Let $F \subset E$ be a field extension. Then $\text{Gal}(E/F)$, the Galois group of E over F is the group of field automorphisms of E fixing F.

Examples

1. $F = \mathbb{Q}$, $E = \mathbb{Q}(\sqrt{2})$
 $\text{Gal}(E/F) \cong \mathbb{Z}/2$ with $\sqrt{2} \mapsto -\sqrt{2}$

2. $E = \mathbb{Q}(\sqrt[3]{2})$, $\text{Gal}(E/F)$
is trivial. \(\sqrt{3} \) must be sent to itself because it is the only root of \(x^2 = 3 \) present. \(E = \mathbb{Q}[x]/(x^3 - 2) \)

\(E = \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3}) \) (first day example)

\(E \) splitting for \(x^3 - 2 \)

\(\text{Gal}(E/F) \approx S_3 \)

In 0 and 3, \([E : F] = 1 = \text{deg}(E/F) \), but not so in \(E \).
Theorem 12.1.24 Let \(F = \text{field} \), \(f(x) \in F[x] \) separable.
\[E = \text{splitting field of } f(x) \]
\[G = \text{Gal } (E/F) \]
Then \(|G| = [E:F] = n \).

Before proving this we need

Lemma 12.1.23 Let \(p(x) \) be an irreducible factor of \(g(x) \) with zeros \(x_1 \) and \(x_2 \). Then
\[\exists \ y \in G \text{ with } p(y) = x_2. \]
Proof (see 10.3.20 and 10.3.21)

\(E \rightarrow F(\bar{x}_1) \rightarrow E \) \(F(\bar{x}) \) and \(F(\bar{x}_2) \) are both isomorphic to

\(F[\bar{x}] / \langle f(\bar{x}) \rangle \).

and there is an automorphism of \(E \)

sanding \(F(\bar{x}_1) \) to \(F(\bar{x}_2) \) (QED)

Pf of Thm by induction on \(n \). Statement for \(n = 1 \) is obvious.

Let \(p(\bar{x}) \) be an irreducible factor of \(f(\bar{x}) \)
with zeros $\alpha_1, \alpha_2, \ldots, \alpha_k$ with $k \geq 1$. By the lemma, $\exists \gamma \in G$ with $\gamma(\alpha_i) = \alpha_i$. Then $[F(\alpha_i) : F] = k$ and $[E : F(\alpha_i)] = m$ with $[E : F] = m, k = n$. By induction,

$$|\text{ Aut } (E/ F(\alpha_i))| = [E : F(\alpha_i)] = m < n.$$

Because E is the splitting field of $f(x)$.
Claim 1. The elements \(y_i, \Theta_i \) are distinct.

Claim 2. Every \(\phi \in G \) is one of these.

Proof of Claim 1: Suppose \(y_i, \Theta_i = y_i, \Theta_i' \).
Then \(y_i = y_i, \Theta_i(x_i) = y_i, \Theta_i'(x_i) = y_i, \Theta_i'(x_i) \Theta_i \Theta_i^{-1} \).

But \(y_i, \Theta_i(x_i) = y_i, \Theta_i(x_i) = x_i \).

So \(i = i' \).
This means \(y_i \cdot j_y = y_i \cdot j_Y \)

so \(A_j = A_j^i \) and \(Y = f \).

QED

Proof of Claim 2:

Let \(E \rightarrow E \) be given

\[x_i \mapsto x_i \] for some \(i \)

Let \(\theta = y_i^{-1} \phi \), so \(\theta(x_i) = x_i \). It fixes \(F(x_i) = \mathcal{O} \). Hence, \(\theta \in \text{Gal}(E/F) \)

so \(\theta = \theta_j \) for some \(j \).
\[\theta_1 = \psi^1 \phi \quad \text{and} \quad \phi = \psi_1 \theta_1. \]

(QED)

Hence \(|G| = m \kappa^n \) as claimed (QED).

Proof 12.1.6 Let \(f(x) \in F[X] \) be a separable polynomial of degree \(d \)
and let \(E \) and \(G \) be as above.

Then \(G \) is a subgroup of \(S_d \). Hence
161 divides $d!$

Proof: An elt $\phi \in G$ permutes the d roots of $f(x)$ and is determined by that permutation, so we have a $1:1$ hom $G \rightarrow S_d$, QED

There is an example in the book for $d = 5$ and $\Gamma = \mathbb{Q}$ in which G contains A_5
We also know that A_5 is not solvable.

Recall G is solvable if it satisfies

$$e G e = G_0 \triangleleft G_1 \triangleleft G_2 \ldots \triangleleft G_n = G$$

where G_{i-1} is normal in G_i with G_i / G_{i-1} is abelian.

G is simple if its only its only normal subgroups are G and $e G e$.
A non-abelian simple group (e.g. A_n for $n \geq 5$) is not solvable.

Let $f(x)$ etc be as above. Let G be the Galois group of $f(x)$ over \mathbb{F}_n.

Galois' main theorem states that $f(x) = 0$ is solvable by radicals (to be defined shortly) iff its Galois group is solvable as defined.
above.

Def 12.5.5: An extension K of F is a simple radical extension if it has the form $K = F(p)$ where $p^n \in F$ for some $n > 0$. A radical tower over F is $F = K_0 \subset K_1 \subset K_2 \subset \ldots \subset K_n = K$ where each K_i is a simple radical
extension of K_{i-1}, m in its height and K_m is the top of the tower K. F is an extension by radicals if it is the top of a radical tower over F. $f(x) \in F[x]$ is solvable by radicals if its splitting E is contained in an extension of F by radicals.
Thm 12.5.16 (Galois main thm)

Let F be a field of char 0 and $f(x) \in F[x]$. Then $f(x)$ is solvable by radicals \iff its Galois gp is solvable.

Goal of course is to prove this.

It implies there is no general formula for the roots of
a polynomial of degree \(\geq 5 \).

Thus 12.2.9 Let \(E \) be a finite extension of \(F \) with \(G = Gal(E/F) \). The following are equivalent (TFAE):

1) \(F = EG_1 \), set of elt in \(E \) fixed by \(G \).
2) Every irreducible polynomial \(p(x) \) with a root in \(E \) is separable and has all of its zeros in \(E \).
3) E is the splitting field of a separable polynomial.

Def: An extension $E \supset F$ is a Galois extension if the above conditions hold.