Fermat's Last Theorem

(1633)

There are no positive integers \(x, y, z \geq 2 \) with

\[x^n + y^n = z^n \quad \text{for some } n \geq 3. \]

\[3^2 + 4^2 = 5^2 \]
\[5^2 + 12^2 = 13^2 \]

Prop 10.2.2 Let \(F \subseteq E \) be fields with \(x \notin F \)

\[F[x] = \left\{ f(x) : f(x) \in F[x] \right\} \]

1) is subring of \(E \) containing \(F \) and \(x \)
1. \(F(a) = \{ f(g(x)) : f(x), g(x) \in F[x], g(x) \neq 0 \} \)

2. \(F[a] \) is the smallest such subring

3. \(F \) is a subfield of \(F \) containing \(F \) and \(a \).

4. \(F(a) \) is a subfield

Note: We will see later that \(F[a] = F(a) \).

By 2) Let \(R \subset E \) be another such subring. Since \(a \in R \), \(a^n \in R \) for all \(n > 0 \) and \(\sum_{i=0}^{n} c_i a^i \) with \(c_i \in F \) is in \(R \).

Hence \(R \supset F[a] \)

4) Similar argument. QED
e.g. \(F = \mathbb{Q} \), \(E = \mathbb{R} \), \(\alpha = \sqrt{2} \)

\[
F[\alpha] = \frac{1}{2} \sum_{i=0}^{n} c_i (\sqrt{2})^i \quad c_i \in \mathbb{Q}
\]

\[
= \left\{ a + b \sqrt{2} : a, b \in \mathbb{Q} \right\}
\]

We know

\[
\frac{\alpha + b \sqrt{2}}{(c + d \sqrt{2}) (c - d \sqrt{2})} = \frac{(ac - 2bd) + (bc - ad) \sqrt{2}}{c^2 - 2d^2}
\]

\[
= \alpha + b \sqrt{2} \quad \text{with } a, b \in \mathbb{Q}
\]

Every element in \(F[\alpha] \) has this form.
Hence \(F(x) = F[x] \)

Def \(F \unlhd F(x) \unlhd E \)

\(E \) is a field extension of \(F \)

\(F(x) \) is the field obtained from \(F \) by adjoining \(x \).

Thm 10.2.5 (Kronecker)

Let \(F \) be a field and \(\, p(x) \in F[x] \)

not a constant. Then there is a field extension \(E \) with \(x \in E \) with \(p(x) = 0 \).
Pf: If \(p(x) \) is irreducible, then let \(E = F[x] / (p(x)) \) and \(\alpha = x \).

If not, then \(p(x) = p_1(x)p_2(x) \ldots \)

where each \(p_i(x) \) is irreducible.

Let \(E = F[x] / (p_i(x)) \) for some \(i \).

\(\alpha = x \)

\(p(\alpha) = p_1(\alpha)p_2(\alpha) \ldots = p_i(\alpha) \) something

\(= 0 \) since \(p_i(\alpha) = 0 \). QED.

Def: \(F \subseteq E \) and \(\alpha \in E \). If there is a monic polynomial \(f(x) \in F[x] \)

with \(f(\alpha) = 0 \), \(\alpha \) is algebraic over \(F \).
If not, \(\alpha \) is transcendental over \(F \), e.g. \(\pi \) and \(e \) are transcendental over \(\mathbb{Q} \).

\(\alpha = \sqrt{2} + \sqrt{3} \) is algebraic.

\[
\alpha^2 = (\sqrt{2} + \sqrt{3})^2 = 2 + 2\sqrt{6} + 3 = 5 + 2\sqrt{6}
\]

\[
\alpha^2 - 5 = 2\sqrt{6}
\]

\[
(\alpha^2 - 5)^2 = (2\sqrt{6})^2
\]

\[
\alpha^4 - 10\alpha^2 + 25 = 24
\]

\[
\alpha^4 - 10\alpha^2 + 1 = 0
\]

Then \(10, 2, \sqrt{2}, \sqrt{3} \) let \(F \subset E \) with \(\alpha \in E \) algebraic over \(F \). Then \(E \).
monic polynomial \(p(x) \in \mathbb{F}[x] \) with

1) \(p(\alpha) = 0 \)

2) \(p(x) \) is irreducible

3) if \(f(x) \in \mathbb{F}[x] \) with \(f(\alpha) = 0 \)

then \(p(x) \mid f(x) \).

\(p(x) \) is the minimal polynomial of \(\alpha \)

Proof: Let \(J = \langle f(x) \rangle \subseteq \mathbb{F}[x] \) s.t. \(f(\alpha) = 0 \).

It is an ideal, let it be principal.

\(J = \langle p(x) \rangle \) with \(p(x) \) monic.

This \(p(x) \) is the minimal poly.
2) Suppose \(p(x) \) is reducible, i.e.
\[
p(x) = p_1(x) p_2(x) \text{ with } \deg p_1(x) < \deg p(x)
\]
\[
0 = p(x) = p_1(x) p_2(x) \in E
\]
Hence either \(p_1(x) = 0 \) or \(p_2(x) = 0 \)
One is in \(\mathbb{F} \), contradiction.

3) Obvious \(\text{QED} \)

Def 10.2.1.0 For \(F \subseteq E \) as above the degree of \(x \) is that of its minimal polynomial.

e.g. \(\sqrt{2} + \sqrt{3} \) has degree 4 / \(\mathbb{Q} \)
Theorem 10.2.11 \[\text{Let } F \subseteq E \text{ with } \]
minimal polynomial \(p(x) \) of degree \(N \)

1) \(F(x) = F[x] / p(x) \) = \(F[x] \)

2) \(\{1, x, x^2, \ldots , x^{N-1} \} \) is a basis of \(F(x) \) over \(F \)

3) \(\dim_{F} F(x) = \deg(x) = \deg p(x) = N \)

Proof 1) Consider the ring homomorphism \(F[x] \rightarrow E \)

by \(\phi(f(x)) = f(x) \)

Its image is \(F[x] \) by definition

Its kernel is \(J = (p(x)) \)
Since \(p(x) \) is in \(F[x] \), \(F[x]/p(x) \) is a field, so \(F(x) = F[x] \).

2) Let \(S = \langle \{1, x, x^2, \ldots, x^{n-1}\} \rangle \)

\[
= \left\{ \sum_{i=0}^{n-1} c_i x^i : c_i \in F \right\}
\]

Clearly \(S \subseteq F[x] \)

To show \(F[x] \subseteq S \), it suffices to show \(x^m \in S \) for all \(m \geq 0 \).

\[p(x) = x^n - \sum_{i=0}^{n-1} p_i x^i \quad \text{with} \quad p_i \in F \]

This means that \(\in F[x] \).
\[x^n = \sum_{i=0}^{n-1} \beta_i x^i \in S \]

\[x^{n+1} = \sum_{i=0}^{n-1} \beta_i x^{i+1} = \beta_n x^n + \sum_{i=0}^{n-2} \beta_i x^i \in S \]

In S by above calculation

\[x^{n+k} \in S \text{ by induction on } k. \]

Hence $S = F[x]$.

3) Follows from 2)