Recall for a field F, $F[x]$ is a PID.

Theorem 8.6.6 Let $I = (p(x)) < F[x]$ be an ideal. I is maximal \iff

$p(x)$ is irreducible.

Recall I is maximal \iff $F[x]/I$ is a field.

Examples

1) $\mathbb{R}[x]/(x^2 + 1) = \mathbb{C}$

2) $\mathbb{Q}[x]/(x^2 + x + 1) = \mathbb{Q}(-\sqrt{3})$
\[\{ a + b \sqrt{-3} : a, b \in \mathbb{Q} \} \]

3) \[\frac{\mathbb{Z}[x]}{(x^2 + x + 1)} = \mathbb{F}_4 = \text{the field with 4 elements} \]

\[\{ 0, 1, x, x+1 \} \]

Proof \[\Rightarrow \text{if } p(x) = f(x)g(x) \text{ with } \deg f > 0 \]
and \[\deg g > 0 \], then \[f \text{ and } g \text{ map to zero divisors in } \mathbb{F}[\mathbb{Z}[x]]/I \], so \[\mathbb{R} \text{ is not a field}. \]

\[\mathbb{F}[\mathbb{Z}[x]]/(p(x)) \]

\[\Leftarrow \text{Suppose } p(x) \text{ is irreducible} \]
Suppose $I \neq J \neq (1)$, i.e. that I is not maximal.

Since $F[x]$ is a PID,

$J = (\text{some element of } F[x])$. Since $f(x) \in J$

$p(x) = \text{some element of } F[x] \cdot q(x)$ for some $q(x)$

If $\deg q > 0$ and $\deg \text{some element of } F[x] > 0$

then $p(x)$ is reducible

If $\deg \text{some element of } F[x] = 0$ then $J = (1)$.

$\deg q = 0$ then $J = I$

Hence I is maximal. QED
Recall an ideal $I \subset R$ is prime iff R/I is a domain.
I is maximal iff R/I is field.
Hence every maximal ideal is prime.

Con 8.6.7 in $F[x]$, $(p(x))$ is prime.
\Rightarrow it is maximal.
\Rightarrow $p(x)$ is irreducible.

Proof
p irreducible $\Rightarrow (p)$ is maximal
$\Rightarrow (p)$ prime

Suppose (p) is prime and
\(p(x) = f(x)g(x) \) with \(\deg f, \deg g \geq 0 \)

This means \(fg = 0 \) in \(\mathbb{K}[x] / (\mathfrak{p}) \)

which cannot be since \(\mathbb{K}[x] / (\mathfrak{p}) \)

is a domain. \hfill \text{QED}

Con\(\mathfrak{o} \mathfrak{f} \) \(c_0, b, b + c_0 b, 0 \)

in \(\mathbb{F}[x] \)

I prime \(\iff \) I maximal \(\iff \mathbb{F}[x]/I \) is a field.
Linear algebra revisited

A vector space over F is an abelian group in which we have scalar multiplication by elements in F.

A set $S = \{v_1, v_2, \ldots, v_n\} \subseteq V$ is linearly independent if $c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0$ for $c_i \in F$ only if $c_1 = c_2 = \cdots = c_n = 0$.

A basis B of V is a maximal linearly independent set. Let $B = \{v_1, \ldots, v_n, \ldots, v_m\}$.
so each \(v \in V \) has the form

\[
\sum c_i v_i \quad \text{for } c_i \in \mathbb{F} \quad \text{for unique } c_i
\]

(almost all \(c_i = 0 \)).

A subspace \(W \subset V \) is a subset closed under scalar multiplication.

Examples

1) \(\mathbb{F}[x] \) is a vector space \(\mathbb{F} \) with

basis \(\{ 1, x, x^2, x^3, \ldots \} \)

2) The set of polynomials of deg \(< n \)
in a subspace with basis

\(\{ 1, x, \ldots, x^{n-1} \} \)
Prop 10.1.8 Let V be a vector space over a field F with $v \in V$ and $c \in F$

1) $cv = 0 \iff c = 0 \text{ or } v = 0$

2) $(c)v = - (cv) = c(-v)$.

Then 10.1.17 A subset $U \subset V$ is a subspace iff $\forall c \in F$ and $u, w \in U$

1) $u - w \in U$ [U is a subgroup of V]

2) $cm \in V$ [closure under scalar multiplication]
Def: A vector space is finite dimensional if it has a finite basis.

Then in this case any 2 bases have the same size n, the dimension of V.

Examples

1) C has dimension 2 as a vector space over \mathbb{R}.
2) \(\dim_\mathbb{Q} \mathbb{Q}(\sqrt{2}) = 2 \)

\[
\mathbb{Q}(\sqrt{2}) = \{ a + b \sqrt{2} : a, b \in \mathbb{Q} \}
\]

\[
= \mathbb{Q}[x] / (x^2 - 2)
\]

\(\dim_\mathbb{F} V \) = dimension of \(V \) as a vector space over \(\mathbb{F} \).

3) \(\dim_{\mathbb{F}_{41}} \mathbb{F}_{41} = 2 \)

where \(\mathbb{F}_{41} = \mathbb{Z}/2[\![x]\!] / (x^2 + x + 1) \)

\(\dim_{\mathbb{F}_{41}} \mathbb{F}_{41} = 3 \)
4) \(\mathbb{Q} \cap \mathbb{Q}(\sqrt[3]{3}) = \mathbb{Q}[x]/(x^3 - 3) \)

\(\mathbb{Q} \cap \mathbb{Q}[y]/(y^2 + y + 1) \)

\(L = K[x]/(x^3 - 2) \)

\(= \{ a + b \sqrt[3]{2} + c \sqrt[3]{4^2} : a, b, c \in \mathbb{K} \} \)

\(\dim_\mathbb{Q} L = 6 \quad \dim_\mathbb{K} L = 3 \quad \dim_\mathbb{Q} \mathbb{K} = 2 \)

In general, when we have
fields $K < K < L$ with L finite dimensional over K,
$\dim_K L = \dim_K L \dim_K K$

$K \supset F$ descent for field.

Prop Let V be a vector space of dimension n over field F and let
$\{v_1, v_2, \ldots, v_m\}$ with $m < n$ be
linearly independent. Then we can find $v_{n+1}, v_{n+2}, \ldots, v_m$ such
that \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \) is a basis of \(V \).