreducible, then
\[p(x) = p_1(x) p_2(x) \cdots p_n(x) \]
where each \(p_i(x) \) is irreducible.

Let \(E = F[x] / (p_i(x)) \) for some \(i \).

And let \(\alpha = x \) as before.
\[p(x) := \phi_1(x) \phi_2(x) \cdots \phi_m(x) = \phi_i(x) \text{ \textit{- something}} = 0 \text{ since } \phi_i(x) = 0 \quad \text{QED} \]

\underline{Def 10.2.45}: Let \(F \subseteq E \) be fields. Then \(\alpha \in E \) is \underline{algebraic over} \(F \) if \(\exists f(x) \neq 0 \) in \(F[x] \) with \(f(\alpha) = 0 \); if not, \(\alpha \) is \underline{transcendental over} \(F \).

\underline{Example}: \(\pi \) is \underline{transcendental over} \(\mathbb{Q} \).

\(e \) is \underline{algebraic} \(/ \mathbb{Q} \) since \(e^3 - 17 = 0 \).

\(\alpha = \sqrt[3]{17} \) is \underline{algebraic} \(/ \mathbb{Q} \) since \(\alpha^3 - 17 = 0 \).
Thm 10.2.2. Let \(F \subseteq E \) be fields and let \(\alpha \in E \) be algebraic over \(F \). Then \(F(\alpha) \) is a field and there exists a unique \(F \)-monic polynomial \(\phi(x) \in F[x] \) (the minimal polynomial of \(\alpha \)) with

1) \(\phi(\alpha) = 0 \)
2) \(\phi(x) \) is irreducible
3) if \(\psi(x) \in F[x] \) with \(\psi(\alpha) = 0 \), then \(\phi(x) \mid \psi(x) \).
Example \(F = \mathbb{Q} \) \(\rightarrow \) \(E = \mathbb{R} \)

\[
\alpha = \sqrt{2} + \frac{1}{\sqrt{2}}
\]

\[
\alpha^2 = (\sqrt{2} + \frac{1}{\sqrt{2}})^2 = 2 + 2\sqrt{2}\cdot\frac{1}{\sqrt{2}} + \frac{1}{4}
\]

\[
= 2 + 2\sqrt{32} + \frac{3}{4}
\]

\[
\alpha^3 = (\sqrt{2} + \frac{1}{\sqrt{2}})^3 = \sqrt{8} + 3\sqrt{8}\cdot\frac{1}{\sqrt{2}} + 3\sqrt{8}\cdot\frac{1}{4} + 2
\]

\[
= 2\sqrt{2} + 6\sqrt{2} + 3\sqrt{8}\cdot16 + 2
\]

\[
= 2\sqrt{2} + 6\sqrt{2} + 6\sqrt{2} + 2
\]

Note each is a paly in \(\sqrt{2} = \beta \)

\[
\alpha = \beta^3 + \beta^2
\]

\[
\alpha^2 = \beta^6 + 2\beta^5 + \beta^4
\]

\[
\alpha^3 = 2 + 2\beta^5 + \beta^4
\]

The vector space \(E = \mathbb{R} \) \(\mathbb{Q} \) has
\[\dim 6 \quad \text{and} \quad \beta^* = 2 \]

Proof. Consider the set \(J \) of all polynomials \(g(x) \in F[x] \) with \(g(h) = 0 \). Claim:

This is an ideal. \(J \neq (0) \) because \(h \) is algebraic. Since \(F[x] \) is a PID, it is generated by some monic \(p(x) \).

Suppose \(p(x) = p_1(x) p_2(x) \), with

\[\deg p_1, \deg p_2 < \deg p. \]

Then \(p(h) = p_1(h) \phi_2(h) = 0 \in E \).
Since \(E \) is a domain, either \(\phi_1(x) = 0 \) or \(\phi_2(x) = 0 \). Hence \(\phi_1(x) \) or \(\phi_2(x) \) is in \(J \).

This is a **CONTRADICTION**. Hence \(\phi(x) \) is irreducible. Q.E.D.

Def 10.2.10 For \(F \subset E \), let \(x \in E \) and \(\phi(x) \) as above. The degree of \(\phi(x) \) is the degree of \(x \) over \(\mathbb{F} \), \(\deg_\mathbb{F}(x) \).

Thm 10.2.11 Let \(F \subset E \), \(x \in E \) with minimal poly \(\phi(x) \) of degree \(n \), then
1) \(F(\alpha) \cong \mathbb{F}[x]/(p(x)) \)

2) \(\{1, x, x^2, \ldots, x^{n-1}\} \) is a basis of \(F(\alpha) \) over \(F \).

3) \(\dim_F F(\alpha) = \deg p(x) = \deg p(x) = n. \)

Proof (1) Consider the evaluation map \(\mathbb{F}[x] \xrightarrow{\phi} \mathbb{E} \)

defined by \(\phi(f(x)) = f(\alpha) \). It is a ring homomorphism.

Its image is \(\mathbb{F}[\alpha][x] \) by definition.

Let kernel \(\ker \phi = \{ f(x) \in \mathbb{F}[x] : f(\alpha) = 0 \} \)

\(= (p(x)). \)

Since \(p(x) \) is irreducible, \(\mathbb{F}[x]/(p(x)) \) is a field.

So \(\mathbb{F}[\alpha] = \mathbb{F}(\alpha). \)
2) Consider
\[S = \text{Span}\{1, x, \ldots, x^{n-1}\} \]
\[= \{ \sum_{i=0}^{n-1} c_i x^i : c_i \in F \} \]

Since \(F[x] \) consists of polynomials in \(x \), \(S \subseteq F[x] \).

Want to \(F[x] \subseteq S \).

Let \(\beta_i \) be \(x^i \) for \(\beta_i \in F \).

\[p(x) = x^n - \sum_{i=0}^{n-1} \beta_i x^i \]

Hence \(x^n = \sum_{i=0}^{n-1} \beta_i x^i \) in \(F \).
\[x^{n+1} = \sum_{i=0}^{n-1} \beta_i x^i \]

\[= \sum_{i=0}^{n-2} \beta_i x^i + \beta_{n-1} x^{n-1} + \beta_{n-1} (\sum_{i=0}^{n-2} \beta_i x^i) \]

\[\in S \]

Similarly, \(x^n \in S \) for all \(m \). Hence \(F[x^j] \leq S \).

3) follows from 2).

QED