Def. A ring R is an abelian gp (under $+$) equipped with a multiplication, i.e. a binary operation \cdot.

1) $a \cdot (b+c) = ab + ac$

2) $(a+b) \cdot c = ba + ca$

3) $(ab) \cdot c = a \cdot (bc)$

Blanket assumption: All rings are commutative ($ab = ba$) and contain 1 unless otherwise stated.

Def. A field F is a ring in which each nonzero element has
a multiplicative inverse, i.e.
\(ha = 0 \) \(\exists a^{-1} \) s.t. \(a^{-1} \cdot a = 1 \)

Def: An integral domain \(D \) is a ring in which \(a \cdot b = 0 \) \(\Rightarrow a = 0 \) or \(b = 0 \).

Examples: \(\mathbb{Z}/6 = \text{integers mod } 6 \)
\[= \{0, 1, 2, 3, 4, 5\} \]
is not an ID because \(2 \cdot 3 = 0 \)

Def: If \(a \cdot b = 0 \) with \(a, b \neq 0 \), then \(a \) and \(b \) are zero divisors.

Examples: \(\mathbb{Z} \) is a domain.
Any field \(\mathbb{F} \) is a domain.
If \(a, b \neq 0 \in F \) and \(a \cdot b = 0 \)

then \(a^{-1} \cdot a \cdot b = b = a^{-1} \cdot 0 = 0 \)

CONTRADICTION. QED

Thm 6.3.14. Every finite domain \(D \) is a field.

Proof: Let \(a \neq 0 \in D \). Let \(n = \#D \)

Consider the set \(S \) of all non-zero elements of \(D \)

\[S = \{ x \in D : x \neq 0 \} \quad n - 1 \text{ elements} \]

as \(S = \{ a x \in D : x \neq 0 \} \)

Note: \(0 \notin S \). If \(a \neq 0 \) has \(n - 1 \) distinct elements, one of them must be 1,

so \(ax = 1 \) for some \(x \in D \)
and \(x = a^{-1} \).

Assume \(ax_1 = ax_2 \) for \(x_1 \neq x_2 \)

\[
a x_1 - a x_2 = 0
\]

\[
a (x_1 - x_2) = 0 \quad \text{so} \quad a = 0 \quad \text{on} \quad x_1 - x_2 = 0
\]

CONTRADICTION

Hence, \(D \) is a field. QED

Later we will see that for each prime \(p \) and each integer \(n \geq 0 \), there is a field with \(p^n \) elements, unique up to isomorphism.

Each finite \(D \) is one of these.

E.g., \(\mathbb{Z}/p \) is a field for each prime \(p \).

E.g., \(\mathbb{Z}/691 \).
Def: An ideal I in a ring R is a subgroup under $+$ such that if $a \in I$ and $x \in R$ then $ax \in I$.

This is a stronger condition than being a subring.

Example:
1. $R = \mathbb{Q}$, rational # 5
 $I = 2\mathbb{Z}$ = integers
 This is a subring but not an ideal.

2. $R = \mathbb{Z}$
 $I = \{4n : n \in \mathbb{Z}\}$ = $4\mathbb{Z}$ = (4)

3. R any ring and $x \in R$
 $I = \{ax : a \in R\mathbb{Z}\}$ is an ideal
 $= (x) = \text{ideal generated by } x.$
This is called a principal ideal.

④ $(0) = \text{zero ideal} = \{0\}$

⑤ $(1) = \text{unit ideal} = R$

⑥ $R = \mathbb{Z}[x] = \text{polynomials in} \ x \ \text{with integer coefficients}$

$I = (2, x) = \text{ideal generated by} \ 2 \ \text{and} \ x$

$$= \left\{ 2f(x) + xg(x) : f(x), g(x) \in \mathbb{Z}[x] \right\}$$

$$= \left\{ a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n : a_0 \ \text{even} \right\}$$

I contains the ideals (2) and (x).

$2 \in I \ \text{but not in} \ (x)$

$x \in I \ \text{but not in} \ (2)$
I is not a principal ideal.

Then in \mathbb{Z} every ideal is principal.

e.g. $I=(5,7) \implies 7-5=2 \implies 4 \in I$

$5-4=1 \in I$

$I=(15,35)$

$2 \cdot 15 = 30 \in I$

$35-30=5 \in I$

$I=(5)$

In general $(m,n) = (\gcd(m,n))$

This can always be done.

Euclidean algorithm will be discussed later.

Def: A principal ideal domain (PID)
is an integral domain in which every ideal is principal.

e.g. \(\mathbb{Z} \) is a PID
\(\mathbb{Z}[x] \) is not a PID.

Any subring of \(\mathbb{Q} \) is a PID

e.g. \(\sum \frac{n}{15^n} \)

is a subring of \(\mathbb{Q} \) and a PID.

Let \(S \) be a set of primes.

\(\mathbb{Z}[S^{-1}] = \left\{ \frac{a}{b} : a \in \mathbb{Z}, \ b \text{ is a product of powers of primes in } S \right\} \)

Any subring of \(\mathbb{Q} \) is one of these.
Let \(R \rightarrow S \) be a ring homomorphism.

What about \(\ker \phi \)?

\[
\ker \phi = \{ x \in R : \phi(x) = 0 \} \supset
\]

Claim it is an ideal.

If \(x, y \in \ker \phi \) then

\[
\phi(x + y) = \phi(x) + \phi(y) = 0 + 0 = 0
\]

\(\Rightarrow \) \(x + y \in \ker \phi \). Hence \(\ker \phi \) is a subgroup.

Let \(a \in R \) and \(x \in \ker \phi \)

\[
\phi(ax) = \phi(a) \phi(x) = \phi(a) 0 = 0
\]

Hence \(ax \in \ker \phi \Rightarrow \ker \phi \) is an ideal.

Conversely, every ideal \(I \) is the kernel of some ring hom.
Consider the group \(R/I \). It inherits a multiplication from \(R \) given \(a, b \in R/I \). Choose \(a, b \) after mapping to \(a \) and \(b \) under \(R \to R/I \), a group homomorphism.

Claim we can define \(ab = \phi(ab) \).

We need to show this is independent of the choice of \(a \) and \(b \).

Suppose \(a' \) and \(b' \) are different preimages (under \(\phi \)) of \(a \) and \(b \).

Let \(c = a' - a \) and \(d = b' - b \).

\[
\begin{align*}
 a' &= a + c \\
 b' &= b + d
\end{align*}
\]
c, d ∈ \text{ker } \phi = I
\phi(a', b') = \phi((a+c)(b+d))
= \phi(ab + cb + ad + cd)
= \phi(ab) + \phi(cb) + \phi(ad) + \phi(cd)
= \phi(ab)

This means the product in \(R/I \) is well defined. It is independent of the choice of \(a \) and \(b \).

Def. An ideal \(I \) is **prime** if
\[ab \in I \Rightarrow a \in I \text{ or } b \in I. \]
An ideal \(I \subset R \) is **maximal** if
The only bigger ideal is \(R \).

\[\text{e.g. } R = \mathbb{Z}[x] \quad I_1 = (2) \quad \text{prime ideals} \]

\[I_2 = (x) \]

But neither is maximal. Both are contained in \((2, x)\).

Thm 7.2.27 Let \(I \) be an ideal in \(R \).

i) \(I \) is prime \(\iff \) \(R/I \) is an integral domain

ii) \(I \) is maximal \(\iff \) \(R/I \) is a field.

Recitation

Monday 6:30 Money 502