Def: A group G is solvable if it has a sequence of subgroups
$G_1 = G_0 > G_1 > G_2 > G_3 > \ldots > G_m = 0$
s.t. G_{i+1} is a normal subgroup of G_i
and G_i / G_{i+1} is abelian.

Example: A_5 is not solvable.
S_n for $n \geq 5$ is not solvable.
Galois Main Theorem (12,5,18) 1832.

Let F be a field of characteristic 0, and $f(x) \in F[x]$ with splitting field E.

Then $f(x) = 0$ can be solved by radicals (to be defined) exactly if $\text{Gal}(E/F)$ is solvable.

Fact 1. There are formulas for solving $f(x) = 0$ for $\deg f \leq 4$.

2. There are quintic polynomials (e.g., $x^5 - 10x - 5$) with Galois group S_5.
Things we need to know about solvable groups (Chapter 5)

Definition: For $a, b \in G$, their commutator is $[a, b] = a^{-1}b^{-1}ab$.

If $ab = ba$, then $[a, b] = e$

More of 5.3.6: The commutator subgroup of G, $\langle [G, G] \rangle$, is the subgroup generated by all commutators. Call it G'.
Theorem 5.3.7 For G and G', as above
1) G' is normal in G
2) G/G' is abelian
3) If N is a normal subgroup of G, and G'/N is abelian, then G' ⊆ N.

Proof: (1) \([a, b]^{-1} = (ab^{-1}a^{-1})^{-1} = (b^{-1}a^{-1}b^{-1}a^{-1})^{-1} = b^{-1}a^{-1}b^{-1}a^{-1} = [b, a]^{-1} = [gag^{-1}, gbg^{-1}]^{-1} = gag^{-1} \cdot gbq^{-1} \cdot (gag^{-1})^{-1}(gbg^{-1})^{-1} = q^{-1}b q^{-1} \cdot (g^{-1}a^{-1}q^{-1})(gb^{-1}g^{-1})
The conjugate of a commutator is another commutator.

This makes G' a normal subgroup.

(2) Let $a, b \in G/G'$ with preimages $a, b \in G$. Then $[a, b] \rightarrow [\alpha, \beta]$. But $[a, b] \in G'$ so $[\alpha, \beta] = e$.

Hence G/G' is abelian.

(3) If $N \leq G$, is normal with G/N abelian. Let $\alpha, \beta \in G/N$ with preimages $a, b \in G$. Then $\alpha \beta \lambda = \beta \alpha \lambda$. Hence G/N is abelian.
\(a, b \in G \), then \([a, b] \to [a, b] \).

Since \(G/N \) is abelian, \([a, b] = e\).

\([a, b] \) is in the kernel of \(G \to G/N \), so \([a, b] \in N \), so \(G' \subset N \).

Q.E.D.

5.3.7 says \(G' \) is the smallest normal subgroup with an abelian quotient.

Then 5.3.8 \(\forall i \), \(G^{(0)} = G \) and \(G^{(i+1)} = \text{commutator subgroup of} \ G^{(i)} \).

\(G = G^{(0)} \supset G^{(1)} \supset G^{(2)} \supset \ldots \).
(The commutation series G is solvable $\iff G^{(n)} = e$ for some finite n)

\Rightarrow is obvious.

\Rightarrow Assume G is solvable and $G = H_0 \supset H_1 \supset H_2 \supset \cdots \supset H_n = \{e\}$ as in the definition. Hence $H_i \supset G^{(i)}$. Will show by induction on i that $H_i \supset G^{(i)}$. Suppose $G^{(k)} \leq H_k$. Since H_k / H_{k-1} is
abelian \quad H_R \quad (\text{the comm. grp of } H_R)

is contained in \quad H_{k+1} \quad \text{.} \quad \therefore \quad G_{(k+1)} = \left(G_{(k)} \right)' \subseteq H_R \subseteq H_{k+1}

This is the inductive step. \quad \text{QED}.

\textbf{Thm 5.3.9} \quad S_m \text{ is not solvable for } \quad n \geq 5.

\textbf{Proof} \quad \mathcal{H} \triangleleft S_m \text{ be the subgroup generated by all 3-cycles} \quad \mathcal{H} \subseteq \langle (i,j,k) \rangle
\(S = (i, k, l) \)

\(P = (k, j, m) \) with \(i, j, k, l, m \) distinct

Claim that \(H' \) (the comm. subgroup of \(H \)) also contains all 3-cycles:

\(\sigma = [S, P] \) and so on. Each of these is the comm. of the other 2 (on its universe)

This means \(H' = H \) and \(H \) is not solvable
$H \leq S_n \implies H' \leq S_n'$
and
$H = H^{(i)} \leq S_n^{(i)}$

This means S_n is not reducible.

QED.

Remark

$H = A_n$

A_n for $n \geq 5$ is simple, i.e.
its only normal subgroups are itself and e.
Theorem 5.3.10. If G is solvable, so are all of its subgroups and (2) quotients.

Proof: Let $H \leq G_n$. Then $H^{(i)} \leq G^{(i)}$.

So $H^{(i)} = e$ for $i \geq 0$.

H is solvable.