In 12.5.16 we have not discussed \(\implies \). Will discuss \(\Leftarrow \).

Let \(n = |G| \) on the product of all primes dividing \(G \).

Apply 12.5.8 to

\[
\begin{align*}
\mathbb{Q}& \to \mathbb{Q}^{	ext{radical}} \to E' \\
\text{abelian} & \to \text{radical} \to \text{splitting fields} \\
G & \to E
\end{align*}
\]

\(G' \) is solvable because \(G \) is.

Every prime dividing \(|G'| \) also
divides n. G' has a nested sequence of subgroups, in which each $G_i'/G_{i-1}' = G_i$. For some prime $p|n$. Hence we have $E' = K'_m \supset K'_{m-1} \supset \cdots \supset K_0' = F'$. $k'_i = (E')^{G_{k_i}}$. Each extension (by (2.4.15)) is a simple radical extension. Hence E' is a radical extension of F'. Since F' is a radical extension of F, $f(x)$ can be solved by radicals.
Thm 12.4.10 The extension $Q \to Q(\sqrt[n]{1})$ is an abelian radical extension.

Proof later.

Assuming this is true, apply 12.5.8 to

$$
\begin{array}{c}
F \\
\downarrow \\
A'
\end{array} \quad F' = F(\sqrt[n]{1}) \quad \text{splitting fields for} \quad \mathbb{Q}(\sqrt[n]{1}) \\
\downarrow \\
\mathbb{Q} \\
\downarrow \\
A = \text{abelian} \quad Q(\sqrt[n]{1}) \\
\downarrow \\
\mathbb{Q}(\sqrt[n]{1}) \quad \Phi_n(x)
\end{array}
$$

$A = \text{Rad}(Q(\sqrt[n]{1})/\mathbb{Q})$ is abelian by 12.4.11.

A' is a subgroup of A so A' is abelian.
Hence

\[E'(\sqrt[n]{D}) \rightarrow F \]
\[\text{radical} \quad \rightarrow \quad E' \]
\[A' \quad \text{radical} \quad \rightarrow \quad E \]
\[F \quad \rightarrow \quad E \]

\[\{ \text{splitting fields of } \beta(x) \in F[x] \} \]

\[E' \text{ is a radical extension of } F \]

Each root of \(\beta(x) \) is expressible in terms of radicals of elements of \(F \), so \(\beta(x) \) is solvable by radicals. This is \(\leq \) in the main theorem.
To prove 12.4.10 we need to recall $\phi_n(x)$ and so on.

E.g., $n = 12$

$$x^{12} - 1 = (x^6 + 1)(x^6 - 1)$$

$$= (x^4 - x^2 + 1)(x^2 + 1)(x^2 - 1)$$

$$= \phi_{12}(x) \cdot \zeta_{12}(x)$$

Let $\zeta = e^{2\pi i/12} = \text{primitive 12th root of unity}$,

$$\zeta^{2k} = 6\text{th root of unity}$$

$$\zeta^{3k} = 4\text{th}$$

The remain roots are ζ, ζ^5, ζ^7 and ζ^{11}.
$n = 20 \quad s = e^{2\pi i/20}$

s^{2k} is a 10th root

s^{5k} is 4th

$s^1, s^3, s^7, s^9, s^{11}, s^{13}, s^{17}, s^{19}$

In the general the # of primitive n-th roots of unity is $\phi(n)$, the Euler totient, the # of integers prime to n between 0 and n.

The exponents form a gp under multiplication mod n.
What is \(\text{Gal}(\mathbb{Q}(i)/\mathbb{Q}) \)?

Each primitive root has the same minimal polynomial, \(\Phi_{20}(x) \)

\[
\Phi_{20}(x) = (x^{10} + 1)(x^{10} - 1) = (x^8 - x^6 + x^4 - x^2 + 1)(x^2 + 1)(x^{10} - 1)
\]

\[
\Phi_{20}(x) \quad \text{and} \quad l_{20}(x)
\]

Claim \(\Phi_{20}(x) = (x-5)(x-5^2)(x-5^3)(x-5^7)(x-5^{13})(x-5^{17})(x-5^{19}) \)

\(\text{Gal gp is } C_m \) the multiplicative
of unity in the ring \(\mathbb{Z}/n \).

For \(\mathbf{a} \in \text{U}(n) \) there is a Galois
automorphism \(\sigma \) defined by
\[
\sigma(\mathbf{a}) = \mathbf{a}^k.
\]

Precise definition of \(\tilde{\mathbf{F}}_n(x) \) is
tricky to write, but clear
in any specific case.

Example \(n = 30 \)

\[
x^{30} - 1 = (x^{15} + 1)(x^{15} - 1) = (x^4 + x^3 + x + 1)(x^6 - 1)
\]

\[
= (x^2 + x^1 + 1)(x^{10} - 1)
\]
\[f(x) = (x^{10} - x^5 + 1)(x^{15} - 1) \]

\(\Phi_{30}(x) \) is a degree 6 factor of \(x^{10} - x^5 + 1 \).

Def \(\Phi_n(x) \) is the minimal poly of \(e^{2\pi i/n} \) in \(\mathbb{C} \).

Properties

\[\Phi_n(x) \in \mathbb{Z}[x] \quad 12, 4, 8 \]
$\phi_n(n)$ is defined as the degree in $\mathbb{U}(n)$.

$G_n = \mathbb{N}/(\mathbb{Z}/n) = \mathbb{U}(n) = C_n^x = \gamma \beta$ of units in the ring \mathbb{Z}/n.

G_n acts by sending $\mathbb{G} \rightarrow \mathbb{G}$ to various powers of itself. $G_{130} = \{1, 7, 11, 13, 17, 19, 23, 29, 37 \}$

$n = 100 \quad \mathbb{U}(100) = 40$
Facts about φ:

\[\varphi(p^n) = p^n - p^{n-1} \quad (p - 1) p^{n-1} \quad p = \text{prime} \]

\[\varphi(p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}) \quad \text{for distinct primes} \]

\[= \prod_{i=1}^{k} \varphi(p_i^{n_i}) = \prod_{i=1}^{k} (p_i^{n_i} - 1) \]

\[\varphi(100) = \varphi(2^2 \cdot 5^2) = \varphi(2^2) \varphi(5^2) \]

\[= 2 \cdot 20 = 40 \]

\[c_m = \left\{ 1, 3, 7, 9, 11, 13, 17, 19, \ldots \right\} \]
\[C_p^x = U(p^n) = C_{p-1} \times C_{p^{n-1}} = C_{p-1}^{n-1} \quad (p \text{ is prime}) \]

Let \(m = \prod_{i=1}^{k} p_i^{n_i} \), \(p_i \) are distinct prime.

\[C_m^x = U(m) = \prod_{i=1}^{k} U(p_i^{n_i}) \]

\[= \prod_{i=1}^{k} \left(C_{p_i-1} \times C_{p_i^{n_i}-1} \right) \]

e.g. \(U(100) = U(4) \times U(25) \)
This is $\text{Gal} \left(\mathbb{Q}(\sqrt[100]{1+i}) / \mathbb{Q} \right)$.