Thm 12.1.24 For \(f(x) \in \mathbb{F}[x] \) a separable polynomial with splitting field \(E \), let \(G = \text{Gal}(E/F) \). Then \(|G| = [E:F] = n \)

Proof: Argue by induction on \(n \).

Let \(p(x) \) be an irreducible factor of \(f(x) \) of degree \(k > 1 \). \(p(x) \) has \(k \) distinct zeros in \(E \), \(\alpha_1, \alpha_2, \ldots, \alpha_k \).

Let \(K = F(\alpha_i) \). It contains the other
23. Regard \(f(x) \) as a polynomial over \(K \).
\(E \) is its splitting field. By induction,
\(|H| = m \cdot n/K \), where \(H = \text{Gal} (E/K) \).
Let \(H = E \theta_1, \theta_2, \ldots, \theta_m \). \(S \subset G \).

We also know that for each \(\alpha_i \), there is an element \(\psi \in G \) with \(\psi_i (\alpha_i) = \alpha_i \).

Consider the set \(\{ \psi_i \theta_j : 1 \leq i \leq k, 1 \leq j \leq m \} = S \subset G \).

Claim 1. The \(kn = n \) elements in this set are distinct.

Claim 2. Each elt of \(G \) is in \(S \).
Claim 1: Suppose \(\psi_i \cdot \theta_j \cdot \psi_{i'} \).

Then \(\psi_i \cdot (\psi_i \cdot \theta_j \cdot \psi_{i'}) = \psi_i \cdot \theta_j \cdot (\psi_i \cdot \psi_{i'}) = \psi_i \cdot \theta_j \cdot (\psi_i \cdot \psi_{i'}) = \psi_i \cdot \theta_j \cdot (\psi_i \cdot \theta_j) \).

So \(i = i' \) and \(\psi_i = \psi_{i'} \).

\(\psi_i^{-1} \cdot (\psi_i \cdot \theta_j \cdot \psi_{i'}) = \psi_i^{-1} \cdot (\psi_i \cdot \theta_j) \cdot \psi_i^{-1} \cdot \psi_{i'} \cdot \psi_i \cdot (\psi_i \cdot \theta_j) \).

\(\theta_j = \theta_{j'} \) at \(j = j' \).

Claim 2: Let \(y \in G_i \). Then \(\psi_i (\lambda_i) = \lambda_i \) for all \(i \).

Let \(\theta = \psi_i^{-1} y \). Then
$\beta(x_i) = y_i^{-1} \psi(x_i) = y_i^{-1} a_i = a_i$

Θ fixes K_j so $\Theta \in H$ and in some Θ_j.

$\Theta_j = y_i^{-1} \psi$ and $\psi = y_i \Theta_j \in S$.

QED

Example:
Let S^1 be a pth root of unity for a prime p. Let $G = \text{Gal}(\mathbb{Q}(S)/\mathbb{Q})$.

Let $\Phi_p(x) = \frac{x^p - 1}{x - 1} = 1 + x + x^2 + \ldots + x^{p-1}$.
The zeros of $\overline{\Phi}_p(x)$ are the nontrivial ($\neq 1$) pth roots of unity. $\mathbb{Q}(\zeta)$ is the splitting field for $\overline{\Phi}_p(x)$, so $|G| = p - 1$. Claim $G \cong \mathbb{Z}_{p-1}$. G has elements ζ^k with $\zeta^k(\zeta) = \zeta^k$ for $1 \leq k \leq p - 1$.

To see this consider the ring $\mathbb{Z}[x]/(\overline{\Phi}_p(x))$. Let l be a prime
\[l \equiv 1 \mod p. \]
Then $K = \mathbb{Z}[x]/(\overline{\Phi}_p(x))$ is a finite field.
Prop 12.1.26 Let $f(x) \in F[x]$ be a separable polynomial with splitting field E. Then

1) $G = \text{Gal}(E/F)$ is isomorphic to a subgroup of S_n.
2) $|G|$ divides $n! = |S_n|$.

Proof: G permutes the n roots of $f(x)$. Let $R = \{x_1, x_2, \ldots, x_n\}$ be the product $G \circ E$, determined by its action on R.
Def 12.1.29 A field extension $F \subseteq E$ is simple if $E = F(\alpha)$. Such an α is primitive.

12.1.30 Primitive Element Theorem

Let E be a finite separable extension of F. Then it is simple.

Proof If F is finite, then E is also finite. Hence E^* is cyclic. Let α be a generator of it. Then $E = F(\alpha)$.

Suppose F is infinite.
\[E = F(\alpha_1, \alpha_2, \ldots, \alpha_m) \]. It suffices to consider the case \(m = 2 \). Indeed, we know \(F(\alpha_1, \alpha_2) = F(\alpha) \) for some \(\alpha \).

Then \(F(\alpha_1, \alpha_2, \alpha_3) = F(\alpha_1, \alpha_2)(\alpha_3) = F(\alpha)(\alpha_3) = F(\alpha, \alpha_3) = F(\alpha') \).

\[\text{etc.} \]

Let \(E = F(\alpha, B) \).

Let \(\alpha \) have min. poly \(f(\alpha) \) with roots \(\alpha_1, \alpha_2, \ldots, \alpha_m \).

Let \(B \) be \(\max \{ q(\beta) \mid \beta \in \mathbb{B} \} \).

Let \(K \) be the splitting field for \(p(x)q(x) \), so \(\alpha_1, \alpha_2, \beta_1, \beta_2 \in K \).
Consider the quotient
$$\frac{x_i - x_j}{\beta_i - \beta_j} \in K \quad \text{for} \quad 1 \leq i \leq m \quad \text{and} \quad 1 \leq j \leq n.$$

Let \(n \neq 0 \in F \) not equal to any of the above.

Let \(y = \alpha_1 + n \beta_1 \in E \) since \(\alpha_1, \beta_1 \in E \) and \(\alpha_1 = \beta \in E \) and \(n \in F \).

We \(E = F(\alpha_1, \beta_1) = F(y) \).

It suffices to show \(\alpha_1, \beta_1 \in F(y) \).

Let \(h(x) \) be the min. poly. of \(\beta_1 \) over \(F(y) \).

(want to show it has degree 1, i.e. \(\beta_1 \in F(y) \).)
Recall \(q(x) \) is the min poly of \(\beta_i \) over \(\mathbb{F} \).

\(h(x) \) divides \(q(x) \). It has a factor \(x - \beta_j \) for some \(j \). We'll show \(h(\beta_j) \neq 0 \) if \(j \neq 1 \). This will imply \(h(x) = x - \beta_1 \) and \(\beta_1 \in \mathbb{F}(x) \).

Consider \(r(x) = \beta(x - \alpha \beta) \in \mathbb{F}(x)[x] \).

Then

\[
x(\beta_j) = \alpha (x - \alpha \beta_j) = \alpha (x_j) = 0
\]

This means \(h(x) \) (the min poly for \(\beta_i \) over \(\mathbb{F}(x) \))
divides \(k(x) \). It suffices to show \(k(\beta_j) \neq 0 \) for \(j \geq 1 \).

If \(k(\beta_j) = p(y - m\beta_j) = 0 \) then \(y - m\beta_j \) is a root of \(p(x) \), and
\[
y - m\beta_j = \alpha_i \quad \text{for some} \quad i > 1
\]

so
\[
m = \frac{y - \alpha_i}{\beta_j} = \frac{\alpha_1 + m\beta_j - \alpha_i}{\beta_j}
\]

\text{Solve for } m

\[
m = \frac{\alpha_1 - \alpha_i}{\beta_j - \beta_i}
\]

\text{CONTRADICTION}

QED